-
포스트 AI 시대 핵심 신소재는?
우리 대학 신소재공학과 김상욱 교수 연구팀이 인공지능(Artificial Intelligence, 이하 AI)이 불러온 4차 산업혁명 이후를 뜻하는 포스트 AI시대의 핵심 신소재를 전망하는 초청논문을 발표했다고 6일 밝혔다.
대화형 AI인 `챗GPT(ChatGPT)'가 월간 사용자 1억 명을 두 달 만에 달성하는 등 AI는 우리 생활에 한층 가까이 다가왔다. 4차 산업혁명의 핵심 기술인 AI는 인간의 지능을 모사해 데이터를 학습하고 이에 따라 합리적인 의사결정을 내릴 수 있다. 단순 반복적인 작업을 대체하는데 머물렀던 과거 인공지능 기술들과 달리, 더욱 어렵고 복잡한 작업을 효율적으로 수행할 수 있어 의료, 자율 주행 자동차, 로보틱스 등의 분야에서 새로운 기술 혁신을 이루고 있다.
최근에는 사물인터넷(IoT) 기술의 발전과 함께 현실 세계의 다양한 사물과 개체들이 인터넷을 통해 연결된 초연결 시대가 도래하고 있다. 포스트 AI 시대에는 AI가 다양한 기기들과 결합해 우리 주변의 정보를 항상 받아들이고 이에 따라 최적의 의사결정을 하며 이를 현실적으로 실물세계에 구현하는 사이버세계와 현실세계가 하나로 융합되는 시대가 될 것으로 전망되고 있다.
포스트 AI 시대가 다가옴에 따라 웨어러블 장치를 위한 스마트 섬유, 소프트 로보틱스를 위한 인공근육, 환경친화적인 에너지 생산효율을 극대화할 수 있는 단일원자촉매등 AI의 한계를 보조하고 보완할 수 있는 신소재의 혁신이 더욱 중요해지고 있으며, 무엇보다 실용적인 기술의 확보가 시급하다.
김상욱 교수 연구팀은 스마트 섬유 개발의 원천소재인 그래핀 산화물 액정성을 세계 최초로 발견하였고, 소프트 로보틱스 분야에 새로운 돌파구를 마련한 헤라클레스 인공 근육 개발 그리고 세계 최초로 단일원자촉매를 발견하는 등 미래 신소재분야에서 혁신적인 연구를 수행해 온 공로를 인정받아 세계적인 학술지 `어드밴스드 머티리얼스 (Advanced Materials)' 명예의 전당(Hall of Fame) 특집 리뷰논문을 게재했다.
`어드밴스드 머티리얼스' 명예의 전당 초청논문은 신소재 분야의 세계적인 석학들을 매우 엄격한 기준에 따라 선정하여 그 미래 연구방향을 소개하는 권위 있는 특집 논문이다.
김상욱 교수는 "인공지능이 이끄는 4차 산업혁명 이후의 포스트 AI 시대는 신소재 기반의 사물 혁신이 중요해질 것인데 그래핀과 같은 2차원 소재가 매우 중요한 역할을 할 것으로 기대된다ˮ고 밝혔다.
KAIST 응용과학연구소 이강산 박사가 제1 저자로 참여하고 KAIST 신소재공학과 수치스라 파드마잔 사시카라(Suchithra Padmajan Sasikala) 연구교수와 경희대학교 정보디스플레이학과 임준원 교수가 공동 교신저자로 참여한 이번 연구는 한국연구재단의 리더 연구자 지원사업인 다차원 나노 조립제어 창의연구단의 지원을 받아 수행됐다.
*논문명: 2D Materials Beyond Post-AI Era: Smart Fibers, Soft Robotics And Single Atom Catalysts
2023.11.06
조회수 4844
-
마찰전기의 발생 원리를 세계 최초로 규명
우리 대학 물리학과 김용현 교수 연구팀이 수천 년 동안 해결되지 않은 난제 중의 난제로 알려진 마찰전기 발생 원리를 세계 최초로 규명했다고 26일 밝혔다.
김 교수 연구팀은 두 물질을 마찰시킬 때 경계면에서 발생하는 열에 의해 전하가 이동할 수 있다는 아이디어를 바탕으로 `제1 원리 전자구조 계산'과 `열전달 방정식'을 풀어 마찰전기의 미시적 작동원리를 찾아냈고, 기존에 알려진 실험적 사실을 정성적으로 기술할 수 있었을 뿐만 아니라 정량적으로도 이동 전하량을 설명해 낼 수 있었다. 기존에는 정량적으로 마찰전기를 설명할 수 있는 이론은 없었다.
마찰전기에 대한 새로운 이론은 최근 주목받고 있는 에너지 수확 기술 중의 하나인 마찰전기 나노 발전기(triboelectric nanogenerator, TENG) 효율의 혁신적 증대에 이바지할 것이며, 여러 실생활 및 반도체 산업에서 원하지 않는 문제를 일으키거나 터치스크린처럼 긍정적으로 사용되고 있는 정전기의 미시적 제어를 가능하게 할 것으로 기대된다.
물리학과 신의철 박사과정이 제1 저자로 참여하고 한국표준과학연구원 여호기 박사가 공동연구로 참여한 이번 연구는 1년여의 동료심사를 거쳐 미국물리학회 오픈엑세스 국제 학술지 `피지컬 리뷰 리서치 (Physical Review Research)' 5월 4권 2호에 지난 17일 출판됐다. (논문명 : Derivation of a governing rule in triboelectric charging and series from thermoelectricity).
마찰전기는 2,600년 전 인류가 처음 `전기'를 인식하게 된 계기로 알려질 만큼 인류와 함께한 역사가 굉장히 오래된 현상이다. 최근에는 에너지 수확 기술 중 하나로 중요하게 여겨지고 있을 뿐만 아니라 코로나19의 감염을 막기 위한 마스크 그리고 공기 정화 기술로 광범위하게 사용되고 있다.
실생활에서도 번개나 정전기 등으로 매우 친숙한 자연현상이지만 지금까지 마찰전기의 발생을 정량적으로 설명할 수 있는 양자역학 이론이나 나노기술 이론은 없었다.
김용현 교수와 여호기 박사는 2014년 열전 영상 측정 기술을 개발하며 두 물질 간의 계면에 급격한 온도변화가 발생할 수 있다는 사실에 주목했다. 계면에 마찰에 의한 열이 발생하면 열전효과에 의해 전하가 이동할 수 있고, 마찰전기의 원리를 규명할 수 있는 실마리를 찾은 것으로 기대했다. 하지만 당시 2~3명의 박사과정 학생이 달려들어도 문제는 쉽게 해결되지 않았고, 7년여 만인 지금 대부분 난관을 해결하고 마침내 마찰전기의 비밀을 인류 최초로 맛볼 수 있었다.
연구팀은 마찰전기의 전하 이동 방향을 예측할 수 있는 `마찰전기 팩터(triboelectric factor)' 공식을 유도했으며 이를 이용해서 세계 최초의 이론 마찰 대전열을 구성했다. 마찰전기 팩터는 제벡 계수(단위 온도차에서 유도되는 전압), 밀도, 비열, 열전도도 등 물질 특성으로 구성돼 있다. 또한 마찰전기로 발생시킬 수 있는 전압강하의 크기를 예측하는 `마찰전기 파워(triboelectric power)'라는 물리량 K도 연구팀이 최초로 제안했다.
마찰 대전열은 중학교 2학년 교과서에서 다루는 내용이었지만 2015년 개정 교육과정 교과서에서는 더이상 다루고 있지 않다. 기존의 경험적 방법으로 결정되는 마찰 대전열이 연구자마다 다른 결과를 보고하고 있어 부정확하다는 인식이 확산됐기 때문이다. 그러나 우리 연구팀이 미시적, 양자역학적으로 정의된 마찰전기 팩터를 이용해 정량적인 대전열을 최초로 구성했기 때문에 다시 교과서에 마찰 대전열이 실릴 수 있는 계기가 마련됐다.
김용현 교수는 "미시세계에서의 열전현상을 양자역학적으로 연구하고 있었기 때문에 인류의 난제인 마찰전기 문제를 해결할 수 있는 행운이 따랐고, 오랫동안 포기하지 않고 매달려 준 학생들과 동료들에게 감사하다ˮ 라며 "마찰전기에 대한 미시적 이해를 통해, 보다 고효율 마찰전기 나노 발전기를 물질 수준에서 설계할 수 있게 됐으며, 실생활이나 산업에서 정전기를 제어하는 데 널리 이용되기를 바란다ˮ 라고 말했다.
한편 이번 연구는 한국연구재단의 자율운영 중점연구소 지원사업, SRC 이공분야기초연구사업, 미래소재디스커버리사업, 그리고 KAIST의 최장 30년까지 지원하는 그랜드 챌린지 30 사업의 지원을 받아 수행됐고, 관련 기술은 국내 특허출원이 완료됐다.
2022.05.26
조회수 12304
-
생물학적 무기 나노재료의 종류와 응용 전략 총정리
우리 대학 생명화학공학과 이상엽 특훈교수 연구팀이 생물학적으로 합성된 무기 나노재료의 종류와 응용을 총망라해 최신의 연구내용과 흐름을 한눈에 파악할 수 있도록 전략을 정리한 `미생물과 박테리오파지를 이용한 생물학적 무기 나노재료의 합성 및 응용' 논문을 발표했다고 4일 밝혔다.
금속 물질 등이 주된 무기 나노재료(inorganic nanomaterial)는 물리·화학적 합성법들에 따라 얻어지며, 고온·고압의 조건에서 반응이 이뤄지고, 유독한 유기용매 및 고액의 촉매가 필요해 환경오염의 문제를 일으키는 단점이 있다.
생물학적 무기 나노재료 합성법은 친환경 및 단순한 공정으로 경제적인 효과는 물론 생물학적 무기 나노재료의 높은 생체 적합성을 장점으로 촉매, 에너지 수확 및 저장, 전자기기, 항균물질, 바이오 의료 분야 등 폭넓게 적용될 수 있을 것으로 기대된다.
연구팀은 미생물과 박테리오파지를 이용해 55개 주기율표 원소 기반 단일 또는 두 가지 원소 조합으로 146개의 무기 나노재료가 생물학적으로 합성 가능함을 보였다.
생물학적 무기 나노재료 합성에는 박테리아, 곰팡이, 조류, 박테리오파지가 주로 이용됨을 정리했다. 이들의 합성 메커니즘에는 효소·비효소 단백질, 펩타이드, 전자 수송경로의 구성 요소 등이 주요 역할을 담당하고 있다.
특히 연구팀은 유전적으로 조작된 미생물과 박테리오파지들을 이용하면 생물학적 무기 나노재료의 합성 수율을 높일 수 있다고 밝혔다. 유전적으로 조작된 미생물들은 무기 이온에 대한 결합력을 높이고 무기 이온의 생물학적 환원을 증가시키는 한편 무기 이온의 생물체에 대한 독성을 줄이기 위한 전략으로도 도입된다.
이번 연구에는 미생물과 박테리오파지를 이용한 무기 나노재료의 생산 가능성과 크기, 모양, 결정성을 조절하기 위한 전략들이 포함됐다.
연구팀은 결정질 무기 나노재료를 생물학적으로 합성하기 위해 물질의 열역학적 안정성을 나타내주는 푸베이 다이어그램 분석을 활용한 전략도 제시했다.
또한 연구팀은 생물학적 나노재료의 합성 시 고려해야 하는 사항을 정리한 10단계의 흐름도를 제시했다. 현재 생물학적으로 합성된 무기 나노재료들은 촉매, 에너지 수확 및 저장, 전자기기, 항균물질, 의생명 분야의 응용에 적용됐다.
이상엽 특훈교수는 "생물학적 나노재료들이 추후 바이오 의료 분야의 재료, 바이오 전자기기, 친환경 화학물질 생산 등에 새롭게 적용될 수 있을 것ˮ이라고 기대감을 내비쳤다.
이번 연구 성과는 과학기술정보통신부와 한국연구재단이 추진하는 기후변화대응사업의 바이오리파이너리를 위한 시스템대사공학 연구과제 지원으로 수행됐으며, KAIST 생명화학공학과 최유진 박사가 제1 저자로 참여한 논문은 우수성을 인정받아 국제학술지 `네이처 리뷰 케미스트리(Nature Reviews Chemistry)'에 12월호 표지논문으로 게재됐다.
2020.12.04
조회수 41545
-
이성빈 교수, 나노 물결 무늬에서 고차-위상 양자상태 발견
〈 박문집 연구원, 이성빈 교수 〉
우리 대학 물리학과 이성빈 교수 연구팀이 두 겹으로 비스듬하게 겹쳐 있는 뒤틀린 이중 층 그래핀의 무아레 무늬(나노 물결 무늬)에서 새로운 고차-위상학적 양자 상태가 발생한다는 사실을 이론적으로 규명했다.
이번 연구 결과는 뒤틀린 그래핀 이중 층 뿐 아니라 다양하고 복잡한 2차원 물질의 무아레 구조를 연구하는데도 적용할 수 있어 광범위한 응용이 가능할 것으로 기대된다. 특히 국내 물리학에서는 흔하지 않은 이론적 발견과 증명을 했다는 의미가 있다.
박문집 연구원이 1 저자로 참여한 이번 연구 결과는 국제 학술지 ‘피지컬 리뷰 레터스(Physical Review Letters)’ 11월 22일 자 온라인판에 편집자 추천(editors’ suggestion) 논문으로 선정됐다. (논문명 : Higher-Order Topological Insulator in Twisted Bilayer Graphene)
또한, 매달 전체 물리학계에서 중요하다고 여겨지는 주제를 소개하는 ‘네이처 리뷰 피직스 (Nature Review Physics)’ 연구 하이라이트(research highlight)에 11월 14일 자로 선정되기도 했다. (기사명: Fantastic beasts)
프랑스어로 물결이라는 뜻의 무아레(moiré)는 두 격자구조를 비스듬히 겹쳐 놓았을 때 물결이 일렁이듯이 나타나는 간섭무늬를 말한다. 모기장이 겹쳐 있는 부위에 햇빛이 비치면 물결무늬가 발생하는 것처럼 일상에서도 쉽게 확인할 수 있는 현상이다.
무아레 무늬는 일상생활뿐만 아니라 그래핀과 같은 이차원 나노 물질 두 겹을 비스듬하게 올려놓았을 때도 나타난다. 이때 뒤틀린 그래핀 이중 층에서 나타나는 무아레 무늬는 그래핀 격자의 주기를 수십에서 수만 배까지 증폭시킬 수 있다.
이러한 원리로 뒤틀림 각도에 따라 전기가 흐르지 않는 절연체가 되기도 하고 전기 저항이 아예 없는 초전도체가 되기도 하는 등 물성이 크게 변화할 수 있다. 특히 마법의 각도(magic angle)라고 불리는 1.1도 부근에서 전기 저항이 0이 되는 초전도 현상이 발견돼 이를 설명하기 위한 많은 연구가 진행 중이다.
고차-위상학적 절연체 상태는 새롭게 발견된 위상학적 절연체 중 하나이다. 기존 위상 절연체는 원래 물질보다 한 차원 낮은 경계면이 금속성을 띠는 특성을 갖지만, 고차-위상 절연체는 두 차원 낮은 경계가 금속성을 갖는다.
2차원 표면(surface) 물질을 예로 들면 위상 절연체의 경우 1차원 모서리(edge)에서 금속성을 확인할 수 있다면 고차-위상 절연체에서는 두 차원 낮은 0차원의 특정 끝부분(corner)에서 전자 상태가 된다.
이 2차원 물질 고차-위상학적 절연체의 존재는 아직 실험적으로 증명된 적이 없어 이 물질을 찾기 위한 연구들이 많은 관심을 받고 있다.
그러나 뒤틀린 그래핀 이중 층에서는 이러한 2차원 물질의 위상학적 양자 상태를 설명하기 위한 명확한 이론이 존재하지 않았다. 이는 뒤틀린 그래핀 이중 층에서 나타나는 무아레 무늬의 단위 격자당 탄소 원자의 개수가 수천에서 수만 개에 달해 전자의 움직임을 풀기에는 너무 복잡하기 때문이다.
이러한 탄소 기반의 전자 구조를 이론적으로 정확히 기술하기 위해서는 매우 큰 전산 능력의 대용량 컴퓨터를 이용하거나 특수한 상황으로 가정해 적용하는 근사방법들에 의존해야만 했다.
문제해결을 위해 이 교수 연구팀은 근사방법이 아닌 그래핀 이중 층의 무아레 무늬에서 나타나는 탄소 구조가 뒤틀림 각도에 상관없이 항상 일정한 몇 가지의 정확한 공간 대칭성을 가진다는 점을 이용했다. 이를 통해 뒤틀림 각도에 상관없이 이중 층 그래핀이 절연체라면, 이 이중 층 그래핀은 반드시 고차-위상학적 절연체 상태여야 한다는 사실을 이론적으로 규명했다.
이는 그래핀 이중 층이 가지는 회전 대칭성과 무아레 대칭 이동성이 뒤틀림 각도에 상관없이 항상 성립하는 것을 활용하는 원리이다. 연구팀의 이번 발견은 어떠한 근사방법에도 의존하지 않고 규명했다는 의의가 있다.
박문집 연구원은 “격자구조의 대칭성만을 이용해 이중 층 그래핀의 위상학적 특성을 정확하게 이론적으로 기술했다는 의의가 있다”라며 “뒤틀린 그래핀 이중 층이 이차원 고차-위상학적 절연체의 새로운 후보가 될 수 있을 것이다”라고 말했다.
이번 연구는 KAIST 스타트업 펀딩, BK21, 한국연구재단의 지원을 받아 수행됐다.
□ 그림 설명
그림1. 뒤틀어진 그래핀 이중층의 모서리에서 나타나는 고차 위상학적 양자상
그림2. 두 층의 뒤틀어진 벌집모양 격자에서 나타나는 무아레 무늬
2019.12.04
조회수 12099
-
조용훈, 최형순 교수, 반도체 내 양자 소용돌이 제어 기술 개발
우리 대학 물리학과 조용훈, 최형순 교수 공동 연구팀이 반도체 공진기 구조에서 ‘엑시톤-폴라리톤 응축’이라는 양자물질 상태를 형성 후 새 광학적인 방식으로 양자 소용돌이를 생성하고 제어하는 데 성공했다.
권민식 연구원과 오병용 박사가 공동 1저자로 참여한 이번 연구 결과는 미국 물리학회가 발행하는 물리학 권위지인‘피지컬 리뷰 레터스 (Physical Review Letters)’ 2월호에 게재됐다.
태풍이 일거나 싱크대에서 물이 빠질 때 유체가 소용돌이를 일으키며 회전하는 것은 우리에게 익숙한 현상이다.
이와 마찬가지로 초유체, 초전도체 같은 양자 유체도 소용돌이를 일으키며 회전할 수 있는데, 이는 파동 함수의 위상(phase)이 소용돌이를 중심으로 원주율의 특정 배수가 되는 조건에서만 가능하다. 이렇게 소용돌이가 불연속적으로 양자화되는 현상을 양자 소용돌이라고 한다.
양자 소용돌이는 양자 유체역학을 연구하는 데 가장 핵심적인 요소 중 하나이다. 초유체의 에너지 손실 없이 회전할 수 있는 특성과 소용돌이의 회전 방향을 쉽게 뒤집을 수 없는 위상학(topology)적 안정성이 결합돼 있어 양자 소용돌이를 쉽게 생성하고 제어할 수 있다면 미래형 정보 소자로도 활용할 수 있다.
이런 면에서 반도체 내부에 존재하는 양자 유체인 엑시톤-플라리톤(이하 폴라리톤)은 특히 유리하다. 반도체에 밴드갭(전도체의 가장 아랫부분의 에너지 준위와 가전자대의 가장 윗부분의 에너지 준위 간의 에너지 차이)보다 높은 에너지를 갖는 빛을 쬐면 전자-전공 쌍이 형성되고 서로 강하게 이끌리며 엑시톤을 형성한다.
이러한 반도체에 높은 반사율을 갖는 거울 구조의 공진기를 결합하면 빛(광자)과 물질(엑시톤)이 강하게 상호작용하며 빛, 물질의 성질을 동시에 갖는 제3의 양자 물질을 만들 수 있는데 이를 폴라리톤이라 한다.
폴라리톤이 일정 밀도 이상 모이면 마치 하나의 입자처럼 행동하는 폴라리톤 응축 상태를 띌 수 있는데 이 때 폴라리톤은 초유체의 특성도 갖게 된다. 다른 초유체와 달리 잘 정립된 반도체 공정 기술과 광학적 제어 기술이 결합돼 있고, 초유체 생성 온도가 상대적으로 높아 그 응용 가능성이 기대되는 물질이다.
연구팀은 광-펌핑(원자나 이온이 빛을 흡수해 낮은 에너지의 상태에서 높은 에너지의 상태로 변화하는 현상)을 위해 사용한 레이저의 궤도 각운동량을 제어해 반도체 물질 내에 양자 소용돌이의 방향과 개수를 손쉽게 조절할 방법을 개발했다.
연구팀은 공진 파장이 아닌 빛으로 기존 양자 소용돌이 생성을 위한 까다로운 실험조건을 극복했다. 이 결과는 고체 상태에서 광학적 방법을 이용한 미래형 정보 소자와 복잡한 양자 현상을 이해할 수 있는 양자 시뮬레이터로의 활용 가능성을 높였다는 측면에서 큰 의의가 있다.
비공진 레이저의 궤도 각운동량이 폴라리톤의 기저 상태에까지 영향을 끼친다는 것을 밝힌 이번 연구 결과는 반도체 공진기 시스템에서 전자-정공 쌍의 에너지 완화 과정을 이해하는 데에 있어서도 중요한 결과이다.
KIST 송진동 박사 연구팀과의 협력으로 진행된 이번 연구는 한국연구재단의 중견연구자 및 신진연구자 지원사업을 받아 수행됐다.
□ 그림 설명
그림1. 엑시톤-폴라리톤 초유체와 양자소용돌이 상태의 생성
그림2. 양자소용돌이 제어
2019.03.11
조회수 14262
-
이진환 교수, 스핀 전류로 초전도를 제어하는 신기술 개발
〈 이진환 교수, 최석환 박사 〉
우리 대학 물리학과 이진환 교수가 포항공대 및 연세대와의 공동 연구를 통해 스핀 전류를 이용해 물질의 초전도를 제어하는 기술을 최초로 개발했다.
연구팀이 사용한 물질은 철계열 초전도체인 FeAs 원자층과 페로브스카이트 Sr2VO3 원자층이 반복해서 자기조립에 의해 형성된 헤테로 구조 물질이다. 스핀 제어 주사 터널링 현미경의 탐침과 시료 사이에 흐르는 스핀 분극 전류에 의해 FeAs층의 자성이 C2구조와 C4구조 사이에서 변화하고 이로 인해 FeAs층의 초전도가 켜지고 꺼짐을 원자수준에서 명확히 보일 수 있었다.
최석환 박사(현 BK 박사후연구원)가 제1저자로 참여한 이번 연구는 대표 물리 학술지 ‘피지컬 리뷰 레터스(Physical Review Letters, PRL)’에 11월 27일자로 PRL 대표 논문(Editors’ Suggestion)으로 출판됐다.
이 연구는 스핀 분극 전류와 비분극 전류를 활용해 자성 배열을 국소적으로 바꿈으로써, 나노 자성 메모리를 구현하거나 초전도를 제어하는 트랜지스터 소자를 개발하는데 필요한 기본적인 물리 원리를 최초로 밝혔으며 동시에 이를 원자 수준에서 규명한 것으로 평가받고 있다.
이 연구는 상위 3%의 가장 중요한 PRL 논문에 대해 해당 분야의 권위자의 해설이 함께 실리는 Viewpoint in Physics에도 선정됐으며, 미국 국립 연구소들이 주도하는 일반인 대상의 과학 전문 온라인 뉴스 매체인 Phys.org에 매월 가장 중요한 10개 연구만 선정되는 특집(Feature) 기사로 소개되기도 했다.
또 이진환 교수가 독자 설계 제작하여 이 연구에 활용된 장비는 지난 10월호 최고 권위의 과학 장비 저널인 ‘리뷰 오브 사이언티픽 인스트루먼츠(Review of Scientific Instruments, RSI)’지의 표지 논문으로 선정되기도 했다.
이 장비의 측정 정밀도를 향상시키기 위해 개발하였으나 일반적인 모든 센서와 증폭기의 성능을 향상시킬 수 있는 수학적인 모델이 같은 과학 장비 저널 RSI에 수학적인 논문으로는 예외적으로 별도 정규 논문으로 게재됐다.
이진환 교수는 “모두가 그 기본 원리가 잘 알려진 간단한 주사 탐침 현미경 또는 상용 현미경으로 실험할 때, 우리는 반강자성 탐침을 이용한 스핀 제어 기능, 고자기장 구조에서 불가능할 것으로 여겨졌던 넓은 가변온도 기능, 체계적인 스핀제어 실험을 위한 다중 시료 장착 기능 등을 과감히 설계에 반영하였고, 그 결과 자연스럽게 다른 경쟁 그룹들이 수년 내에 따라 할 수 없는 자성과 초전도의 동시 제어 실험을 체계적으로 수행할 수 있었다”면서 “학내에 공용 헬륨 액화기가 없는 등 기초과학 연구 환경상의 약간의 어려움이 있지만, 이 연구의 물리학적인 성취를 실용적인 소자로 구현하기 위한 확장 연구와 함께, 앞으로도 보다 다양한 측정 기술 혁신으로 첨단 과학의 발전을 선도할 수 있기 위해 최선을 다할 것”이라고 말했다.
이번 연구는 한국연구재단이 추진하는 미래융합 파이오니어 사업과 이공학 개인기초연구지원 사업 등의 지원을 받아 수행됐다.
이 연구 논문은 https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.119.227001 에서 확인할 수 있으며, Viewpoint in Physics와 Phys.org 특집 기사는
https://physics.aps.org/articles/v10/127 및 https://phys.org/news/2017-12-scientists-superconductivity-currents.html 에서 찾아볼 수 있다.
□ 그림 설명
그림1. 연구 개념도
2017.12.26
조회수 20477
-
신의철, 박수형 교수, 네이처 리뷰 면역학에 초청 리뷰논문 게재
우리 대학 의과학대학원 신의철, 박수형 교수와 카톨릭의대 서울성모병원의 성필수 박사가 국내 과학자로는 최초로 ‘네이처 리뷰 면역학(Nature Reviews Immunology)’8월호에 초청 리뷰논문을 게재했다.
‘네이처 리뷰’저널은 네이처 리뷰로부터 초청받은 세계적 석학들이 해당 분야의 전반적인 내용을 총정리 하는 저널이다. 그 중 ‘네이처 리뷰 면역학’은 면역학 분야의 최고 학술지 중 하나로 불린다.
신 교수와 박 교수는 간염 바이러스 면역에 대한 리뷰논문을 작성했다. 사람에게 간염을 일으키는 A형 및 B형, C형 간염 바이러스에 대한 면역반응의 유사점과 차이점을 총체적으로 고찰하고 미래 연구의 방향을 제시했다.
전 세계에서 3억 5천만 명이 B형 간염 바이러스에, 1억 7천만 명이 C형 간염 바이러스에 감염돼 있다. 그러나 B형 간염 바이러스는 체내에서 바이러스를 완전히 제거하는 치료제가 개발되지 않았고 C형 간염은 예방 백신이 개발되지 않았다.
반면 A형 간염은 간 손상을 일으키는 경우가 있긴 하지만 B, C형과 달리 저절로 완치되는 경우가 많다.
신 교수, 박 교수, 성 박사는 이에 주목해 이번 논문에서 A형 간염 바이러스에 대한 면역반응의 특성을 기반으로 B형 간염 바이러스 완치 치료제 및 C형 간염 바이러스 예방 백신을 개발할 수 있음을 논리적으로 제시했다.
신 교수와 박 교수는 지난 15년간 C형 간염 바이러스에 대한 인체 면역반응 연구에 매진했다. 최근에는 국내에서도 유행했던 A형 간염 바이러스 면역에 대한 새 연구 결과들을 발표했고 공로를 인정받아 초청 리뷰논문을 게재했다.
신 교수는 “이번 초청 리뷰는 KAIST 의과학대학원의 면역학 연구가 세계적 수준으로 도약하고 있음을 증명한 것이다” 며 “면역학 연구에 정진해 인간 질병 해결에 도움이 되겠다”고 말했다.
이번 연구의 C형 간염 관련 연구는 한국연구재단의 지원으로 이뤄졌고, 신 교수는 삼성미래기술육성재단의 지원을 통해 A형 간염 바이러스까지 연구를 확장했다.
2016.08.10
조회수 11569
-
슈퍼렌즈로 초고해상도 2차원 실시간 영상획득 성공
우리 학교 물리학과 박용근·조용훈 교수 공동연구팀은 빛의 회절한계 때문에 광학렌즈로는 볼 수 없었던 100nm(나노미터, 10억분의 1미터) 크기 이미지를 2차원으로 실시간 관찰하는데 성공했다.
이번 연구는 지난해 4월 박 교수 연구팀이 페인트 스프레이를 이용해 기존 광학렌즈보다 3배가량 해상도가 뛰어난 ‘슈퍼렌즈’를 세계 최초로 개발해 초점을 형성한 기술의 후속 연구로 향후 초정밀 반도체 공정이나 세포 내 구조 관찰 등에 응용 가능하다.
빛의 굴절을 이용하는 광학렌즈는 빛의 파장보다 작은 초점을 만들 수 없는 특성(회절한계) 때문에 가시광선 영역에서 200~300nm 이하 크기의 물체를 관찰할 수 없다.
연구팀은 빛의 산란 때문에 소멸하는 고주파 근접장을 산란 물질이 밀집한 나노입자로 구성된 페인트 스프레이를 뿌려 미세한 크기의 이미지 정보를 얻어냈다.
이후 빛을 시간 가역성을 이용해 최초의 산란 형태를 계산해 복구함으로써 회절한계를 넘는 나노 이미지를 구현했다. 복잡한 궤적으로 물체를 투사할 때 피사체의 특정위치에서 피사체가 지나온 궤적에 대해 시간을 되돌리는 방식으로 계산하면 피사체의 처음 위치를 알 수 있는 원리다.
이번 연구를 주도한 박용근 교수는 “개발된 기술은 광학 측정과 제어가 요구되는 모든 분야에서 핵심 기반기술로서 사용될 수 있다”며 “기존의 전자현미경은 세포가 파괴되는 단점이 있었지만 이 기술을 이용하면 세포파괴 없이 초고해상도로 관찰할 수 있다”고 말했다.
연구결과는 물리학분야에서 귄위 있는 국제학술지인 ‘피지컬 리뷰 레터스(Physical Review Letters)’ 9일자 온라인판에 게재됐다.
그림1. 관찰영상
그림2. 산란을 통한 나노 이미징의 원리
2014.09.22
조회수 12422
-
물질 간 온도차이로 전자구름 세계 첫 관찰
모든 물체는 매우 작은 알갱이인 원자로 이루어져 있다. 원자는 모든 무게를 함유하는 원자핵과 그 주변을 구름모양으로 둘러싼 상대적으로 매우 가벼운 전자로 구성돼 있다.
전자의 구름모양을 상온에서도 정확하게 관찰하는 새로운 전자현미경 기술이 국내 연구진에 의해 세계 최초로 개발됐다. 전자구름을 최초 관찰했던 주사터널링현미경 기술 이후 33년만이다.
KAIST(총장 강성모) 나노과학기술대학원 김용현 교수와 한국표준과학연구원 여호기 박사는 온도 차이를 이용해 전압을 발생시켜 선명한 원자의 영상은 물론 전자의 구름모양도 관찰할 수 있는 주사제벡현미경(SSM, Scanning Seebeck Microscope)을 개발했다.
연구 결과는 미국 물리학회가 발행하는 물리학분야 최고 권위지인 ‘피지컬 리뷰 레터스(Physical Review Letters)’ 1일자 온라인 판에 게재됐다.
상온에서도 매우 높은 해상도를 보여주는 주사제벡현미경은 그래핀·반도체의 결함을 원자단위까지 정확하게 관찰할 수 있어 이들 제품의 품질과 가격경쟁력 향상에 크게 기여할 수 있을 것으로 기대된다. 또 주사제백현미경의 원리를 열전소재 연구에 활용하면 차세대 고효율 열전소재를 개발하는데 도움이 될 것으로 전망된다.
고대 그리스 철학자 데모크리토스는 물체를 쪼개고 쪼개다보면 더 이상 쪼갤 수 없는 입자를 만나게 된다고 주장했고 이 입자를 ‘원자’라고 이름 붙였다. 이후 많은 가설과 실험을 거쳐 1920년대 ‘전자는 파동’이라는 양자역학이 확립되었다. 이제 과학자들은 원자 내부에는 원자핵과 주위를 둘러싼 구름 모양의 전자가 존재한다고 믿는다.
이러한 전자의 구름 모양을 최초로 관측한 기술이 1981년 스위스 IBM에서 발명된 주사터널링현미경(STM, Scanning Tunneling Microscope)이고, 현재까지 전자구름을 관측할 수 있는 유일한 기술이었다. 이 발명의 공로로 비니히와 로러 박사는 1986년 노벨 물리학상을 받았다.
그러나 이 기술은 아주 작은 전기신호를 감지하기 위해 초정밀·극저온·무진동 환경이 요구되는 등 응용에 많은 제약이 있었다. 또 전압을 가해 전류를 측정하는 기존 방식은 전류가 흐르면서 원자핵을 둘러싸고 있는 전자구름에 영향을 주어 실제로는 왜곡된 형태를 보는 것이다.
연구팀은 기존 방식을 완전히 탈피, 한쪽에 열을 가해 두 물질의 온도차로 전압이 발생하는 ‘제벡효과’라는 물리현상을 활용했다.
연구팀은 관찰하고자 하는 그래핀을 약간 가열된 온도(37~57℃)에 두고 탐침은 상온(27℃)에 있도록 해 이로 인해 발생되는 전압을 측정했다. 그 결과 상온에서 전자구름이 물결치는 모양을 세계 최초로 관찰하는데 성공했다. 결함주변에서 전자가 물결치는 모양은 양자역학 현상의 주요 특징 중 하나이다.
더 나아가 연구팀은 원자수준 제벡효과로부터 전자구름이 관측되는 이론적 원리를 양자역학에 기초해 규명했으며, 컴퓨터 시뮬레이션을 통해 실험 결과를 해석하는 기술도 확보했다.
김용현 교수는 “그동안 잘 알려져 있지 않은 나노 열물리 현상을 이해할 수 있는 기본 틀을 잡는데 성공했다”며 “주사제벡현미경 기술이 응집물질 표면연구의 중요한 새 도구로 자리 잡을 것”이라고 말했다.
여호기 박사는 “열과 전자의 상호작용을 이용하면 마치 기존 주사터널링현미경 기술에 자연적인 미분증폭기를 설치한 효과가 발생한다는 사실을 증명한 것”이이라며 “향후 기존 기술과 상호보완적으로 기능할 것”이라고 말했다.
한편, KAIST 나노과학기술대학원 김용현 교수와 한국표준과학연구원 여호기 박사가 공동으로 주도한 이번 연구는 KAIST 나노과학기술대학원 이의섭 석박통합과정 학생과 한국표준과학연구원 조상희 박사가 참여했고, 미래창조과학부 중견연구자지원사업 핵심연구와 글로벌프론티어사업, 신기술융합형성장동력사업의 지원 하에 수행되었다.
그림1. 주사제벡현미경의 개념도와 동작원리. 탐침과 샘플이 각각 다른 온도에 있고 이 때문에 전압이 발생한다.
그림2. 주사제벡현미경을 이용해 상온 그래핀에서 관측된 전자가 물결치는 모양.
2014.04.02
조회수 17087
-
자연계 초고속 현상을 측정할 수 있는 ‘아토과학’ 시대를 열다
- Physical Review Letters지 발표, 원자 의 초고속 시간 변화 측정 및 복원 성공 -
국내 연구진이 아토초 펄스*를 이용해 시간적으로 매우 빠르게 변화하는 헬륨 원자의 상태를 정확히 측정하는데 성공하여, 자연계의 다양한 초고속 현상을 정확히 측정할 수 있는 ‘아토과학’의 시대를 열었다.
※아토초 펄스 : 1 아토초는 10-18초이고, 펄스(pulse)는 맥박처럼 짧은 시간에 생기는 진동현상을 말함. 아토초는 다음의 비율에서 그 짧은 정도를 가늠할 수 있음. 우주나이 : 1 초 = 1 초 : 1 아토초
우리 학교 남창희 교수(55세)가 주도하고 김경택 박사와 금오공대 최낙렬 교수 등이 참여한 이번 연구는 교육과학기술부(장관 이주호)와 한국연구재단(이사장 이승종)이 추진하는 중견연구자지원사업(도약연구)의 지원으로 수행되었고, 연구결과는 물리학 분야의 권위 있는 학술지인 ‘Physical Review Letters"지 3월호(108권, 3월 2일자)에 게재되었다. (논문명: Amplitude and Phase Reconstruction of Electron Wave Packets for Probing Ultrafast Photoionization Dynamics)
남창희 교수 연구팀은 아토초 펄스를 이용해 초고속 광이온화*를 계측하는데 성공하였다.
※ 광이온화 : 아토초 영역에서 레이저나 연엑스선(의료용 엑스선보다는 약간 파장이 긴 엑스선)을 광원으로 원자를 이온화한 것.
남 교수팀은 아토초 엑스선 펄스와 펨토초(10-15초) 레이저 펄스를 이용해 헬륨 원자를 광이온화하고, 이 때 발생한 전자의 파속을 측정하여 초고속 광이온화 과정을 명쾌하게 규명하였다.
아토초 펄스를 이용한 원자의 초고속 광이온화 계측은 연구팀이 자체 개발한 고출력 펨토초 레이저와 고성능 광전자 계측장비에 의해 수행된 순수 국내 연구진의 결실이다. 연구팀은 지난 2010년에 고차조화파*를 이용해 세계에서 가장 짧은 60아토초 펄스를 생성한 바 있다.
※ 고차조화파 : 강한 펨토초 레이저를 기체원자에 집속하여 발생된 연엑스선 영역에서 레이저의 특성을 닮은, 매우 짧은 펄스폭을 가지는 우수한 연엑스선 광원
연구팀은 고출력 펨토초 레이저를 이용해 아르곤 기체에서 아토초 고차조화파 펄스를 생성하고, 이를 이용해 헬륨 원자를 광이온화시켜 원자에서 발생하는 초고속 광이온화 현상을 계측하였다. 남창희 교수는 “이번 연구는 아토초 펄스를 이용해 시간적으로 매우 빠르게 변화하는 헬륨 원자의 상태를 정확히 측정한 것으로, 향후 이번 연구결과를 바탕으로 원자와 분자 내부에서 일어나는 초고속 현상을 계측하고 이를 이용해 원자와 분자의 상태를 조절하는 연구를 진행하는 등 자연계의 초고속 현상을 정확히 측정하는데 기여할 계획”이라고 밝혔다.
2012.03.01
조회수 12454
-
최성민교수, 세포막의 탄성특성 변화현상 규명
- 피지컬 리뷰 레터스 7월16일자 게제 -- 새로운 의약품 개발에 중요한 역할을 할 것으로 기대-
우리학교 원자력 및 양자공학과 최성민 교수 연구팀은 세포막을 형성하는 인지질 이중막과 향균 펩타이드의 상호작용에 따른 세포막의 탄성특성 변화 현상을 첨단 중성자 산란 측정을 이용하여 세계 최초로 규명했다.
이번 연구결과는 지난 16일 물리학 분야의 세계적 권위지인 피지컬 리뷰 레터스(Physical Review Letters)에 발표됐다.
최성민 교수와 박사과정 이지환 씨가 주도한 이번 연구는 교육과학기술부(장관 안병만)와 한국연구재단(이사장 박찬모)이 추진하는 원자력연구기반확충사업(원자력기초공동연구소)의 지원을 받아 수행됐다.
세포막은 인지질 분자의 이중막으로 구성되어 있으며, 세포 내부의 물질을 유지하는 방어막 역할과 다양한 기능의 단백질을 함유하고 있는 등 매우 중요한 역할을 담당한다.
세포막을 통한 물질전달, 세포 분열 등 세포에서 일어나는 여러 가지 현상은 세포막과 단백질의 상호작용에 의해 지배되며 세포막은 이러한 과정에서 다양한 형태의 구조적 변화를 겪게 된다.
세포막의 탄성특성, 즉 탄성계수는 세포막이 얼마나 부드럽거나 단단한가를 나타내는 것으로 세포막과 단백질의 상호작용에 따른 탄성특성 변화에 대한 이해는 세포에서 일어나는 여러 가지 과정과 이에 따른 구조적 변화를 이해하는데 매우 중요한 사안이다.
최 교수팀은 펩타이드라는 작은 단백질들이 세포막을 구성하는 인지질 이중막에 흡착되어 인지질 이중막의 구조적 변화를 일으키는 과정에서 인지질 이중막의 탄성특성이 어떻게 변하는가를 중성자 스핀에코 분광법이라는 최첨단 비탄성 중성자 산란 기법을 이용하여 규명했다.
이번 연구결과에 의하면 멜리틴이라는 펩타이드는 그 양이 적을 때는 인지질 이중막 표면에 흡착되어 이중막을 형성하고 있는 인지질 분자들의 정렬도를 저해함으로써 인지질 이중막을 부드럽게 만드는 효과를 보인다.
반대로, 멜리틴의 양이 일정량보다 많아지게 되면 인지질 이중막을 통과하는 구멍을 형성하고 동시에 이중막을 단단하게 만들기 시작하며, 멜리틴에 의해 형성된 인지질 이중막의 구멍이 더욱 많아지게 되면 구멍들이 서로 상호작용을 일으켜 인지질 이중막이 급격하게 단단해짐을 밝혔다.
현재 여타 단백질과 인지질 이중막의 상호작용에 대한 추가적인 연구가 진행되고 있으며, 이러한 현상에 대한 이해는 세포에서의 생명현상에 대한 근본적인 이해와 향후 새로운 의약품 개발에 중요한 역할을 할 것으로 기대된다.
최 교수팀은 최근 중성자 및 X-선 산란을 이용하여 탄소나노튜브 및 나노입자의 자기조립 초구조체 개발 연구를 수행하여 신소재 및 화학분야의 세계적 권위지인 어드밴스드 메터리얼즈(Advanced Materials), 미국화학회지(Journal of the American Chemical Society) 등에 연속적으로 논문을 게재하는 등 연성나노물질 연구에서도 우수한 연구성과를 거두고 있다.
최 교수는 중성자를 이용한 연성나노물질 연구분야에서 국제적 전문성을 인정받고 있으며 대표적인 국제 중성자 협회인 아시아-오세아니아 중성자 산란협회(AONSA)의 총무이사를 담당하고 있다. 또한 최성민 교수와 한국원자력연구원이 공동으로 개발한 하나로 냉중성자 연구시설의 40m 소각중성자산란 장치는 세계 최고수준의 나노구조 측정능력을 갖추고 있어 우리나라 나노소재 연구분야의 발전에 새로운 기회를 제공할 것으로 기대되고 있다.
<용어설명>
❶ 세포막(cell membrane)
세포와 세포 외부의 경계를 짓는 막으로 세포 내의 물질들을 보호하고 세포간 물질 이동을 조절한다. 세포막은 인지질 및 단백질 분자로 구성된 얇고 구조적인 인지질 이중층으로 되어 있으며, 선택적인 투과성을 지닌다.
❷ 펩타이드(Peptide)
아미노산의 중합체이다. 보통 소수의 아미노산이 연결된 형태를 펩타이드라 부르고 많은 아미노산이 연결되면 단백질로 부른다.
❸ 멜리틴(melittin)벌 독에서 분리한 26개의 아미노산으로 구성된 단백질로 10∼20년 전에 그 성분과 역할이 알려져 항균물질로 사용된다.
[그림]세포막을 구성하는 인지질 이중막에 멜리틴 펩타이드가 흡착되어 형성하는 구조의 각 단계별 모식도 (왼쪽). 멜리틴 펩타이드 양의 증가에 따른 인지질 이중막의 각 단계별 탄성특성 변화 (오른쪽).
2010.07.19
조회수 19152
-
정송교수팀, 인간 이동패턴 모델(Self-similar Least Action Walk, SLAW) 개발
- 전염병 통제, 도시, 교통망 및 통신망 설계 등 활용 전망
전기 및 전자공학과 정송 교수(44)팀과 미국 노스캐롤라이나 주립대 전산학과 이인종 교수(43)팀은 사람들이 일상생활에서 이동하는 패턴을 더욱 정확히 묘사할 수 있는 새로운 통계적 모델을 개발했다.
이 연구결과는 신종 인플루엔자나 에이즈 같은 전염성 질병의 확산 통제나 효율적인 도시 교통망 설계, 이동통신망 설계 등 다양한 분야에 활용될 것으로 기대된다.
두 연구팀은 지난 2년여 간의 공동 연구를 통한 대규모 측정 데이터를 근거로 일상생활에서 인간의 주기적인 이동 패턴을 분석하고 이러한 이동패턴이 발생하는 원인을 규명했다.
연구진은 한국과 미국의 대학 캠퍼스, 뉴욕 맨해튼, 디즈니월드 등 서로 다른 다섯 곳에서 총 100명 이상의 자원자에게 GPS(위치정보시스템) 장비를 나눠주고 총 226일 동안 그들의 움직임을 분석했다. 이들은 각 자원자가 멈춰 섰던 장소들을 2차원 지도상에 도식화하고 이동경로를 그 위에 겹쳐 그리는 방식으로 이동 특성을 연구했다.
그 결과 자원자들은 지리적으로 가까운 장소들의 군집(Cluster)에서 다양한 활동들을 하는 것으로 나타났다. 예를 들면 쇼핑과 식사, 은행 방문 등이 가까운 장소에서 연이어 이뤄졌다. 자원자들은 또 사람들 사이에서 인기가 많은 장소들을 방문하는 빈도가 높았다.
정 교수는 이에 대해 “사람들은 시간과 에너지를 효과적으로 사용하기 위해 지리적으로 근접한 곳에서 해야 할 활동들을 군집화(Clustering)하며 이로 인해 실제 사람들의 움직임은 방문장소들이 군집된 지역 내에서의 수많은 짧은 거리이동과 군집 지역간의 소수의 장거리 이동이 합쳐진 형태로 나타난다” 고 설명했다.
연구진은 이런 이동패턴의 근본적인 통계적 속성들을 이용해 사람들이 하루 동안 보여주는 정규 이동 패턴을 효과적으로 묘사하는 모델(SLAW : Self-similar Least Action Walk)을 개발했다.
이 모델을 이용하면 실제 사람이나 차량들의 움직임을 일일이 추척하지 않고도 전염성 질병의 확산 경로, 특정 장소나 거리에서의 유동인구나 교통량, 이동통신 사용자 수 등 다양한 정보들을 예측할 수 있다.
연구팀 관계자는 “SLAW 모델은 공중 보건 당국의 전염성 전파 및 통제 연구나 도시 및 교통망 설계, 통신 사업자들의 이동통신망 설계 등 사람들이 어떤 방식으로 움직이는지에 대한 예측이 필요한 다양한 분야에 효과적으로 사용될 수 있다”고 말했다.
연구진은 이 연구 결과를 지난달 브라질 리우데자네이루에서 열린 네트워크분야 최고 학회 ‘IEEE INFOCOM 2009’에서 발표했으며, 물리학 분야 최고 학술지 ‘Physical Review Letter’에 제출한 상태다. 이번 연구는 전기 및 전자공학과 이경한(28, 박사과정)학생의 박사학위 논문연구의 일부로서 진행됐으며, 미국 노스캐롤라이나 주립대 홍성익(36, 박사과정), 김성준(31, 박사후과정), 이인종교수(43)가 공동 연구자로 참여했다.
2009.05.13
조회수 19336