본문 바로가기
대메뉴 바로가기
KAIST
연구뉴스
유틸열기
홈페이지 통합검색
-
검색
메뉴 열기
%EB%A6%AC%ED%8A%AC%EA%B3%B5%EA%B8%B0
최신순
조회순
공기중 산소로 충전되는 차세대 배터리용 에너지 저장 소재 개발
우리 연구진이 공기 중에 널리 퍼져있는 산소로 충전되는 차세대 배터리인 리튬-공기 배터리의 에너지 저장 소재를 개발했다. 기존 리튬-이온 배터리에 비해 약 10배 큰 에너지 밀도를 얻을 수 있어 친환경 전기자동차용 배터리에 널리 쓰일 것으로 기대된다. 우리 대학 신소재공학과 강정구 교수가 숙명여대 화공생명공학부 최경민 교수 연구팀과 공동연구를 통해 원자 수준에서 촉매를 제어하고 분자 단위에서 반응물의 움직임 제어가 가능해 차세대 배터리로 주목받는 리튬-공기 배터리용 에너지 저장 전극 소재(촉매)를 개발했다. 연구팀은 이번 소재개발을 위해 기존 나노입자 기반 소재의 한계를 극복하는 원자 수준의 촉매를 제어하는 기술과 금속 유기 구조체(MOFs, Metal-Organic Frameworks)를 형성해 촉매 전구체와 보호체로 사용하는 새로운 개념을 적용했다. 금속 유기 구조체는 1g만으로도 축구장 크기의 넓은 표면적을 갖기 때문에 다양한 분야에 적용 가능한 신소재다. 이와 함께 물 분자의 거동 메커니즘 규명을 통해 물 분자를 하나씩 제어하는 기술도 함께 활용했다. 이 결과, 합성된 원자 수준의 전기화학 촉매는 금속 유기 구조체의 1nm(나노미터) 이하 기공(구멍) 내에서 안정화가 이뤄져서 뛰어난 성능으로 에너지를 저장한다는 사실을 밝혀냈다. KAIST 신소재공학과 최원호 박사과정이 제1 저자로 참여한 이 연구결과는 재료 분야 저명 국제 학술지 `어드밴스드 사이언스 (Advanced Science)' 5월 6일 字에 게재됐다. (논문명 : Autogenous Production and Stabilization of Highly Loaded Sub-Nanometric Particles within Multishell Hollow Metal-Organic Frameworks and Their Utilization for High Performance in Li-O2 Batteries) 리튬-이온 배터리는 낮은 에너지 밀도의 한계로 인해 전기자동차와 같이 높은 에너지 밀도를 요구하는 장치들의 발전 속도를 따라잡지 못하고 있다. 이를 대체하기 위해 다양한 종류의 시스템들이 연구되고 있는데 이 가운데 높은 에너지 밀도의 구현이 가능한 리튬-공기 배터리가 가장 유력한 후보로 꼽힌다. 다만 리튬-공기 배터리는 사이클 수명이 매우 짧아서 이를 개선하기 위해 공기 전극에 촉매를 도입하고 촉매 특성을 개선하려는 연구가 활발히 진행되고 있다. 공동연구팀은 원자 수준의 촉매 도입 후 사이클 수가 3배 정도 증가하는 결과를 얻었다. 또 촉매의 경우 크기가 1nm(나노미터) 이하로 작아지면 서로 뭉치는 현상이 발생해서 성능이 급격하게 떨어진다. 공동연구팀은 이런 문제 해결을 위해 원자 수준 촉매 제어기술을 사용했는데 물 분자가 금속 유기 구조체의 1nm(나노미터) 이하의 공간에서 코발트 이온과 반응해 코발트 수산화물을 형성했고, 그 공간 내부에서도 안정화를 이뤘다. 안정화가 이뤄진 코발트 수산화물은 뭉침 현상이 방지되고, 원자 수준의 크기가 유지되기 때문에 활성도가 향상되면서 리튬-공기 배터리의 사이클 수명 또한 크게 개선되는 결과를 얻었다. 강정구 교수는 "금속-유기 구조체 기공 내에서 원자 수준의 촉매 소재를 동시에 생성하고 안정화하는 기술은 수십만 개의 금속-유기 구조체 종류와 구현되는 촉매 종류에 따라 다양화가 가능하다ˮ면서 "이는 곧 원자 수준의 촉매 개발뿐만 아니라 다양한 소재개발 연구 분야로 확장할 수 있다는 의미ˮ라고 설명했다. 한편 이번 연구는 과학기술정보통신부의 글로벌프론티어사업 및 수소에너지혁신기술개발사업의 지원을 받아 수행됐다.
2020.06.01
조회수 14828
김희탁, 박정기 교수, 보호막 씌워 리튬공기전지 수명 연장
〈 김 희 탁 교수 〉 〈 박 정 기 교수 〉 우리 대학 생명화학공학과 김희탁(44) 교수와 박정기 (65) 교수 공동 연구팀이 차세대 리튬공기전지의 수명연장 기술을 개발했다. 이 기술은 리튬공기전지 리튬금속을 보호막을 씌워 발생 가능한 문제점을 차단하는 방식으로 전지기술의 한계를 극복할 수 있을 것으로 기대된다. 이 성과는 재료과학 학술지 ‘어드밴스드 머티리얼스(Advanced Materials)’ 2월 3일자에 게재됐고, 우수성을 인정받아 표지논문으로 선정됐다. 리튬공기전지는 공기 중의 산소와 리튬금속으로 구동되는 이차전지로 기존 리튬이차전지보다 5배에서 10배 높은 에너지 밀도를 구현할 수 있다. 따라서 전기 자동차 등의 차세대 대용량 전지로 각광받고 있지만 양극에서의 낮은 가역성 및 에너지 효율, 급속한 수명 저하가 한계로 지적됐다. 이런 단점을 극복하기 위해 ‘산화환원 중계물질(Redox mediator)’이라는 촉매가 들어간 리튬공기전지가 개발돼 중계물질에 의한 가역성이 획기적으로 향상됐다. 그러나 반응성이 높은 리튬 금속을 음극 소재로 사용하기 때문에 음극 표면이 쉽게 산화돼 전지 수명이 제한된다는 한계를 갖는다. 특히 가역성 향상을 위한 중계물질이 리튬 금속에 노출되면 양극에서의 중계 효과가 제한되고 중계물질이 소실돼 효율 및 수명이 급격히 감소하는 현상은 큰 문제로 남아있었다. 연구팀은 문제 해결을 위해 리튬 금속에 보호막을 씌우는 방법을 개발했다. 리튬 금속과 전해액의 직접 접촉을 물리적으로 차단하면서 리튬 이온만 효과적으로 전도시킬 수 있는 유무기 복합 보호층을 개발해 리튬 음극 표면에 도입한 것이다. 이 유무기 복합 보호층은 리튬 금속 음극의 급격한 산화를 억제하고 중계물질과 리튬금속 간의 반응을 물리적으로 차단하는 역할을 한다. 보호층은 산화된 중계물질이 리튬 금속 표면에서 스스로 환원되는 현상을 물리적으로 차단한다. 이를 통해 중계물질이 양극 표면에서 방전 생성물 분해에만 집중할 수 있고, 리튬 금속 표면에서의 분해로 인한 소실 문제를 차단할 수 있다. 연구팀은 리튬금속 음극 안정성과 중계물질의 지속성을 동시에 증대시켜 리튬공기전지의 충전 및 방전 사이클 수명을 3배 연장하는 데 성공했다. 개발한 유무기 복합 보호층을 통한 리튬 표면 안정화 기술은 리튬-황, 리튬 금속 전지와 같은 차세대 리튬 전지에도 적용 가능해 향후에도 활용 가능성이 높을 것으로 기대된다. 김 교수는 “차세대 에너지 저장장치인 리튬공기전지의 수명 한계를 극복할 단서를 제시했다”며 “이는 리튬공기전지의 실용화를 위한 유용한 전략이 될 것이다”고 말했다. 이번 연구는 한국연구재단의 일반연구자사업과 기후변화대응기술개발사업의 지원을 받아 수행됐다. □ 그림 설명 그림1. 어드밴스드 머티리얼스 표지논문 그림2. 전기화학 구동 후 리튬 금속 음극형상
2016.03.09
조회수 14197
리튬공기 이차전지 핵심기술 개발
- KAIST-경기대 공동연구팀, 나노섬유·그래핀 복합촉매 개발 -- 리튬이온 이차전지보다 5배 용량 향상, 최대 800km 주행가능 - 서울-부산을 전기차로 왕복할 수 있는 시대가 열릴까? 차세대 초고용량 전지로 주목받고 있는 리튬공기 이차전지의 핵심기술이 개발됐다. 우리 학교 신소재공학과 김일두·전석우 교수와 경기대학교 신소재공학과 박용준 교수 공동연구팀은 나노섬유·그래핀 복합촉매를 개발하고 리튬공기 이차전지에 적용해 리튬이온 이차전지 보다 용량이 5배 높은 ‘리튬공기 이차전지’를 만드는 데 성공했다. 연구 결과는 나노 분야 권위 있는 학술지 ‘나노레터스(Nano Letters)’ 8월 8일자 온라인판에 게재됐다. ‘리튬이온 이차전지’의 음극과 양극에는 각각 흑연, 리튬전이금속산화물로 구성돼 있다. 이 전지는 핸드폰, 노트북 등에 널리 사용되고 있는데 전기차에 적용할 경우 한 번 충전에 약 160km 정도만 주행할 수 있어 아직은 전기차용으로는 용량이 충분하지 않다는 것이 일반적인 평가다. 연구팀이 이번에 개발한 ‘리튬공기 이차전지’는 음극은 리튬, 양극은 산소를 사용한다. 무게가 가벼우면서도 실제 얻을 수 있는 에너지밀도가 리튬이온 이차전지보다 훨씬 높아 차세대 이차전지 중 가장 큰 각광을 받고 있다. 그러나 방전 시 리튬과 산소가 서로 만나 리튬산화물(Li2O2)이 형성되고 충전 시 다시 분해되는데 이 과정이 원활하게 일어나지 않는 문제점으로 인해 높은 저항이 발생하며, 수명이 짧아 상용화에 어려움이 있었다. 따라서 리튬산화물의 형성 및 분해반응을 보다 수월하게 해주는 고효율 촉매 개발이 필수적이었다. 연구팀은 전기방사 방법으로 대량생산이 가능한 코발트산화물 나노섬유와 그래핀을 섞어 나노 복합촉매를 개발했다. 촉매활성이 매우 높은 ‘코발트산화물 나노섬유’에 큰 비표면적과 높은 전기전도도를 가지고 있는 ‘비산화그래핀’을 결착시킴으로써 리튬공기 이차전지의 성능을 극대화 시킬 수 있었다고 연구팀은 전했다. 개발된 나노 복합촉매를 리튬공기 이차전지의 양극에 적용하면 리튬이온 이차전지 용량의 5배에 달하는 1000mAh/g 이상의 고용량에서도 80회 이상의 충·방전이 가능한 우수한 수명특성을 보였다. 연구팀이 이번에 확보한 충·방전 특성은 현재까지 보고된 성능 중 가장 높은 수준이며, 금속 산화물과 그래핀을 소재로 활용했기 때문에 저렴하게 만들 수 있다. 상용화에 성공해 전기차에 적용하면 한 번 충전에 800Km이상 주행할 수 있어 서울-부산을 왕복 가능해질 것으로 기대된다. 김일두 교수는 “안정성 등 상용화까지는 해결할 과제들이 많이 있지만 본격적인 전기차 시대를 위해 여러 기관들과 협력해 연구할 것”이라며 “우리나라에서 리튬공기 이차전지 분야의 핵심 소재 중에 하나인 나노촉매 합성 기술 개발을 주도해 차세대 리튬공기 이차전지 분야의 활성화에 기여하고 싶다”고 말했다. 한편, 이번 연구에는 KAIST 신소재공학과 류원희 박사, 송성호 박사과정 학생, 경기대학교 윤택한 석사과정 학생이 참여했다. 그림1. 나노복합촉매로 구성된 리튬공기 이차전지 개념도 그림2. 코발트산화물 나노섬유/그래핀 나노 복합촉매 이미지 그림3. 리튬공기 이차전지용 코발트산화물 나노섬유/그래핀 나노 복합촉매 제조과정 이미지
2013.09.05
조회수 18334
<<
첫번째페이지
<
이전 페이지
1
>
다음 페이지
>>
마지막 페이지 1