본문 바로가기
대메뉴 바로가기
KAIST
연구뉴스
유틸열기
홈페이지 통합검색
-
검색
메뉴 열기
%EB%AA%A8%EB%B9%8C%EB%A6%AC%ED%8B%B0
최신순
조회순
‘호버바이크’, 미래 하늘을 누비다
호버바이크는 기존 교통 체계를 보완할 수 있는 차세대 모빌리티로서 고중량 탑재 및 장거리 비행을 통해 교통 혼잡이 없는 공중 교통 수단으로 활용될 수 있다. 국내 연구진이 고성능 호버바이크의 개발을 통해 해외 기술 의존을 탈피한 국내 자체 개발의 유/무인 복합 하이브리드 기체를 개발하여 국내 PAV* 및 UAM 시장 발전에 이바지할 것으로 기대된다. *PAV: Personal Aerial Vehicle, 개인용 비행체. 미래 도시형 항공 교통(UAM, Urban Air Mobility)의 핵심 요소로, 차세대 교통 체계의 중요한 부분을 구성함. 우리 대학 항공우주공학과 방효충 교수 연구팀이 유/무인 운용 가능한 고신뢰성의 다목적 수직 이착륙 호버바이크 핵심 기술을 성공적으로 개발했다고 27일 밝혔다. 이번 연구는 항공우주공학과 한재흥 교수, 이지윤 교수, 안재명 교수, 최한림 교수, 이창훈 교수, 한서대학교 무인항공기학과 이동진 교수, 동아대학교 전자공학과 박종오 교수 연구팀이 참여하였다. 연구팀은 고성능 호버바이크의 개발을 위해 다목적 비행체 최적설계, 하이브리드 추진 시스템, 고신뢰성 정밀항법 및 비행제어 시스템, 자율비행 및 고장 감지 관련 주요 기술을 확보하였다. 호버바이크 플랫폼은 배터리 기반 드론의 단점을 극복하고자 가솔린 엔진 기반의 하이브리드 시스템을 도입하여, 해외 기술 수준 대비 약 60% 우수한 성능 및 최대 탑재 중량을 달성하였다. 이를 통해 민수용으로 긴급 물자 배송, 물류, 구조 활동과 군수용으로 군수품 수송 및 임무 지원 등의 다양한 분야에서 활용이 가능할 것으로 기대된다. 고신뢰성 정밀 항법 기술을 이용하여 GPS가 없거나 신호가 약한 환경에서도 안정적인 비행이 가능하도록 DGPS/INS* 기반의 다중 센서 융합 기술을 구현하여 항법 시스템을 적용하였다. *DGPS/INS: Differential GPS(DGPS)의 높은 정확도와 관성항법장치(Inertial Navigation System, INS)을 결합한 항법 솔루션 또한, 고신뢰성 비행제어 기술을 개발하여 탑재체 및 바람 등의 외란 요소, 모델의 불확실성 하에서도 신뢰도 높은 기동이 가능하며 고장 검출 기술도 개발하였다. 고신뢰성 자율비행 시스템을 구성하여 자동착륙 안전지역을 선정한 후 헬리패드에 자동 착륙하는 유도 기법을 높은 정확도로 구현하였다. 장애물 회피 및 자동 착륙 자율비행 기술을 통해 복잡한 환경에서도 안정적인 운용이 가능하다. 연구 책임자인 방효충 교수는 "고신뢰성 비행 제어와 정밀 항법 기술을 통해 다양한 환경에서 호버바이크의 높은 실용성을 입증했다”라며“호버바이크는 PAV 및 미래 비행체로 이어지는 주요 길목을 제공할 수 있을 뿐만 아니라 기존 드론 기술을 몇 단계 뛰어넘을 수 있는 유망한 연구 성과이다. 이번 성과는 과제 실무자인 장광우/안형주 박사과정을 비롯한 8개의 공동 연구팀이 5년 동안 함께한 노력이 모여 이룬 결과라 더욱 뜻깊다”라고 강조했다. 이번 연구는 국방 및 민간 분야에서 새로운 개념의 비행체로 활용될 수 있는 유/무인 다목적 호버바이크의 핵심 기술을 확보하기 위한 것으로, 2019년 방위사업청 미래도전국방기술 연구개발사업으로 시작되어 국방과학연구소의 관리하에 2024년 마무리되었다. 향후 2025년 2월 26~28일 부산 벡스코에서 개최되는 2025 드론쇼코리아(DSK2025)에서 최초로 전시될 예정이다.
2024.12.27
조회수 1683
도심 항공 모빌리티는 리튬황전지로 세대교체 가능
전기자동차 시장의 성장에 이어, 항공 교통을 연결하는 도심 항공 모빌리티(Urban Air Mobility, UAM) 시장이 배터리 산업의 새로운 전환점으로 주목받고 있다. 항공 모빌리티를 위한 에너지원으로는 쓰이는 기존 상용 리튬이온전지는 무게당 에너지밀도가 낮은 한계점이 있어 대학과 기업 공동연구진이 이를 극복할 차세대 기술로 활용될 혁신적인 리튬황전지를 개발해서 화제다. 우리 대학 생명화학공학과 김희탁 교수팀이 LG에너지솔루션 공동연구팀과 협력 연구를 통해 배터리의 안정적 사용을 위해 전해액 사용량이 줄어든 환경에서 리튬황전지 성능 저하 원인을 규명하고, 이를 바탕으로 성능을 혁신적으로 개선할 수 있는 기술을 개발했다고 23일 밝혔다. 중국 CATL社는 2023년 ‘응축 배터리(Condensed battery)’기술을 발표하며 항공용 배터리 시장을 준비하고 있음을 밝힌 바 있다. 이와 같은 흐름 속에서, 기존 리튬이온전지를 뛰어넘는 차세대 기술로 리튬황전지가 주목받고 있다. 리튬황전지는 기존 리튬이온전지 대비 2배 이상의 무게당 에너지밀도를 제공할 수 있어 UAM 시장의 게임 체인저로 평가받는다. 그러나 기존 리튬황전지 기술은 배터리의 안정적 구동을 위해 많은 양의 전해액이 필요해 전지 무게가 증가하고, 결과적으로 에너지밀도가 감소하는 문제가 있었다. 더불어 전해액 사용량을 줄이는 희박 전해액 환경에서는 성능 열화가 가속화되는 한편, 퇴화 메커니즘조차 명확히 밝혀지지 않아 UAM용 리튬황전지 개발이 난항을 겪어 왔다. 연구팀은 전해액 사용량을 기존 대비 60% 이상 줄이고도 400Wh/kg 이상의 에너지밀도를 구현하는 리튬황전지를 개발했다. 이는 상용 리튬이온전지보다 60% 이상 높은 에너지밀도를 가지며, 안정적인 수명 특성을 확보해 UAM용 배터리의 가장 큰 장애물을 극복한 것으로 평가된다. 연구팀은 다양한 전해액 환경을 실험하며, 성능 저하의 주요 원인이 전극 부식으로 인한 전해액 고갈임을 밝혀냈다. 이를 해결하기 위해 불소화 에테르 용매를 도입해 리튬 금속 음극의 안정성과 가역성을 높이고 전해액 분해를 줄이는 데 성공했다. 생명화학공학과 김일주 박사과정 학생이 제 1저자로 참여한 이번 연구는 에너지 분야 최고 권위 학술지인 어드밴스드 에너지 머터리얼즈(Advanced Energy Materials)’에 게재되며 그 혁신성을 인정받았다. (논문 제목: Moderately Solvating Electrolyte with Fluorinated Cosolvents for Lean-Electrolyte Li-S Batteries, DOI: https://onlinelibrary.wiley.com/doi/10.1002/aenm.202403828) 연구 책임자인 우리 대학 김희탁 교수는 “이번 연구는 리튬황전지에서 전해액 설계를 통한 전극 계면 제어의 중요성을 밝힌 의미 있는 연구로 대학과 기업의 협력을 통해 이루어진 대표적인 성공 사례로 UAM과 같은 차세대 모빌리티 배터리 상용화를 앞당기는 데 큰 진전을 이룰 것”이라고 말했다. KAIST와 LG에너지솔루션은 앞으로도 차세대 모빌리티를 위한 배터리 기술 협력을 강화해, 새로운 배터리 시장을 선도할 계획이다. 이번 연구는 2021년 KAIST와 LG에너지솔루션이 공동 설립한 ‘프론티어 리서치 랩(Frontier Research Laboratory)’에서 수행됐으며, 또한, 한국연구재단의 지원을 받아 수행됐다.
2024.12.23
조회수 1867
<<
첫번째페이지
<
이전 페이지
1
>
다음 페이지
>>
마지막 페이지 1