-
구글딥마인드와 공동연구를 통해 인공지능으로 시각을 상상하다
‘노란 포도'나 `보라색 바나나'와 같이 본 적 없는 시각 개념을 이해하고 상상하는 인공지능 능력 구현이 가능해졌다.
우리 대학 전산학부 안성진 교수 연구팀이 구글 딥마인드 및 미국 럿거스 대학교와의 국제 공동 연구를 통해 시각적 지식을 체계적으로 조합해 새로운 개념을 이해하는 인공지능 새로운 모델과 프로그램을 수행하는 벤치마크를 개발했다고 30일 밝혔다.
인간은 `보라색 포도'와 `노란 바나나' 같은 개념을 학습하고, 이를 분리한 뒤 재조합해 `노란 포도'나 `보라색 바나나'와 같이 본 적 없는 개념을 상상하는 능력이 있다. 이런 능력은 체계적 일반화 혹은 조합적 일반화라고 불리며, 범용 인공지능을 구현하는 데 있어 핵심적인 요소로 여겨진다.
체계적 일반화 문제는 1988년 미국의 저명한 인지과학자 제리 포더(Jerry Fodor)와 제논 필리쉰(Zenon Pylyshyn)이 인공신경망이 이 문제를 해결할 수 없다고 주장한 이후, 35년 동안 인공지능 딥러닝 분야에서 큰 도전 과제로 남아 있다. 이 문제는 언어뿐만 아니라 시각 정보에서도 발생하지만, 지금까지는 주로 언어의 체계적 일반화에만 초점이 맞춰져 있었고, 시각 정보에 관한 연구는 상대적으로 부족했다.
안성진 교수가 이끄는 국제 공동 연구팀은 이러한 공백을 메우고자 시각 정보에 대한 체계적 일반화를 연구할 수 있는 벤치마크를 개발했다. 시각 정보는 언어와는 달리 명확한 `단어'나 `토큰'의 구조가 없어, 이 구조를 학습하고 체계적 일반화를 달성하는 것이 큰 도전이다.
연구를 주도한 안성진 교수는 “시각 정보의 체계적 일반화가 범용 인공지능을 달성하기 위해 필수적인 능력이며 이 연구를 통해 인공지능의 추론능력과 상상능력 관련 분야의 발전을 가속할 것으로 기대한다”고 말했다.
또한, 딥마인드의 책임 연구원으로 연구에 참여한 연구원이자 현재 스위스 로잔연방공과대학교(EPFL)의 찰라 걸셔(Caglar Gulcehre) 교수는 “체계적 일반화가 가능해지면 현재보다 훨씬 적은 데이터로 더 높은 성능을 낼 수 있게 될 것이다”라고 전했다.
이번 연구는 12월 10일부터 16일까지 미국 뉴올리언스에서 열리는 제37회 신경정보처리학회(NeurIPS)에서 발표될 예정이다.
관련논문: “Imagine the Unseen World: A Benchmark for Systematic Generalization in Visual World Models”, Yeongbin Kim, Gautam Singh, Junyeong Park, Caglar Gulcehre, Sungjin Ahn, NeurIPS 23
2023.11.30
조회수 4178
-
계산적 항체 디자인을 통한 범용성 코로나바이러스 중화항체 개발
우리 대학 생명과학과 오병하 교수 연구팀이 계산적 항체 디자인을 개발하고 이를 적용해 오미크론을 포함해 현재 유행 중인 모든 코로나19 변종 바이러스에 뛰어난 효과를 나타내는 중화항체*를 개발했다고 밝혔다.
*병원체가 신체에 침투했을 때 생화학적으로 미치는 영향을 중화하여 세포를 방어하는 치료용 항체.
코로나19 감염을 유발하는 바이러스로 알려진 SARS-CoV-2 바이러스*는 스파이크 당단백질 부위에 있는 수용체 결합 부위(이하 항원)를 인간 세포막에 붙어있는 hACE2(human Angiotensin Converting Enzyme2) 수용체에 결합시켜 세포 내로 침입하는 기전을 보인다. 이러한 기전에 착안해 세계 유수의 제약회사들의 연구진은 수용체 결합 부위에 붙는 중화항체 에테세비맙(Etesevimab), 밤라니비맙(Bamlanivimab) 등을 개발했다.
*현재 중증급성호흡기 증후군 팬데믹을 일으키고 있는 코로나바이러스. RNA 바이러스이며 바이러스 표면 스파이크 단백질을 통해 인간 ACE2 단백질과 결합하여 세포 내로 침투.
하지만, 이 항체들은 최초에 유행한 코로나바이러스에 효과적인 것과 다르게 알파, 베타, 델타 등과 같은 변이에는 중화능이 없거나 떨어지는 것으로 보고됐다. 변이 바이러스의 등장으로 기존 항체들의 중화능이 떨어지는 이유는 바이러스의 항체 인식부위 서열에 변이가 생겨 항체가 더 이상 제대로 결합하지 못하게 되기 때문이다.
연구진은 계산적 단백질 디자인 방법으로 바이러스 항원에서 변이가 생기지 않는 부분에 강력하게 결합하는 항체를 개발했다. 결과적으로, 이번에 개발한 항체는 오미크론을 포함해 알려진 SARS-CoV-2의 모든 변이 바이러스뿐만 아니라 SARS-CoV-1, 천산갑 코로나 바이러스에도 강력한 결합력*을 보이며 우수한 중화 능력 지표**도 확인했다.
* picomolar(리터당 10-12 mole)에서 femtomolar (리터당 10-15 mole)의 결합력을 보임.
** Neutralization constant 50 (NC50) 가 0.10-8.3 nM로써 높은 중화능을 보임.
연구진이 개발한 항체는 미래에 출현할지 모르는 새로운 중증호흡기증후군 유발 코로나바이러스에도 대응할 수 있는 범용 코로나 치료항체 후보로 기대된다. 또한, 이번에 개발된 계산적 항체 디자인 기술은 항원의 특정 부위에 결합하는 항체를 발굴하는 새로운 방법으로서 그 응용성이 넓고 기술적 가치가 높다.
오병하 교수는 "이번에 개발한 항체는 아미노산 서열이 거의 바뀌지 않는 표면에 결합하기 때문에 향후 출현할 수 있는 신·변종 코로나바이러스에 즉각 대응할 수 있는 치료 물질이 될 수 있다는데 큰 의의가 있다ˮ라고 밝혔으며, 아울러, "이번 연구를 통해 개발한 계산적 항체 디자인 방법은 실험적으로는 얻기 어려운 항체를 개발하는데 널리 이용될 것으로 기대한다ˮ라고 밝혔다.
우리 대학 생명과학과 정보성 박사과정이 제1 저자로 참여한 이번 연구 결과는 항체 전문 학술지 ‘mAbs’에 게재됐다. 이번 연구는 연세대학교 조현수 교수 연구팀과 한국화학연구소 김균도 박사 연구팀도 참여했다. (관련 논문명: Computational design of a neutralizing antibody with picomolar binding affinity for all concerning SARS-CoV-2 variants)
참고로, 상기 논문 발표 후 오미크론이 새롭게 출현하였으며, 연구진은 개발한 중화항체가 이 변종에도 효과가 있음을 실험적으로 입증하였다.
한편 이번 연구는 KAIST 코로나대응 과학기술뉴딜사업단과 한국과학재단 기초과학연구실 사업의 지원을 받아 수행됐다.
2022.02.04
조회수 7131
-
최인성 교수, 농산물 장기보존 가능한 나노코팅기술 개발
〈 최 인 성 교수 〉
우리 대학 화학과 최인성 교수 연구팀이 친환경 나노코팅 기법을 이용해 과일의 부패 기간을 늦출 수 있는 기술을 개발했다.
이 기술은 식물 기반의 폴리페놀 물질을 이용해 코팅 시료의 종류에 관계없이 사용할 수 있는 범용 스프레이 나노코팅기술이다.
이번 연구결과는 국제학술지 ‘사이언티픽 리포트(Scientific Reports)’ 8월 1일자 온라인 판에 게재됐다.
폴리페놀 물질은 다량의 수산기(-OH)를 갖는 식물의 광합성 대사산물 중 하나로 뛰어난 항산화 작용을 수행하는 식물 기반의 천연물질이다. 잠재적 항암효과와 높은 항균성을 가져 식품 첨가물 등에 사용되고 있다.
폴리페놀은 철 이온과 화학적으로 강하게 결합해 복합체를 형성한다는 특성도 갖는다. 연구팀은 폴리페놀-철이온 복합체의 형성반응과 분사 기술을 접목해 나노코팅기술을 개발했다.
이 스프레이 코팅 기술은 코팅물질을 코팅용액에 담가 코팅하는 침지법에 비해 코팅 시간이 짧고(5초 이내) 원하는 영역에만 선택적 코팅이 가능하다. 또한 침지법에서 발생하는 시료의 변형과 코팅용액의 상호 오염을 막을 수 있다.
연구팀은 개발된 기술을 과일 표면에 적용해 가식성(edible) 항균 코팅으로의 응용이 가능함을 입증했다.
코팅된 귤과 딸기를 각각 28일, 58시간 이후에 상태를 측정했고 코팅되지 않은 과일에 비해 상당수가 모양과 품질을 유지했다.
반면 코딩되지 않은 귤과 딸기는 박테리아 및 곰팡이 균의 번식으로 부패 및 변형이 발생했다.
연구팀은 과일 뿐 아니라 금속표면, 플라스틱, 유리, 섬유시료에도 손쉽게 코팅할 수 있음을 확인했다. 특히 안경알, 신발 밑창 등 생활용품 표면에도 코팅이 가능해 각각 흐림방지, 무좀균 생장을 억제하는 항균 기능도 가능함을 증명했다.
개발된 나노코팅기술은 국내 특허로 등록됐고 현재 과일 신선도 유지 코팅법의 상용화를 진행 중이다.
최 교수는 “나노코팅기술은 큰 잠재력과 응용성을 가진 첨단기술이다”며 “개발된 나노코팅기술은 다양한 목적으로 쉽게 적용가능하고 기존 코팅 기술 및 나노물질과 결합돼 더 큰 시너지를 일으킬 것이다”고 말했다.
이번 연구는 미래창조과학부와 한국연구재단이 추진하는 리더연구자지원사업의 일환으로 수행됐다.
□ 그림 설명
그림1. (a-I, II) 나노코팅된 귤과 코팅되지 않은 귤을 14일, 28일 동안 상온에서 보관하였을 때 비교사진. (b-I, b-II) 나노코팅된 딸기와 코팅되지 않은 딸기를 58시간 동안 상온에서 보관하였을 때 비교사진 및 식품 변질 검사결과
2017.08.10
조회수 16237
-
대사공학적으로 개량된 박테리아로 범용 플라스틱 생산기술 개발
- 이상엽 교수팀과 LG 화학 연구팀 공동개발
- 바이오테크놀로지 바이오엔지니어링(Biotechnology and Bioengineering)지 게재예정
생명화학공학과 이상엽(李相燁, 45세, LG화학 석좌교수, 생명과학기술대학 학장) 특훈교수팀과 LG화학 기술연구원(원장 유진녕) 박시재, 양택호박사팀이 4년여 간의 공동연구를 통해 박테리아를 이용하여 재생 가능한 바이오매스로부터 플라스틱을 생산하는 기술을 최근 개발했다.
교육과학기술부 시스템생물학 연구개발 사업과 LG화학 석좌교수 연구비로 지원된 이번 연구에서는 시스템 대사공학과 효소공학 기법을 접목, 자연적으로는 생성되지 않는 플라스틱(unnatural polymer)의 일종으로 최근 각광을 받고 있는 폴리유산(Polylactic acid, PLA)을 효율적으로 생산할 수 있는 대장균을 개발한 것이다.
이번 연구 결과는 바이오공학 분야 최고 전통의 바이오테크놀로지 바이오엔지니어링(Biotechnology and Bioengineering)지에 게재 승인됐으며 스포트라이트 논문(Spotlight paper)으로 선정돼 2010년 1월호에 두 편의 연속 논문으로 게재될 예정이다.
두 논문의 제목은 ‘개량된 프로피오네이트 코엔자임 에이 트랜스퍼레이즈와 폴리하이드록시알카노에이트 중합효소를 이용한 폴리유산과 그의 공중합체의 생합성(Biosynthesis of Polylactic acid and its Copolymers Using Evolved Propionate CoA Transferase and PHA Synthase)’과 ‘폴리유산과 그의 공중합체의 생산을 위한 대장균의 대사공학(Metabolic Engineering of Escherichia coli for the Production of Polylactic Acid and its Copolymers)’이다. 19건의 특허가 전 세계 출원 중이다.
기존의 복잡한 2단계 공정을 통해 생산되던 폴리유산을 재생가능한 원료로부터 미생물의 직접 발효에 의해 생산이 가능하도록 한 혁신적인 본 연구 전략은 앞으로 석유 유래 플라스틱을 대체할 수 있는 다양한 비자연 고분자(unnatural polymer)들의 생산에 활용될 획기적인 기술로 평가되고 있다.
폴리유산 (Polylactic acid, PLA)은 많은 바이오매스 유래 고분자들 중에서도 생분해성, 생체적합성, 구조적 안정성, 그리고 낮은 독성과 같은 뛰어난 물성으로 인해 석유 유래 플라스틱의 대체물로서 대두되고 있다.
그러나, 폴리유산은 현재 두 단계 공정으로 합성된다. 우선, 미생물 발효를 통해 유산(락트산, Lactic acid)을 생산, 정제한 후 여러 가지 시약, 용매 및 촉매가 첨가되는 복잡한 공정의 화학적 중합반응에 의해 폴리유산이 합성된다.
또한, 폴리유산의 물성을 다양하게 개선하기 위해 폴리하이드록시알카노에이트 (Polyhydroxyalkanoate, PHA)와 같은 다른 고분자들과의 공중합이나 혼합반응 등의 연구가 이루어지고 있다.
이러한 노력에도 불구하고, 공중합 반응에 사용되는 락톤계 모노머들의 가용성과 비용을 고려했을 때, 기존의 화학적 합성 방법은 효과적이지 않다. 이에, 미생물 유래 고분자인 폴리하이드록시알카노에이트의 생합성 시스템을 기반으로, 폴리유산과 그의 공중합체들의 생합성이 가능할 수 있는 대사경로를 효소공학을 통해 구축했다.
그러나, 외래 대사경로의 도입 및 조작만으로는 폴리유산 단일 중합체와 유산의 함량이 높은 공중합체의 생산이 효율적이지 않아, 시스템 수준으로 세포 내 대사흐름을 증가시킬 필요성을 인지했다. 이에, 대장균 균주의 인실리코 게놈 수준의 시뮬레이션을 이용한 대사흐름분석 기법을 활용하여 고분자 생산을 위한 주요 전구체의 대사 흐름을 논리적으로 강화시킴으로써, 세포성장과 함께 목적 고분자의 효율적 생산이 가능하도록 했다.
따라서, 효소공학을 통한 고분자 합성 경로의 직접적 조작 및 강화 뿐 아니라, 시스템 대사공학을 통한 논리적 접근으로 조작된 대사흐름을 바탕으로 다양한 폴리유산 플라스틱을 보다 효율적으로 생산할 수 있었다.
이는 시스템 대사공학과 효소공학을 접목시킨 고기술 전략으로 비자연 고분자를 효율적으로 생산한 최초의 성공적인 예로서, 재생가능한 자원으로부터 폴리유산뿐 아니라 석유유래 플라스틱을 대체할 수 있는 다른 비자연 고분자들의 일단계 생산을 위한 기반 기술을 마련해줌으로써, 플라스틱 생산 공정에 있어 새로운 전략을 제시했다.
李 교수는 “자연계에 없는 고분자를 미생물로 생산하는 것이 과연 될까? 라는 의문을 갖고 시작했다. 우리 KAIST 연구실의 정유경박사와 LG화학 기술연구원 연구팀원 10여명이 4년간의 끈질긴 노력 끝에 성공했다”며, “이번 연구는 대장균의 가상세포 시뮬레이션을 통해 세포 내 대사흐름을 목적한 고분자 생산에 유리하도록 논리적으로 조작하고, 고분자 생합성 경로를 구성하는 외래 효소들을 새롭게 만들어 도입함으로써, 강화된 대사흐름을 이용해 보다 효율적으로 목적 고분자를 생산할 수 있는 균주를 개발하는데 성공한 세계 첫 번째 케이스다. 특히, 유산이 단량체로 함유된 공중합체의 경우에는 세계최초로 만든 것이 되어 물질특허들로 출원중이다”라고 밝혔다.
한편, 이 혁신적인 연구 성과는 22일 미국 CNN 홈페이지의 Top기사 등 해외언론의 주요기사로 소개됐다. 주요내용은 한국의 KAIST 이상엽 교수팀과 LG화학 연구팀이 전 세계적으로 석유고갈, 지구온난화 및 환경오염 문제로 재생가능한 자원을 이용한 바이오매스 기반 기술의 개발이 시급한 현 시대의 흐름에 부응하면서, 재생가능한 자원으로부터 효율적으로 바이오공학을 통한 플라스틱 (Bioengineered plastics) 폴리유산의 생산이 가능한 대장균 균주를 개발했다는 내용이다.
2009.11.24
조회수 22352