본문 바로가기
대메뉴 바로가기
KAIST
연구뉴스
유틸열기
홈페이지 통합검색
-
검색
메뉴 열기
%EB%B9%84%ED%8C%8C%EA%B4%B4
최신순
조회순
고성능 맞춤형 양자광원 플랫폼 개발
양자정보통신 기술에 필수적인 양자광원을 구현하기 위한 플랫폼으로 반도체 양자점이 주목받고 있는데, 양자점을 이용하면 빛의 최소 알갱이인 광자를 정확히 원하는 시점에 하나씩 발생하는 단일광자 발생기를 만들 수 있기 때문이다. 다만, 양자점과 광학적 특성이 꼭 들어맞는 공진기 구조를 정밀하게 설계하고 결합해야만 발광 성능이 우수한 단일광자 발생기를 만들 수 있다. 우리 대학 물리학과 조용훈 교수 연구팀이 한국전자통신연구원(ETRI) 고영호 박사 연구팀과 한국과학기술연구원(KIST) 송진동 박사 연구팀과의 공동연구를 통해, 고성능의 단일 양자점 양자광원을 고밀도 양자점 기판 위에서 식각과 같은 파괴적인 공정없이 맞춤형으로 다량 만들 수 있는 원천 기술을 개발했다고 18일 밝혔다. 공동 연구팀은 우선 고밀도 양자점 중에서 단 하나의 양자점을 선별해 내는 비파괴적인 선택 방법을 고안하고, 이렇게 선택된 양자점의 광학적 특성을 분석하여 그 특성과 꼭 들어맞는 맞춤형 공진기를 양자점 위치에 맞추어 제작하는 방식으로 접근했다. 조용훈 교수 연구팀은 최근 개발한 집속 이온빔을 이용한 초정밀 나노 소광 기법을 고밀도 양자점에 적용하였는데, 이는 집속 이온빔을 약하게 조사하면 시료가 깎여 나가지 않지만 이온빔을 맞은 부분에는 빛을 내지 못하게 되는 ‘소광(quenching)’이 일어나는 현상을 이용한 것이다. 고밀도 양자점 시료 위에 집속 이온빔을 도넛 패턴으로 조사하면 이온빔을 맞은 도넛 패턴 위의 양자점들은 소광되는 것을 확인하였고, 도넛 패턴의 안쪽 지름을 더욱 줄여가면서 최종적으로 정중앙에 있는 단일 양자점에서만 선명한 빛을 내도록 조절하는 데 성공했다. 이렇게 의도한 위치에 남겨진 단일 양자점의 광학적 특성을 조사한 후에 그 특성에 꼭 맞게 설계한 공진기 구조를 양자점 위치에 정확히 맞추어 제작함으로써 단일 광자의 방출효율을 훨씬 높이고 빛의 방향성을 제어할 수 있었다. 이는 초정밀 나노 소광 기술이 식각을 하지 않는 비파괴적인 방식이기에 시료 전체의 표면 상태를 그대로 유지할 수 있고, 맞춤형으로 설계된 공진기 구조를 표면 위에 직접 형성할 수 있었기에 가능한 일이었다. 연구를 주도한 조용훈 교수는 “기존에 단광자 순도가 낮거나 밀도를 조절하기 어려워 외면받던 고밀도 양자점 시료들에 대해서 고성능 양자광원을 맞춤형으로 구현할 수 있는 방법”이라며, “원하는 위치에 단일 양자점을 반복적으로 구현할 수 있기 때문에 대규모 양자 광학 플랫폼의 개발에 중요한 돌파구가 될 것”이라고 말했다. 우리 대학 물리학과 최민호 박사가 제1 저자로 참여한 이번 연구는 정보통신기획평가원과 한국연구재단 등의 지원을 받아 수행되었으며, 재료 과학 분야의 세계적 학술지인 ‘어드밴스드 머티리얼즈 (Advanced Materials)’에 3월 22일 字에 온라인 게재됐다 (논문명: Single Quantum Dot Selection and Tailor-made Photonic Device Integration Using Nanoscale Focus Pinspot).
2023.04.18
조회수 5219
반도체 웨이퍼 절단 없는 두께 분석장비 개발
우리 대학 기계공학과 이정철 교수 연구팀이 근적외선의 간섭 효과를 이용해 실리콘 박막-공동 구조를 검사할 수 있는 웨이퍼 비파괴 분석 장비를 개발했다고 19일 밝혔다. 1 마이크로미터(이하 μm) 급의 두께를 갖는 박막-공동 구조는 압력센서, 마이크로미러, 송수신기 등의 다양한 미세전자기계시스템(MEMS) 소자로 사용된다. 이러한 MEMS 소자에서 박막의 두께와 공동의 높이는 소자 성능의 주요 설계 인자이기 때문에 소자의 거동 분석을 위해서는 제작된 구조의 두께 측정이 필수적이다. 하지만 최근까지 후속 공정에 사용할 수 없는 단점에도 불구하고 웨이퍼를 절단해 주사 전자 현미경과 같은 고해상도 현미경으로 두께를 측정하는 단면 촬영 기법이 사용됐다. 연구팀은 1μm 급의 두께를 갖는 실리콘 박막-공동 구조의 두께를 비파괴적으로 측정하기 위해 근적외선 간섭 현미경을 개발했다. 연구팀은 실리콘의 광특성과 빛의 간섭 길이를 고려해 근적외선 계측 장비를 설계 및 구축했으며 개발한 근적외선 간섭 현미경은 1μm 급과 서브 1μm 급의 단층 박막-공동 구조를 100 나노미터(nm) 미만의 편차로 측정했다. 이에 더불어 다중 반사로 인한 가상의 경계면을 특정하는 방법을 제안해 복층의 실리콘 박막-공동 구조에서 숨겨진 실리콘 박막의 두께 측정을 성공적으로 시연했다. 이번 연구는 국제학술지 `어드밴스드 엔지니어링 머터리얼즈(Advanced Engineering Materials)'에 지난 7월 14일 字에 온라인 게재됐으며 지난 10월 호의 후면 표지 논문(back cover)으로 선정됐다. 이번 연구는 실리콘 박막-공동 구조뿐만 아니라 기능성 웨이퍼인 실리콘 온 인슐레이터(Silicon-on-Insulator, SOI) 웨이퍼에서도 실리콘과 내부에 숨겨진 산화막의 두께를 성공적으로 측정함으로써 다양한 구조의 반도체 소자 비파괴 검사에 적용 가능함을 연구팀은 확인했다. 또한 연구팀은 적합한 파장 선택을 통해 실리콘뿐만 아니라 게르마늄 등 다른 반도체 물질의 비파괴 검사에도 적용할 수 있음을 밝혔다. 반도체 기판의 비파괴 검사 방법을 제안하는 이번 연구는 반도체 공정 중 소자 결함을 판별하기 위한 실시간 비파괴 검사에 적용될 수 있을 것으로 기대된다. 연구를 주도한 이정철 교수는 "개발된 기술은 널리 사용되는 적외선 광원을 사용해 비파괴 방식으로 반도체 물질 내부 구조를 측정한 점에서 기존 방법과 다르고, 안전하고 정밀한 장점 때문에 반도체 소재 및 소자 검사 속도를 향상하는 효과를 가져와 반도체 관련 산업과 우리 삶의 발전에 기여할 것이다ˮ라고 말했다. 한편 이번 연구는 한국연구재단의 중견연구자 지원사업과 기초연구실 지원사업의 지원을 받아 수행됐다.
2022.12.20
조회수 6177
반도체 다층 소자의 개별 층 두께를 옹스트롬 정확도로 비파괴 검사하는 기술 개발
우리 대학 기계공학과 김정원 교수 연구팀이 삼차원 낸드플래시 메모리(이하 3D-NAND)의 비파괴적인 검사를 위해 광학 측정법과 머신러닝을 사용한 다층 두께 측정기술을 개발했다. 이 기술은 200층 이상의 초고밀도 3D-NAND 소자 공정 과정에서 전수검사 방법으로 사용돼 공정의 효율을 극대화할 수 있을 것으로 기대된다. 3D-NAND 메모리는 수백층의 메모리 셀이 적층되어 있는 메모리 반도체로, 기존의 평면형 플래시 메모리와 비교하여 저장용량과 에너지 효율이 매우 우수하여 개인용 USB부터 서버 시스템까지 다양하게 사용되고 있다. 기존에는 수직으로 적층된 반도체 셀들의 두께를 측정하기 위하여 전자현미경을 사용하였다. 하지만 전자현미경을 사용한 방법은 샘플의 단면을 이미징하기 위하여 샘플을 절단해야 하고 비용도 많이 들기 때문에, 전수검사로서는 적합하지 않은 문제가 있었다. 연구팀은 반도체 다층 구조가 초고속 광학 시스템에 자주 사용되는 유전체 거울의 구조와 유사하다는 점에 착안하여, 유전체 거울의 분석에 활용되는 광학 스펙트럼 측정법을 반도체 다층 구조에도 적용했다. 연구팀은 엘립소미터(ellipsometer)와 스펙트로포토미터(spectrophotometer)를 이용한 반도체 다층 샘플의 스펙트럼 측정과 머신러닝 알고리즘을 활용하여 200층이 넘는 반도체 물질의 각 층 두께를 1.6 옹스트롬 (1Å = 1미터의 100억 분의 1)의 평균제곱근오차로 예측할 수 있는 방법을 개발했다. 이 기술은 삼차원 반도체 소자의 검수 공정, 적층 공정, 그리고 식각 공정의 정확도를 크게 향상시킬 수 있을 것으로 기대된다. 연구팀은 또한 시뮬레이션 스펙트럼 데이터를 생성해 개별 층의 두께 불량을 검출할 수 있는 머신러닝 학습법도 개발했다. 그 결과 반도체 물질 적층 시 목표로 설정한 두께보다 약 50Å만큼 얇게 제작된 샘플들을 정상 범주의 샘플들로부터 성공적으로 분리할 수 있었다. 연구팀이 개발한 불량샘플 검출법은 시뮬레이션 데이터를 활용하기 때문에 큰 비용이 들지 않으며, 공정의 초기에 발견될 수 있는 불량 샘플들을 효과적으로 검출할 수 있을 것으로 기대된다. 최근 글로벌 IT 기업들의 서버 시스템에 대한 수요가 늘어나고 높은 저장용량을 가진 스마트 기기들이 개발됨에 따라, 초고밀도, 초고효율을 갖는 3D-NAND 메모리가 반도체 시장에서 각광받고 있다. 이번 연구 결과는 다양한 삼차원 반도체 소자들의 비파괴적인 검수를 위해 활용될 수 있다. 김 교수는 “비파괴적인 광학 측정법과 머신러닝을 결합한 방법은 다양한 반도체 검수 공정에도 적용할 수 있다”고 밝히며, “다양한 반도체 소자들의 형상이나 공정 조건 모니터링에도 광학측정법과 머신러닝을 결합한 접근방식을 활용할 것”이라고 말했다. 기계공학과 곽현수 박사과정 학생이 제1저자로 참여하고 삼성전자 메모리 계측기술팀과의 산학협력연구로 수행된 이번 연구는 국제학술지 ‘라이트: 어드밴스드 매뉴팩처링(Light: Advanced Manufacturing)’ 창간호에 1월 12일 게재됐다. (논문명: Non-destructive thickness characterisation of 3D multilayer semiconductor devices using optical spectral measurements and machine learning) 이번 연구는 삼성전자 산학연구과제의 지원을 받아 수행됐다.
2021.01.13
조회수 64016
<<
첫번째페이지
<
이전 페이지
1
>
다음 페이지
>>
마지막 페이지 1