본문 바로가기
대메뉴 바로가기
KAIST
연구뉴스
유틸열기
홈페이지 통합검색
-
검색
메뉴 열기
%EC%83%9D%EC%B2%B4%EC%B9%9C%ED%99%94%EC%A0%81
최신순
조회순
모발 이식에 적용가능한 생체친화적 접착제 개발
우리 대학 화학과 서명은 교수와 이해신 교수가 주도한 공동연구팀이 와인의 떫은맛 성분인 탄닌산(tannic acid)과 생체적합성 고분자를 섞어 생체친화적 접착제를 개발했다고 21일 밝혔다. 탄닌산은 폴리페놀의 일종으로 과일 껍질, 견과류, 카카오 등에 많이 들어 있다. 접착력과 코팅력이 강해 다른 물질과 빠르게 결합하기 때문에, 와인을 마시면 떫은맛을 느끼는 이유는 탄닌산이 혀에 붙기 때문이다. 물에 녹는 고분자와 탄닌산을 섞으면 마치 젤리와 같이 끈적이는 작은 액체 방울을 말하는 코아세르베이트(coacervate)가 가라앉는 경우가 생기는데, 몸에 쓸 수 있는 생체적합성 고분자를 사용하면 독성이 낮은 의료용 접착제로 응용할 수 있다. 그러나 코아세르베이트는 근본적으로 액체에 가까워 큰 힘을 버틸 수 없어 접착력을 향상하는 데 한계가 있었다. 연구팀은 두 종류의 생체적합성 고분자를 조합해 구조를 설계함으로써 접착력을 높일 수 있는 방법을 찾아냈다. 폴리에틸렌글리콜(polyethylene glycol), 이하 PEG)과 폴리락틱산(polylactic acid, 이하 PLA)은 모두 미국식품의약국(FDA)에서 인체 사용을 허가받은 물질이다. 안약, 크림 등에 많이 사용되는 PEG가 물에 잘 녹는 반면, 젖산(lactic acid)에서 유래한 바이오플라스틱으로 잘 알려진 PLA는 물에 녹지 않는다. 이들을 서로 연결한 블록 공중합체(block copolymer)를 만들고 물에 넣으면, 물에 녹지 않는 PLA 블록이 뭉쳐 미셀(micelle)을 만들고 PEG 블록이 그 표면을 감싸게 된다. 미셀과 탄닌산이 섞여 만들어지는 코아세르베이트는 단단한 PLA 성분으로 인하여 고체처럼 거동하며, PEG 대비 천 배 넘게 향상된 탄성 계수(elastic modulus)를 보여 접착 시 훨씬 강한 힘도 버틸 수 있다. 연구팀은 나아가 마치 금속을 열처리하듯 온도를 올렸다 내리는 과정을 반복하면 물성이 백 배 이상 더욱 향상되는 것을 관찰했고, 이는 정렬된 미셀들과 탄닌산 사이의 상호작용이 점차 견고해지기 때문임을 알아냈다. 연구팀은 피부 자극이 적고 체내에서 잘 분해되는 소재 특성을 이용, 모발의 끝에 이 접착제를 발라 피부에 심는 동물실험을 통해 모발 이식용 접착제로서 응용 가능성을 보였다. 탄닌산을 비롯한 폴리페놀의 접착력과 저독성에 주목해 의료용 접착제, 지혈제, 갈변 샴푸 등 다양한 응용 분야를 개척해 온 KAIST 이해신 교수는 모낭을 옮겨심는 기존의 모발 이식 방식이 여러 번 시행하기 어려운 한계를 보완하는 새로운 기술로 활용될 수 있을 것으로 기대했다. 우리 대학 화학과 서명은 교수 연구팀의 박종민 박사(現 한국화학연구원 선임연구원)와 이해신 교수 연구팀의 박은숙 박사가 공동 제1 저자로 연구를 주도하고 우리 대학 화학과 김형준 교수 연구팀과 생명화학공학과 최시영 교수 연구팀이 협업한 이번 연구 결과는 국제학술지 '미국화학회지 Au(JACS Au)'에 8월 22일 字로 온라인 게재됐다. (논문명 : Biodegradable Block Copolymer–Tannic Acid Glue) 한편 이번 연구는 한국연구재단(NRF)의 보호연구사업과 선도연구센터지원사업(멀티스케일 카이랄 구조체 연구센터), 산업통상자원부의 생분해성 바이오 플라스틱 제품화 및 실증사업, 한국화학연구원 기관고유사업의 지원을 받아 진행됐다.
2022.09.21
조회수 9778
새 인공 형광 단백질 나노 조립체 개발
정 용 원 교수 우리 대학 화학과 정용원 교수 연구팀이 새로운 모양과 다양한 크기의 인공적 형광 단백질 나노 조립체를 개발했다. 이 단백질 나노 조립체 연구로 단백질 기반 신약 및 백신 개발 등 새로운 나노구조체 분야에 활발한 적용이 가능할 것으로 기대된다. 이번 연구 결과는 국제 학술지 ‘네이처 커뮤니케이션즈(Nature Communications)’ 14일자 온라인 판에 게재됐다. 우리 몸의 필수 구성요소인 단백질은 나노미터 크기의 특성과 더불어 무한한 기능과 구조를 갖고 있다는 점에서 새로운 물질 및 구조체 개발에 매우 적합한 것으로 알려져 있다. 특히 단백질 다수가 조립된 다중 조립체는 새로운 성질과 모양, 크기를 가지며 생체친화적인 나노 구조체이기 때문에 많은 관심을 받고 있다. 단백질 다중 조립체는 다수의 단백질이 동시에 작용하기 때문에 결합력을 극대화 해 신약, 백신 기능 향상 연구에 중요한 방법론을 제시할 것으로 기대되기 때문이다. 이 조립체의 상업적, 연구적 이용을 위해선 조립된 단백질의 수가 정확히 조절되고, 다양한 크기의 조립체를 제작할 수 있어야 한다. 하지만 현재의 기술로는 조립체의 크기에 따라 정밀히 분리하는 것이 쉽지 않다. 연구팀은 문제 해결을 위해 인공적 형광 단백질 조립체를 세포 내 합성을 통해 다양한 크기로 제작했다. 또한 조립체 표면 개량을 통해 거대 생체분자의 안정성을 향상시켰고, 다양한 크기의 조립체를 분리할 수 있는 방법을 최초로 개발했다. 이 방법을 이용해 다각형 및 선형 배열을 갖는 형광 단백질 조립체 또한 제작해 관찰했다. 이 과정에서 나노크기 공간에서의 결합 단백질의 개수를 증가시켰고, 기존 단일 단백질보다 비약적으로 향상된 결합력을 확인했다. 정 교수는 “이번 단백질 조립체 제작 기술은 다양한 모양과 크기, 기능성을 갖는 새 조립체 제작의 기반이 될 것이다”며 “비약적으로 향상된 기능을 가진 단백질 신약, 백신, 혹은 결합 리셉터 연구에 핵심적 역할을 할 것”이라 말했다. 정용원 교수 지도 아래 김영은 박사과정 학생이 1저자로 참여한 이번 연구는 우리 대학 김호민 교수 연구팀이 참여했으며, 한국연구재단이 추진하는 글로벌프론티어사업(바이오나노 헬스가드 연구단) 및 기초연구실지원사업의 지원을 받아 수행됐다. □ 그림 설명 그림 1. 형광단백질 조립체 모식도 및 전자현미경 사진
2015.05.26
조회수 12928
<<
첫번째페이지
<
이전 페이지
1
>
다음 페이지
>>
마지막 페이지 1