-
고성능 완전 분산 금속 앙상블 촉매 개발
생명화학공학과 이현주 교수 연구팀이 자동차 촉매로 활용할 수 있는 고성능의 완전 분산 금속 앙상블 촉매를 개발했다.
연구팀의 금속 앙상블 촉매는 휘발유 차량 배기가스 정화 반응인 삼원 촉매 반응에서(three-way catalysis, TWC) 기존의 단일원자 촉매, 상용 삼원 촉매 대비 월등한 저온 촉매 성능을 보였다. 또한, 노화 및 장기 반응 등의 내구성 평가에서 탁월한 성능을 보였다. 연구팀의 금속 앙상블 촉매는 불균일계 촉매 분야에서 기존의 단일원자 촉매를 뛰어넘어 그 가치가 높을 것으로 기대된다.
정호진 박사과정이 1 저자로 참여한 이번 연구결과는 화학 분야 국제학술지 ‘네이처 카탈리시스(Nature Catalysis)’ 2월 17일 자 온라인판에 게재됐다. (논문명 : 단일원자 촉매를 뛰어넘는 완전분산된 고내구성 자동차 촉매용 금속 앙상블 촉매, Highly durable metal ensemble catalysts with full dispersion for automotive applications beyond single-atom catalysts)
다양한 불균일계 촉매 중 귀금속(백금, 팔라듐, 로듐) 촉매는 높은 활성을 보여 널리 사용되지만, 귀금속의 희소성과 비싼 가격으로 인해 제약이 많다. 이에 사용 효율을 극대화하는 것이 매우 중요한 과제로 남아있다. 단일원자 촉매는 모든 금속 원자가 촉매 반응에 참여할 수 있어 널리 사용되지만, 금속 원자가 독립적으로 존재하기 때문에 앙상블 자리가 필요한 촉매 반응에서 촉매 성능을 발휘하지 못한다.
한편 일산화탄소(CO), 프로필렌(C3H6), 프로판(C3H8), 일산화질소(NO)는 대표적인 휘발유 차량 배기가스 오염물질로 반드시 삼원 촉매 반응을 통해 이산화탄소(CO2), 물(H2O), 질소(N2)로 전환한 뒤 배출돼야 한다. 이때 탄화수소(프로필렌, 프로판) 산화 반응은 탄소-탄소, 탄소-수소 결합을 깨뜨려야만 반응이 진행되기 때문에 촉매 반응을 위해서는 금속 앙상블 자리를 확보하는 것이 필수이다.
연구팀은 문제 해결을 위해 100%의 분산도를 갖는 금속(백금, 팔라듐, 로듐) 앙상블 촉매를 개발해 삼원 촉매 반응에 적용했다. 100%의 분산도를 갖는다는 것은 모든 금속 원자가 표면에 드러나 있어 모든 원자가 반응에 참여할 수 있다는 의미이다. 이는 단일원자 촉매도 갖는 특징이지만 앙상블 촉매는 100% 분산도와 더불어 두 개 이상의 원자가 붙어있는 앙상블 자리가 존재한다는 장점을 갖고 있다.
그 결과 금속 앙상블 촉매는 일산화탄소, 프로필렌, 프로판, 일산화질소를 동시에 제거하는 삼원 촉매 반응에서 매우 우수한 저온 촉매 성능을 보였다. 이는 탄화수소 산화 반응 성능이 없어서 삼원 촉매 성능이 저하되는 단일원자 촉매의 문제점을 해결한 것이다. 특히 연구팀이 개발한 분산도 100%의 금속 앙상블 촉매는 수열 노화, 장기 반응, 재사용 반응 등의 내구성 평가에서도 탁월한 성능을 보여 실제 휘발유 차량 배기가스 정화에 적용 가능할 것으로 기대된다.
이현주 교수는 “이번에 개발한 금속 앙상블 촉매는 기존의 단일원자 촉매의 한계를 극복하는 새로운 금속 촉매로써 학술적으로 기여하는 바가 크다”라며 “휘발유 차량 배기가스 정화 촉매 분야에도 산업적으로 적용 가능해 연구의 가치가 매우 크다”라고 말했다.
이번 연구는 선도연구센터사업의 초저에너지 자동차 초저배출 사업단과 한국연구재단 중견연구사업의 지원을 받아 수행됐다.
2020.02.27
조회수 11511
-
오차율 10% 이내 정확도의 소재 설계 기술 개발
우리 대학 화학과 김형준 교수 연구팀이 소재 물성의 예측 오차율을 기존 기술보다 30% 이상 줄여 정확도를 한층 높인 소재 시뮬레이션 설계 기술을 개발했다.
이번 기술 개발을 통해 기존 40%에 달했던 소재 물성 예측 오차율을 10% 내로 줄임으로써 소재 개발에 걸리는 시간과 비용을 크게 절약할 수 있을 것으로 기대된다.
김민호 박사와 창원대 김원준 교수가 공동 1 저자로 참여한 이번 연구 결과는 국제 학술지 ‘미국 화학회지(Journal of the American Chemical Societry)’ 1월 10일 자 온라인판에 게재됐다. (논문명 : uMBD: A Materials-Ready Dispersion Correction that Uniformly Treats Metallic, Ionic, and van der Waals Bonding)
새로운 기능성 소재 개발의 중요성이 커지면서 컴퓨터 시뮬레이션을 이용해 소재 물성을 정확히 예측해 새로운 소재를 설계하는 기술이 주목받고 있다.
소재 시뮬레이션 기술은 실제로 소재를 합성하고 평가하기 전에 가상 실험으로 다양한 소재 물성을 예측 및 설계하는 기술로, 주로 밀도범함수 이론(Density functional theory)이라는 양자 이론에 바탕을 두고 있다.
기존의 밀도범함수 이론은 소재 계면에서 반데르발스 힘을 정확하게 설명하지 못한다는 문제가 있었다. 반데르발스 힘은 전하의 일시적 쏠림으로 인해 분자가 순간적으로 극성을 띠면서 나타나는 당기는 힘을 뜻하는데, 이를 정확히 기술하지 못하기 때문에 소재 물성 예측 정확도가 떨어진다는 한계가 있다.
연구팀은 반데르발스 힘을 정확하고 효과적으로 기술할 수 있는 새로운 이론을 개발하고, 이를 밀도범함수 이론에 접목해 소재 시뮬레이션 기술의 정확도를 한층 높이는 데 성공했다.
연구팀은 100여 종의 다양한 소재를 테스트한 결과 40% 정도에 달했던 기존의 소재 물성 예측 오차율이 새 기술을 통해 10% 이내로 줄어듦을 확인했다.
특히 반데르발스 힘은 분자 소재부터 금속 및 반도체 소재에 이르기까지 거의 모든 재료 내에서 소재 물성을 결정하는 데 중요한 역할을 해, 연구팀의 새로운 이론은 다양한 차세대 기능성 소재 설계 연구에 적용 가능할 것으로 기대된다.
실제로 연구팀의 새 시뮬레이션 방법을 통해 리튬 이온 배터리 물질의 전압이나 2차원 소재의 박리 에너지를 예측하는 과정에서 높은 정확도를 보인 것으로 확인됐다.
김형준 교수는 “소재 개발 연구에 있어 경쟁력 강화를 위해서 기초 연구의 중요성이 점차 커지고 있다”라며 “새로 개발한 소재 시뮬레이션 기술을 배터리 소재, 에너지 전환 촉매 소재, 2차원 나노 소재 등 다양한 기능성 소재 설계 연구에 적용할 수 있을 것이다”라고 말했다.
이번 연구는 한국연구재단의 미래소재디스커버리 사업과 선도연구센터 지원 사업 (SRC)의 지원을 통해 수행됐다.
□ 그림 설명
그림1. 새롭게 개발한 이론 (uMBD)을 이용한 소재 시뮬레이션 기술과 기능성 소재 설계
2020.01.29
조회수 11317
-
박인규 교수, 헬스 모니터링용 고감도 유연 압력센서 개발
우리 대학 기계공학과 박인규 교수 연구팀에서 생체 신호 및 신체 압력 모니터링에 활용이 가능한 액체 금속 기반 웨어러블 유연 압력 센서를 개발했다.
이 기술을 통해 맥박, 혈압 등 다양한 중요 생체 신호를 연속적으로 모니터링하고 욕창과 같은 압력으로 인해 비롯한 여러 질병을 예방할 수 있는 시스템으로 활용할 수 있을 것으로 기대된다.
김규영 박사과정이 1저자, 오용석 연구교수가 공동 교신저자로 참여한 이번 연구는 국제 학술지 ‘어드밴스트 헬스케어 머터리얼스(Advanced Healthcare Materials)’11월 21일자 표지논문에 게재됐다. (논문명: Highly Sensitive and Wearable Liquid Metal‐Based Pressure Sensor for Health Monitoring Applications: Integration of a 3D‐Printed Microbump Array with the Microchannel)
최근 헬스케어에 대한 관심이 커짐에 따라 웨어러블 유연 센서 개발이 활발히 진행되고 있다. 기능성 소재를 기반으로 다양한 고감도의 유연 센서가 많이 개발되고 있지만, 기존 고체 소재 기반 센서는 웨어러블 디바이스로 활용되기에 신축성, 신호 반복성 및 안정성 측면에서 한계를 보인다.
이러한 점을 보완하기 위해 현재 액체 소재 기반 유연 센서가 다양하게 개발되고 있다. 액체 전극 중에서도 특히 갈린스탄(Galinstan)과 같은 액체 금속은 신축성에 제한이 없으며, 무독성, 높은 전기 전도도, 전기/기계적 안정성 등의 특징으로 신축성 소자 및 웨어러블 디바이스 요소로써 활용도가 매우 높다.
하지만 기존의 액체 금속 기반 유연 압력 센서는 안정적이지만 매우 감도가 낮아 맥박이나 신체 압력 모니터링과 같은 수 kPa 수준의 작은 범위의 압력 측정에 활용하기 어려웠다.
이번 연구에서는 다중물질 3D 프린팅 기술을 활용해 단단한 마이크로 범프 구조물을 액체 금속 채널에 배치하여 작은 압력에도 신호 변화가 크게 나타날 수 있는 구조를 개발했다. 이러한 구조를 통해 마이크로 범프가 없는 일반 액체 금속기반 압력 센서보다 6배 이상의 높은 감도를 얻고 고체 기반 유연 압력 센서 수준의 감도를 얻을 수 있었다.
또한, 개발된 유연 압력 센서는 1만 회 이상의 인장, 굽힘 등 다양한 물리 변형에도 안정적인 신호 회복을 보이고, 다양한 환경 요인(온도, 습도)에도 안정적인 감지 성능을 보여 웨어러블 디바이스로써 활용될 수 있는 큰 가능성을 보였다.
연구팀은 이러한 성능을 바탕으로 평상시와 운동 시의 맥박, 혈압을 측정하여 그 변화를 연속적으로 감지해 건강 상태를 모니터링할 수 있음을 확인했다.
센서가 부착된 양말과 무선 통신 시스템을 구축하여 누워있는 사람의 다양한 자세 변화 도중 나타나는 신체 압력 및 그 변화를 원격으로 모니터링할 수 있었다.
박인규 교수는 “개발한 고감도 및 고신뢰성 액체 금속기반 유연 압력 센서를 통해 다양한 생체 건강 정보를 연속적으로 수집할 수 있었다. 이를 이용하여 다양한 헬스 케어/헬스 모니터링 어플리케이션, 특히 욕창과 같이 압력으로 인해 나타나는 다양한 질병 관리 및 예방 분야에 활용될 수 있을 것으로 기대된다.”라고 말했다.
이번 연구는 한국연구재단의 중견 연구 과제(올인원 스마트 스킨을 위한 웨어러블 멀티센서 시스템 핵심기술 연구)와 선도연구센터지원 사업 (초정밀 광 기계기술 연구센터)의 지원을 통해 수행됐다.
□ 그림 설명
그림1. Advanced Healthcare Materials 표지
그림2. 마이크로 범프가 집적된 액체 금속 기반 유연 압력 센서
그림3. 높은 감도와 안정적 성능의 유연 센서 및 신체 압력 측정 어플리케이션
2019.12.11
조회수 14263
-
최원호 교수, 플라즈마에 의한 수산기(OH radical) 생성원리 규명
〈 박주영 박사, 최원호 교수, 박상후 박사 〉
우리 대학 원자력및양자공학과 최원호 교수 연구팀이 대기압 플라즈마에서 수산기(OH radical)가 생성되는 원리를 규명하는 데 성공했다.
박상후 박사, 박주영 박사과정 학생이 공동 1 저자로 참여한 이번 연구 결과는 국제 학술지 ‘케미컬 엔지니어링 저널(Chemical Engineering Journal)’ 7월 8일 자 온라인판에 게재됐다 (논문명: Origin of Hydroxyl Radicals in a Weakly Ionized Plasma-Facing Liquid).
플라즈마란 강한 전기적 힘으로 인해 기체 분자가 이온과 전자로 나누어지는 상태를 말한다. 특히 대기압 플라즈마는 대기 중에 여러 형태로 플라즈마 효과 및 2차 생성물을 방출하는 장점이 있어 살균, 정화, 탈취 등 에너지 및 환경 분야부터 생의학 분야까지 다양한 연구 및 산업 분야에 활용되고 있다.
다양한 분야에서 시도되는 플라즈마는 물과 밀접한 관련이 있다. 물을 플라즈마로 처리한 방전수를 만들어 농업용수 및 살균수로 사용하기도 하고, 생의학 분야에서도 70%가 수분으로 구성된 인체에 활용하기 위해 플라즈마와 물의 반응에 대해 끊임없이 연구가 진행된다.
그중 수산기는 대표적인 활성 산소종으로, 물과 플라즈마의 반응에서 가장 중요한 역할을 하는 물질이다.
수산기는 산화력이 매우 커 여러 목적으로 활용이 시도되고 있으며, 박테리아 살균의 경우 기존의 살균법인 과산화수소나 오존을 사용할 때보다 수십에서 수백 배 효율이 높은 것으로 2018년 최원호 교수 연구팀에서 밝힌 바 있다.
수산기는 살균뿐 아니라, 수질 정화, 폐수 처리, 세척 등 환경 분야 및 멸균, 소독, 암세포 제거 등 의료 기술에서도 매우 높은 잠재력을 가지고 있다.
그러나 수산기는 대량으로 생성하기가 어렵고 생존 기간이 짧아 플라즈마 기술을 적극적으로 활용하는 데 한계가 있다.
연구팀은 문제 해결을 위해 플라즈마 내에서 기존에 알려진 수산기의 생성 방식 외에 산화질소의 광분해에 의한 생성원리를 규명했다. 더불어 광분해를 촉진시켜 수산기의 생성량을 높이면서 동시에 제어하는 방법을 개발했다.
광분해 방법이란 플라즈마로 생성된 산화질소가 존재하는 물과 플라즈마에 자외선을 추가로 노출해 산화질소가 수산기로 분해되는 과정을 말한다. 연구팀이 개발한 광분해방법은 수산기의 생성 위치를 국한하지 않고, 자외선 노출 위치에 따라 제어할 수 있어 생존 기간이 짧다는 단점을 극복할 수 있다.
최원호 교수는 “이번 연구를 통해 플라즈마 기술에 대한 과학적 이해를 넓히면서 효율적인 플라즈마 기술의 제어 방법을 제시함으로써 농업, 식품, 바이오 의학 등 다양한 분야에 플라즈마 기술이 적극적으로 접목될 수 있는 기반을 마련할 것이다”라고 말했다.
이번 연구는 국가핵융합연구소의 미래선도 플라즈마-농식품 융합기술 개발 사업의 지원을 받아 수행됐다.
□ 그림 설명
그림1. 플라즈마 처리수(PTW)에서 pH와 과산화수소, 아질산염 비율에 따른 수산기 반응 경로
그림2. 대기압 플라즈마 사진 및 수산기 생성경로
2019.08.16
조회수 13834
-
주영석 교수, 흡연과 무관한 폐암유발 돌연변이 유년기부터 발생 사실 밝혀
〈 주영석 교수 〉
우리 대학 의과학대학원 주영석 교수와 서울대학교 의과대학(학장 신찬수) 흉부외과 김영태 교수 공동 연구팀이 폐암을 일으키는 융합유전자 유전체 돌연변이의 생성 원리를 규명했다.
이번 연구는 흡연과 무관한 환경에서도 융합유전자로 인해 폐 선암이 발생할 수 있다는 사실을 밝힌 것으로, 비흡연자의 폐암 발생 원인 규명과 더불어 정밀치료 시스템을 구축하는 데 적용 가능할 것으로 기대된다.
우리 대학 출신 이준구 박사(現 하버드 의과대학 박사후연구원)와 박성열 박사과정이 공동 1 저자로 참여한 이번 연구는 국제 학술지 ‘셀(Cell)’ 5월 30일 자 온라인판에 게재됐다. (논문명 : Tracing Oncogene Rearrangements in the Mutational History of Lung Adenocarcinoma) 또한, 이번 연구에는 하버드 의과대학, 한국과학기술정보연구원, 국립암센터 연구자들도 함께 참여했다.
흡연은 폐 선암의 가장 큰 발병 인자로 잘 알려졌지만 암 융합유전자 돌연변이, 즉 ALK, RET, ROS1 등에 의한 암 발생은 대부분 비흡연자에게서 발견된다. 융합유전자로 인한 환자는 전체 폐 선암 환자의 10% 정도를 차지하고 있지만, 이 돌연변이의 생성과정에 대해서는 알려진 것이 거의 없었다.
이전까지의 폐 선암 유전체 연구는 주로 유전자 지역을 규명하는 ‘엑솜 서열분석 기법’이 사용됐으나 연구팀은 유전자 간 부분들을 총망라해 분석하는‘전장 유전체 서열분석 기법’을 대규모로 적용했다.
연구팀은 138개의 폐 선암(lung adenocarcinoma) 사례의 전장 유전체 서열 데이터(whole-genome sequencing)를 생성 및 분석해 암세포에 존재하는 다양한 양상의 유전체 돌연변이를 찾아냈다. 특히 흡연과 무관한 폐암의 직접적 원인인 융합유전자를 생성하는 유전체 구조 변이의 특성을 집중적으로 규명했다.
유전체에 발생하는 구조적 변이는 DNA의 두 부위가 절단된 후 서로 연결되는 단순 구조 변이와 DNA가 많은 조각으로 동시에 파쇄된 후 복잡하게 서로 재조합되는 복잡 구조 변이로 나눌 수 있다.
복잡 구조 변이는 암세포에서 많이 발견된다. DNA의 수백 부위 이상이 동시에 절단된 후 상당 부분 소실되고 일부가 다시 연결되는 ‘염색체 산산조각(chromothripsis)’ 현상이 대표적 사례이다. 연구팀은 70% 이상의 융합유전자가‘유전체 산산조각 (chromothripsis)’ 현상 등 복잡 구조 돌연변이에 의해 생성됨을 확인했다.
또한, 연구팀은 정밀 유전체 분석을 통해 복잡 구조 돌연변이가 폐암이 진단되기 수십 년 전의 어린 나이에도 이미 발생할 수 있다는 사실을 발견했다.
세포의 유전체는 노화에 따라 비교적 일정한 속도로 점돌연변이가 쌓이는데 연구팀은 이를 이용하여 마치 지질학의 연대측정과 비슷한 원리로 특정 구조 변이의 발생 시점을 통계적으로 추정할 수 있는 기술을 개발했다. 이 기술을 통해 융합유전자 발생은 폐암을 진단받기 수십 년 전, 심지어는 10대 이전의 유년기에도 발생할 수 있다는 사실을 확인했다.
이는 암을 일으키는 융합유전자 돌연변이가 흡연과 큰 관련 없이 정상 세포에서 발생할 수 있음을 명확히 보여주는 사례이며, 단일 세포가 암 발생 돌연변이를 획득한 후에도 실제 암세포로 발현되기 위해서는 추가적인 요인들이 오랜 기간 누적될 필요가 있음을 뜻한다.
연구팀의 이번 연구는 흡연과 무관한 폐암 발생 과정에 대한 지식을 한 단계 확장했다는 의의가 있다. 향후 폐암의 예방, 선별검사 정밀치료 시스템 구축에 이바지할 수 있을 것으로 기대된다.
연구팀은 한국과학기술정보연구원의 슈퍼컴퓨터 5호기 누리온 시스템을 통해 유전체 빅데이터의 신속한 정밀 분석을 수행했다. 슈퍼컴퓨터 5호기는 향후 타 유전체 빅데이터 연구자들에게도 활용 가능할 것으로 보인다.
주영석 교수는 “암유전체 전장서열 빅데이터를 통해 폐암을 발생시키는 첫 돌연변이의 양상을 규명했으며, 정상 폐 세포에서 흡연과 무관하게 이들 복잡 구조변이를 일으키는 분자 기전의 이해가 다음 연구의 핵심이 될 것이다”라고 말했다.
서울대학교 의과대학 김영태 교수는 “2012년 폐 선암의 KIF5B-RET 융합유전자 최초 발견으로 시작된 본 폐암 연구팀이 융합유전자의 생성과정부터 임상적 의미까지 집대성했다는 것이 이번 연구의 중요한 성과이다”라고 말했다.
이번 연구는 한국연구재단, 보건복지부 포스트게놈 다부처유전체사업/세계선도의과학자 육성사업, 서경배 과학재단 및 서울대학교 의과대학 교실지정기부금의 지원을 받아 수행됐다.
□ 그림 설명
그림1. 흡연과 무관한 폐암에서 융합유전자에 의한 발암기전
그림2. 폐선암에서 관찰되는 다양한 복잡 구조 변이의 특성
그림3. 어린 나이에 생긴 융합유전자의 예시
2019.06.03
조회수 19752
-
최경철 교수, 자가발전으로 에너지 절약 및 세탁 가능한 입는 디스플레이 개발
〈 (오른쪽 위부터 시계방향으로) 정은교 연구원, 최경철 교수, 전남대 조석호 교수, 전용민 연구원 〉
우리 대학 전기및전자공학부 최경철 교수와 전남대학교 의류학과 조석호 교수 연구팀이 외부 전원 없이 자가발전 되고 세탁이 가능한 디스플레이 모듈 기술을 개발했다.
이번 연구는 기존 플라스틱 기판 웨어러블 전자소자가 아닌 옷감을 직접 기판으로 사용하는 전자소자의 상용화를 앞당길 수 있다는 점, 일상생활에 입는 전자소자가 외부 전원 없이 자가 발전해 에너지를 절약할 수 있다는 점에서 큰 의미가 있다.
정은교 박사과정과 전용민 연구원이 주도한 이번 연구는 국제 학술지 ‘에너지&인바이런멘탈 사이언스(Energy and Environmental Science, IF : 30.067)’ 1월 18일 자 온라인판에 게재됐고, 우수성을 인정받아 뒤표지 논문으로 선정됐다.
기존의 섬유형 웨어러블 디스플레이는 주로 디스플레이의 소자 구현에 초점을 맞춰 연구가 이뤄졌다. 이로 인해 소자를 구동하기 위한 별도의 외부 전원이 필요할 뿐 아니라 내구성 또한 부족한 특성을 가져 웨어러블 디스플레이로 응용하기에는 한계가 있다.
고분자 태양전지와 유기 발광 디스플레이 소자는 수분, 산소 등 외부 요인에 매우 취약해 소자를 보호하기 위한 봉지막이 필요하다. 그러나 기존에 개발된 봉지막 기술은 상온에서는 역할을 충분히 수행하지만, 습기가 많은 환경에서는 그 특성을 잃게 된다. 따라서 비 오는 날이나 세탁 이후에도 동작할 수 있어야 하는 착용형 디스플레이에서는 사용이 제한된다.
연구팀은 문제해결을 위해 외부 전원 없이도 안정적으로 전력을 공급할 수 있는 고분자 태양전지(PSC)와 수 밀리와트(milliwatt)로도 동작할 수 있는 유기발광다이오드(OLED)를 옷감 위에 직접 형성하고 그 위에 세탁이 가능한 봉지기술을 적용했다. 이를 통해 전기를 절약하면서도 실제 입을 수 있는 디스플레이 모듈 기술을 개발했다.
연구팀은 원자층 증착법(ALD)과 스핀코팅(spin coating)을 통해 세탁 후에도 특성 변화 없이 소자를 보호할 수 있는 봉지막 기술을 자가발전이 가능한 입는 디스플레이 모듈에 적용했다. 이 봉지막 기술을 통해 세탁 이후나 3mm의 낮은 곡률반경에서도 웨어러블 전자소자들의 성능이 유지되는 것을 증명했다.
연구팀은 일주일마다 세탁 및 기계적인 스트레스를 주입한 뒤 결과를 관찰한 결과 30일 이후 PSC는 초기 대비 98%, OLED는 94%의 특성을 유지함을 확인했다.
최경철 교수는 “기존의 플라스틱 기판 기반의 웨어러블 전자소자 및 디스플레이 연구와 달리 일상생활에 입는 옷감을 기판으로 활용해 세탁이 가능하고 외부 전원 없이 고분자 태양전지로 디스플레이를 구동하는 전자소자 모듈을 구현했다”라며 “태양에너지를 이용해 자가 구동 및 세탁이 가능한, 전기 충전이 필요 없는 진정한 의미의 입을 수 있는 디스플레이 기술 시대를 열었다”라고 말했다.
이번 연구는 과학기술정보통신부와 한국연구재단이 추진하는 선도연구센터지원사업과 교육부 BK21 지원사업으로 수행됐으며, 이번 연구 성과로 1 저자인 정은교 연구원은 BK21 우수인력으로 사회부총리 겸 교육부장관 표창을 받는다.
□ 그림 설명
그림1. 표지논문 이미지
그림2. 세탁 가능한 입는 디스플레이 모듈 모식도 및 구동 사진
2019.03.21
조회수 18365
-
이현주 교수, 국건 박사과정, 실크 피브로인 박막의 대면적 소자공정 개발
우리 대학 전기및전자공학부 이현주 교수 연구팀과 KIST 최낙원 박사팀이 생분해성 실크피브로인 박막의 대면적 소자 공정을 개발하고 이를 통해 실크피브로인이 미세 공정된 마이크로소자의 제작기술을 개발했다.
이번에 개발된 실크피브로인 박막의 대면적 소자 공정은 포토리소그래피로 제작하는 폴리머나 금속 등의 구조와 동시에 미세공정이 가능해 실크피브로인을 기판으로 하는 생분해성 전자소자나 실크피브로인 패턴을 통한 국소부위 약물전달을 구현하는 데에 중요한 기술이 될 것으로 기대된다.
국건 박사과정과 KIST 정소현 박사과정이 주도한 이번 연구는 국제학술지 ‘에이씨에스 에이엠아이(ACS AMI : ACS Applied Materials & Interfaces)’ 1월 16일자 표지논문에 게재됐다. (논문명 : Wafer-Scale Multilayer Fabrication for Silk Fibroin-Based Microelectronics)
실크피브로인 박막은 투명하고 유연하며 생체에서 분해되기 때문에 생분해성 소자와 약물전달의 기판으로 쓰여왔다. 연구팀은 지난 2년간의 연구로 현재까지 실크피브로인에 적용되지 못했던 미세공정을 적용할 수 있도록 새로운 공정기술을 개발했다.
기존의 미세공정은 실크피브로인과 같은 생고분자의 구조를 변형시키는 강한 식각액과 용매가 동반됐다. 연구팀은 실크피브로인에 영향을 주지 않는 물질을 추려내고 이를 이용해 실크피브로인이 공정 중에 훼손되지 않도록 개선된 미세공정기술을 확보했다.
개발한 공정은 알루미늄 금속 박막을 사용해 실크피브로인을 보호하기 때문에 기존 미세공정의 핵심 기술인 포토리소그래피(Photolithography)로 실크피브로인 박막을 다른 소자 위에 패터닝하거나 실크피브로인 박막 위에 다른 물질을 패터닝하는 것이 모두 가능하다.
연구진은 뇌세포(Primary Neuron)를 공정을 거친 실크피브로인의 미세패턴 위에 성공적으로 배양해 실크피브로인이 공정 전후로 높은 생체적합성을 지녀 생체 임플란트 소자에 적용될 수 있음을 확인했다.
연구진은 개발한 기술을 통해 실크피브로인 기판 위에 여러 층의 금속 박막과 실크피브로인 박막의 미세패턴을 구현해 저항 및 실크피브로인을 유전체로 하는 축전기로 이루어진 생분해성 미세전자회로를 실리콘웨이퍼에서 대면적으로 제작했다.
또한 연구진이 독립적으로 개발한 유연 폴리머 기반 뇌전극 위에 해당 기술을 이용해 실크피브로인 박막의 미세패턴을 전극의 가까이에 위치시켰고 색소분자를 실크피브로인 박막에 탑재해 미세패턴으로부터의 분자전달을 확인했다.
실크피브로인 박막이 미세패턴된 뇌전극을 이용하면 뇌세포의 행동을 촉진하거나 제한하는 분자 약물을 탑재해 뇌회로의 연구에 활용되는 등 다양한 활용이 가능할 것으로 기대된다.
이 교수는 “대면적 공정이 불가능하다고 여겨졌던 민감한 바이오물질도 실리콘처럼 대면적의 미세공정이 가능해졌다”며 “향후 바이오메디컬 소자 분야에 광범위하게 적용될 것으로 기대한다”고 말했다.
이번 연구는 과학기술정보통신부 한국연구재단의 선도연구센터 사업 지원을 받아 수행됐다.
□ 그림 설명
그림1. ACS AMI 표지
그림2. 연구진이 개발한 실크피브로인 박막의 대면적 미세소자공정
그림3. 공정 이후의 실크피브로인 패턴에 배양된 Primary Neuron의 모습
2019.02.21
조회수 15889
-
유승협 교수, 초저전력 심박 및 산소포화도 센서 구현
〈 유승협 교수, 이현우 박사과정〉
우리 대학 전기및전자공학부 유승협 교수 연구팀이 유기발광다이오드(OLED)와 유기포토다이오드(OPD)를 이용해 초저전력 심박 및 산소포화도 센서 구현에 성공했다.
전기및전자공학부 유회준 교수 연구팀과의 협력을 통해 이뤄진 것으로 이 기술을 통해 심박 및 산소포화도 센서가 다양한 웨어러블 기기에 적용될 수 있는 계기가 될 것으로 기대된다.
이현우 박사과정이 1저자로 참여한 이번 연구는 ‘사이언스 어드밴스 (Science Advances)’11월 9일자 온라인 판에 게재됐다. (논문명 : Toward all-day wearable health monitoring: An ultralow-power, reflective organic pulse oximetry sensing patch)
심박 및 산소포화도 센서는 신체의 건강 상태를 나타내는 가장 중요한 생체 신호의 하나인 심장 박동과 혈액 내 산소와 결합한 헤모글로빈의 농도로서 신체 내 원활한 산소 공급 여부를 가늠할 수 있는 산소포화도를 측정하는 기기이다.
심박 및 산소포화도 센서에는 일반적으로 LED와 포토다이오드로 구성된 광학적 방법이 이용된다. 이 기술은 간단하고 소형화가 용이한 비 침습적 방법이면서 주요 생체신호의 모니터링이 가능하다는 이점이 있어 병원용 기기뿐 아니라 스마트 워치 등 웨어러블 기기에도 탑재되는 경우가 많다.
이러한 센서는 배터리 용량이 매우 제한적인 웨어러블 기기의 특성상 센서의 전력소모를 줄이는 것이 매우 중요하다.
그러나 현재 상용 심박 및 산소포화도 센서는 이산소자들의 배열로 구성돼 피부에서 산란으로 인해 전방위로 전달되는 빛을 효율적으로 감지하기 어렵다. 이러한 이유로 좀 더 강한 빛을 필요로 하기 때문에 장기간 실시간 모니터링에는 한계가 있다.
연구팀은 문제 해결을 위해 광원의 발광 파장에 따른 피부에서의 빛의 전달 형태를 실험과 피부 모델 시뮬레이션을 통해 검토했다. 유기소자의 경우 자유로운 패턴 구현이 용이한 점을 최대한 이용해 유기포토다이오드가 유기발광다이오드를 동심원 형태로 감싸 피부에서 전방위로 분포되는 빛을 효율적으로 감지하는 최적 구조를 갖는 유연 심박 및 산소포화도 센서를 구현했다.
이를 통해 평균소비전력 약 0.03밀리와트(mW)만으로도 심박 및 산소포화도를 측정할 수 있었다. 이는 LED와 PD가 일렬로 배치된 상용 센서가 갖는 통상 전력소모 양의 약 수십 분의 일에 해당하는 매우 작은 값으로 24시간 동작에도 1밀리와트시(mWh)가 채 되지 않는 양이다.
이 기술은 매우 낮은 전력 소모 외에도 유기소자가 갖는 유연 소자의 형태적 자유도도 그대로 갖는다. 따라서 스마트 워치부터 작게는 무선 이어폰, 스마트 반지, 인체 부착형 패치 등의 웨어러블 기기에서 배터리로 인한 제한을 최소화하면서 일상에 지장 없이 지속적인 생체 신호 모니터링을 가능하게 할 것으로 기대된다.
유승협 교수는 “생체 신호의 지속적인 모니터링은 건강의 이상 신호를 상시 검출 할 수 있게 할 뿐 아니라 향후 빅데이터 등과 연계하면 이들 생체신호의 특정 패턴과 질병 간의 상호 관계를 알아내는 등에도 활용될 수 있다.”고 말했다.
이번 연구는 과학기술정보통신부 한국연구재단-나노·소재원천기술개발사업 및 선도연구센터 사업의 지원을 받아 수행됐다.
□ 사진 설명
사진1. 연구팀이 개발한 센서
2018.11.12
조회수 11678
-
고현용 연구원, 뇌전증 동반하는 소아 뇌종양 근본원인 밝혀
〈 고 현 용 연구원 〉
우리 대학 의과학대학원 고현용 연구원(지도교수 : 이정호 교수)이 난치성 뇌전증(간질 발작)을 일으키는 소아 뇌종양의 근본 원인과 뇌전증 발생의 원리를 규명해 새로운 치료법을 제시했다.
이번 연구 결과를 통해 수술 치료에 어려움이 있는 소아 뇌종양 기반의 난치성 뇌전증 치료에 큰 기여를 할 수 있을 것으로 기대된다.
고현용 박사과정이 1저자로 참여한 이번 연구 결과는 국제 학술지 ‘네이처 메디슨(Nature Medicine)’ 9월 17일자 온라인 판에 게재됐다. (논문명: 비라프 체성 돌연변이가 소아뇌종양의 본질적 뇌전증 발생에 기여함; BRAF somatic mutation contributes to intrinsic epileptogenicity in pediatric brain tumors)
소아 뇌종양은 성인 뇌종양에 비해 난치성 뇌전증이 빈번하게 동반되는 특징을 갖고 있다. 그러나 소아 뇌종양에서 특이적으로 난치성 뇌전증이 발생하는 원인에 대해서는 밝혀진 바가 없으며 현존하는 항 뇌전증 약물에 반응하지 않기 때문에 환자의 치료에 많은 어려움을 겪고 있다.
연구팀은 소아 뇌종양 환지 뇌 조직 및 동물 모델의 분자 유전학적 분석을 통해 태아의 뇌 발달과정 중 신경 줄기 세포에 ‘비라프 (BRAF V600E)’라는 돌연변이가 발생하면서 난치성 뇌전증이 동반된 소아 뇌종양이 발생하는 것을 규명했다.
연구팀은 뇌전증이 동반된 소아 뇌종양 중 하나인 신경절 교세포종 환자의 종양 조직을 분자 유전학적으로 분석한 결과 비라프 유전변이가 태아 뇌 발달 과정 중 발생함을 확인했다.
이 변이를 동물 모델에서 구현해 신경절 교세포종의 병리 양상을 재현하고 발작을 관찰해 소아 뇌종양 기반의 뇌전증 치료용 동물 모델을 최초로 확립했다.
이를 이용해 면역 염색 분석과 전사체 분석을 실시했다. 소아 뇌종양에서 발생하는 난치성 뇌전증이 신경세포에 존재하는 비라프 변이로 인해 발생하고, 교세포에 존재하는 변이는 종양 덩어리를 형성하는데 중요한 역할을 하는 것을 확인했다.
특히 현재 임상에서 항암제로 사용되고 있는 비라프의 저해제를 동물 모델에 주입해 난치성 뇌전증 치료 효과를 확인했다.
1저자인 고현용 연구원은 “소아 뇌종양 환자의 경 줄기 세포에서 발생한 특정 돌연변이가 난치성 뇌전증 발생에 핵심적 역할을 한다는 것을 국내 연구진이 최초로 발견해냈다는 것에 큰 의미가 있다”며 “소아 뇌종양으로 인해 발생한 난치성 뇌전증의 근본 원인을 규명해 과적 치료의 가능성을 처음으로 보여준 것이다”고 말했다.
연구팀은 교원창업기업(소바젠, 대표 김병태)을 통해 소아 뇌종양 기반의 난치성 뇌전증 치료약 개발에 나설 예정이다.
이번 연구는 연세대학교 의과대학 세브란스 병원 김동석, 김세훈, 강훈철 교수 연구팀과 공동 연구 및 서경배과학재단, 보건복지부 세계선도과학자육성사업의 지원을 통해 수행됐다.
□ 그림 설명
그림1. 수술전 (PreOP) 과 수술후 (PostOP) 의 신경절 교세포종의 MRI사진과 이형성이 동반된 신경세포가 있는 병리 조직 사진
그림2. BRAF V600E 돌연변이가 발생하여 뇌전증 동반 소아 뇌종양을 유발하는 과정 모식도
2018.09.18
조회수 10756
-
이정호 교수, 이주호 박사, 악성 뇌종양의 근본적 원인 밝혀
〈 이 주 호 박사 〉
악성 뇌종양인 교모세포종은 미디어에서 주요 소재로 나올 만큼 인간에게 치명적인 질병으로 일반 대중에게 낯설지 않은 질병이다. 실제로 악성 뇌종양으로 인한 미국 암 관련 사망률은 4위에 달하며 미국의 에드워드 케네디, 존 매케인 상원의원 등이 이 질병으로 사망했거나 투병 중이다.
우리 대학 의과학대학원 이정호 교수 연구팀이 세브란스병원 신경외과 강석구 교수와의 공동 연구를 통해 악성 뇌종양인 교모세포종 돌연변이 발생이 암 부위가 아닌 암에서 멀리 떨어진 뇌실하영역에서 발생한다는 사실을 규명했다.
이는 교모세포종 발병의 원인이 암 발생 부위일 것이라는 기존의 학설을 뒤집는 연구 결과로, 악성도가 가장 높은 종양인 교모세포종의 치료법 개발에 새로운 방향을 제시할 것으로 기대된다.
또한 그동안 암 조직만을 대상으로 이뤄진 암 연구가 암의 기원이 되는 조직에 대한 연구로 발전하면서 교모세포종 뿐 아니라 다른 암에 대해서도 치료의 실마리를 찾을 수 있는 기반이 될 것으로 보인다.
의과학대학원 졸업생 이주호 박사가 1저자로 참여한 이번 연구 결과는 국제 학술지 ‘네이처(Nature)’ 8월 1일자 온라인 판에 게재됐다.
교모세포종은 가장 예후가 좋지 않은 종양이다. 암 발생의 근본적인 원인에 대한 이해가 부족해 수술을 하더라도 재발 가능성이 매우 높기 때문이다. 수술만으로 치료가 불가능해 항암치료, 방사선치료, 표적항암제 등을 병행하지만 아직도 그 치료법이 명확하지 않다.
이정호 교수 연구팀은 암 발생 부위가 아닌 종양과 떨어져 있는 뇌실하영역이라는 곳에 주목했다. 교모세포종이 수술 이후에도 재발률이 높다는 점에서 원인이 다른 곳에 있을 것이라고 판단한 것이다.
이 교수는“교모세포종은 종양을 떼어내도 1~2년 후에 재발률이 높다. 암은 돌연변이인데 돌연변이가 발생하는 곳이 종양이 아닌 다른 부위라고 생각했고 그곳이 바로 뇌실하영역(subventricular zone : SVZ)이라는 사실을 밝혀냈다”고 말했다.
연구팀은 2013년부터 2017년 사이에 수술을 한 뇌종양 환자 28명을 대상으로 종양조직 외에 수술 중 제거되는 종양조직, 정상조직, 뇌실주변의 조직 3가지를 조합해 분석했다. 딥 시퀀싱, 단일세포시퀀싱 등을 통해 교모세포종의 시작이 뇌실하영역에서 발생한 낮은 빈도의 종양을 유발하는 돌연변이에 의한 것임을 밝혔다.
특히 유전자 편집 동물 모델을 통해 뇌실하영역에서 돌연변이가 생기면 이 돌연변이를 가진 세포가 뇌실하영역을 떠나 뇌의 다른 부위로 이동해 교모세포종이 되는 사실 또한 확인했다. 돌연변이 세포가 마치 불꽃놀이처럼 곳곳으로 퍼진 뒤 시간이 지나자 다른 부위에서 종양으로 진화한 것이다.
연구팀은 KAIST 교원창업(소바젠, 대표 김병태)을 통해 이번 연구결과를 바탕으로 뇌실하영역의 세포가 교모세포종으로 진화되는 과정을 막기 위한 치료약 개발에 나설 예정이다.
1저자인 이주호 박사는 “암 중 예후가 가장 좋지 않은 교모세포종에 대한 발암의 비밀을 국내 연구진이 풀어냈다는 것에 큰 의미가 있다”며 “악성 뇌종양의 연구와 치료의 획기적 전환점을 최초로 증명하고 제시한 것이다”고 말했다.
이정호 교수는 “암 중 가장 예후가 좋지 않은 교모세포종의 원인을 파악하고 동물 모델 제작까지 성공했다는 점에서 큰 의미가 있다. 환자에게서 찾은 것을 동물에 그대로 반영했기 때문에 여기서 치료를 할 수 있다면 임상까지 가능할 것이다.”고 말했다.
이정호 교수 연구팀은 후천성 뇌 돌연변이에 의한 난치성 뇌전증의 원리와 치료법을 최초로 규명한 바 있다. 이를 토대로 글로벌 제약회사와 함께 임상 2상이 진행될 정도로 난치성 뇌질환의 진단 및 치료법 개발을 세계적으로 리드하고 있다.
이 교수는 한국인으로서는 처음으로 난치성 뇌전증의 유전 병리학적 진단 기준을 세우는 세계 뇌전증학회 핵심 위원으로 참여해 국제 기준을 제정 중이다.
이번 연구는 서경배과학재단, 보건복지부 세계선도의과학자육성사업, 한국연구재단, 보건산업진흥원 사업을 통해 수행됐다.
□ 그림 설명
그림1. 교모세포종의 발암의 시작을 불꽃놀이에 비유한 그림
그림2. 동물 실험을 통해 뇌실하영역이 발암의 시발점임을 증명
2018.08.02
조회수 16979
-
최원호 교수, 플라즈마 내 전자의 가열 원리 규명
〈 최원호 교수, 박상후 연구교수〉
우리 대학 원자력및양자공학과 최원호 교수 연구팀이 약하게 이온화된 플라즈마(weakly ionized plasma)에서 전자가 가열되는 구조와 제어 원리를 규명하는데 성공했다.
플라즈마 내의 모든 반응이 전자로부터 시작된다는 점으로 볼 때 전자의 가열 원리를 규명함으로써 플라즈마를 더욱 자유롭고 다양하게 활용할 수 있을 것으로 예상된다.
이는 대기압 플라즈마 내에 존재하는 자유 전자에 대한 기초 연구 자료로 기존 플라즈마의 활용 및 응용 가능성을 높이는 등 플라즈마 물리학 및 응용기술 발전에 크게 기여할 것으로 기대된다.
박상후 연구교수가 1저자로 참여한 이번 연구는 국제 학술지 ‘사이언티픽 리포트(Scientific Reports)’5월 14일자와 7월 5일자 온라인 판에 연달아 게재됐다. (논문명 : Electron information in single- and dual-frequency capacitive discharges at atmospheric pressure, 단일 및 이중 주파수 대기압 플라즈마의 전자 정보 / Electron heating in rf capacitive discharges at atmospheric-to-subatmospheric pressures, 대기압과 대기압보다 낮은 압력에서 라디오 주파수 플라즈마 내의 전자 가열)
물질의 세 가지 상태인 고체, 액체, 기체와 더불어 ‘물질의 네 번째 상태’라 불리는 플라즈마는 표준 온도 및 압력(25 ℃, 1 기압)의 상태에서는 자연적으로 존재하지 않으나 인위적으로 기체에 에너지를 가하면 플라즈마 상태가 된다.
학계 및 산업계는 활용 목적과 조건에 맞춰 다양한 형태의 플라즈마 발생원을 개발해 사용하고 있다. 특히 대기압 플라즈마는 응용 가능 분야가 다양하고 활용도가 높아 학술적, 산업적 활용성 측면에서 많은 관심을 받고 있다.
일반적으로 플라즈마 내의 다양한 화학적, 물리적 반응은 전자로부터 시작되기 때문에 전자의 밀도와 온도의 시공간적 변화는 아주 중요한 정보이다. 플라즈마 및 가속기 물리학 분야에서 자유 전자의 가열 여부는 과학자들의 관심을 지속적으로 받은 연구 주제이다.
그러나 대기압 조건에서는 자유 전자와 중성기체의 충돌이 빈번하기 때문에 이온화된 플라즈마 내 자유 전자의 밀도와 온도를 측정하는 데에는 한계가 있어 자유 전자의 가열 구조 및 원리를 실험적으로 규명할 수 없었다.
또한 전자 가열의 제어 방법 및 주요 요인에 대한 정보가 부족해 플라즈마의 반응성과 활용성 개선이 제한적이었다.
연구팀은 문제 해결을 위해 전자-중성입자 제동복사(electron-neutral bremsstrahlung)란 기술을 이용해 플라즈마 내 자유 전자의 밀도, 온도를 정확히 진단하고 이를 2차원으로 영상화하는 기술을 개발했다.
연구팀은 개발한 진단 기술을 이용해 대기압 플라즈마에서 수 나노초(10억분의 1초) 단위로 자유 전자의 온도(에너지)를 측정해 전자가 에너지를 얻는 가열 과정의 시공간적 분포 및 근본 원리를 밝히는 데 성공했다.
0.25~1기압 압력구간에서의 전자 온도의 시공간적 분포의 변화를 실험적으로 최초로 확인해 대기압 및 대기압보다 낮은 압력에서 전자가 에너지를 얻는 가열의 기본 원리를 규명했다.
최 교수는 “이 연구 결과는 자유 전자와 중성입자의 충돌이 매우 빈번한 조건에서 발생하는 플라즈마에서의 전자 가열 원리를 학문적으로 이해하는 데 유용할 것이다”며 “이를 통해 경제적, 산업적 활용 가능한 대기압 플라즈마 발생원을 개발하고 다양하게 활용하는데 큰 역할을 하길 기대한다”고 말했다.
이번 연구는 국가핵융합연구소의 미래선도플라즈마-농식품융합기술개발사업의 지원을 받아 수행됐다.
□ 그림 설명
그림1. 측정된 파장의 제동복사 및 전자 온도의 시공간적 변화
그림2. 단일 및 이중 주파수로 구동하는 플라즈마에서 측정된 제동복사 및 전자 온도의 시공간적 변화
2018.07.26
조회수 13657
-
이현주 교수, 배기가스 정화용 로듐 앙상블 촉매 개발
〈 정호진 박사과정, 이현주 교수 〉
우리 대학 생명화학공학과 이현주 교수가 포항공대 한정우 교수와의 공동 연구를 통해 자동차 배기가스 정화에 사용할 수 있는 분산도 100%의 로듐 앙상블 촉매를 개발했다.
연구팀의 촉매는 자동차 배기가스 정화 반응에서 시중의 디젤 산화 촉매에 비해 50도 낮은 온도에서 100%의 전환율을 달성하는 성능을 보였다. 연구팀의 앙상블 촉매는 기존의 단일원자 촉매, 나노입자 촉매와는 다른 개념으로 금속 앙상블 자리(ensemble site)가 필요한 다양한 분야에 적용 가능할 것으로 기대된다.
정호진 박사과정이 1저자로 참여한 이번 연구 결과는 화학 분야 국제 학술지 ‘미국 화학회지(JACS, Journal of the American Chemical Society)’ 7월 5일자 온라인 판에 게재됐다. (논문명 : Fully Dispersed Rh Ensemble Catalyst to Enhance Low-Temperature Activity, 저온 활성 향상을 위한 완전히 분산된 로듐 앙상블 촉매)
다양한 불균일계 촉매 중 귀금속 촉매는 높은 활성을 보이기 때문에 널리 사용된다. 하지만 귀금속의 희소가치 때문에 귀금속 사용 효율을 극대화하는 것이 매우 중요하다.
단일원자 촉매는 모든 금속 원자가 촉매 반응에 참여할 수 있기 때문에 널리 사용되지만, 금속 원자가 독립적으로 존재하기 때문에 앙상블 자리가 필요한 촉매 반응에서 촉매 성능을 발휘하지 못한다.
한편 프로필렌(C3H6)과 프로판(C3H8) 등의 탄화수소는 대표적인 자동차 배기가스 오염물질로 반드시 촉매 산화 반응을 통해 이산화탄소(CO2)와 물(H2O)로 전환한 뒤 배출돼야 한다. 탄소-탄소, 탄소-수소 결합을 깨뜨려야만 탄화수소 산화반응이 진행되기 때문에 촉매 반응을 위해서는 금속 앙상블 자리를 확보하는 것이 필수적이다.
연구팀은 문제 해결을 위해 100%의 분산도를 갖는 로듐 앙상블 촉매를 개발해 자동차 배기가스 정화반응에 적용했다. 100%의 분산도를 갖는다는 것은 모든 금속 원자가 표면에 드러나 있기 때문에 모든 원자가 반응에 참여할 수 있다는 의미이다.
이는 단일원자 촉매도 동일하게 갖는 특징이지만, 앙상블 촉매는 100% 분산도와 더불어 두 개 이상의 원자가 붙어있는 앙상블 자리가 존재한다는 장점 또한 갖고 있다.
그 결과 일산화탄소(CO), 일산화질소(NO), 프로필렌, 프로판 산화 반응에서 모두 우수한 저온 촉매 성능을 보였다. 이는 탄화수소 산화 반응 성능이 없는 단일원자 촉매나 낮은 금속 분산도로 인해 저온 촉매 성능이 떨어지는 나노입자 촉매의 단점을 보완한 것이다.
특히 연구팀이 개발한 분산도 100%의 로듐 앙상블 촉매는 상용화된 디젤 산화 촉매(DOC, diesel oxidation catalysts)보다 높은 활성과 내구성을 가져 실제 자동차 배기가스 정화에 적용 가능할 것으로 기대된다.
이현주 교수는 “이번에 개발한 촉매는 기존의 단일원자, 나노입자 촉매와는 다른 새로운 금속 촉매 개념으로 학술적으로 기여하는 바가 크다”며 “자동차 배기가스 정화 촉매 분야에도 산업적으로 적용 가능해 가치가 큰 연구이다”고 말했다.
이번 연구는 한국연구재단 선도연구센터사업 초저에너지 자동차 초저배출 사업단의 지원을 받아 수행됐다.
□ 그림 설명
그림1. 분산도 100% 로듐 앙상블 촉매를 이용한 자동차 배기가스 정화 반응 개념도
그림2. 단일 원자 촉매와 앙상블 촉매의 촉매 구조와 성능 비교 모식도
그림3. EDS-mapping 분석법을 통해 관찰한 단일 원자 촉매, 앙상블 촉매, 나노입자 촉매 구조 사진
2018.07.23
조회수 13140