본문 바로가기
대메뉴 바로가기
KAIST
연구뉴스
유틸열기
홈페이지 통합검색
-
검색
메뉴 열기
%EC%88%98%EA%B3%84%EC%A0%84%EC%A7%80
최신순
조회순
물에서 작동하는 급속충전 가능한 전지 개발
우리 대학 신소재공학과 강정구 교수 연구팀이 물에서 작동하는 우수한 성능의 급속충전이 가능한 하이브리드 전지를 개발했다고 25일 밝혔다. 연구팀은 현재 전극 물질로 가장 많이 사용되고 있는 금속 산화물보다 전도성이 좋은 *다가의 금속 황화물을 양쪽의 전극 물질로 활용했다. 그리고 표면적이 높은 메조 다공성의 전극 구조를 기반으로 높은 에너지 밀도와 고출력을 갖는 하이브리드 수계 이온 에너지 저장 소재를 구현했다. ☞*전자를 잃고 (+)전기를 띄고 있는 상태를 말한다. 예를 들어 2+ 는 2가 이온으로 전자를 2개, 3+ 는 3가 이온으로 전자를 3개 잃어버린 상태다. 이 기술은 현재 주로 사용되는 리튬 이온 배터리 및 다른 수계 배터리보다 안전성 및 경제성 등에서 우수성을 가져 급속충전이 필요한 휴대용 전자기기 및 안전이 중요시되는 상황에서 배터리 사용 등에 적용할 수 있을 것으로 기대된다. 강정구 교수 연구팀의 이번 연구 결과는 재료 분야 국제 학술지 `어드밴스드 에너지 머터리얼즈(Advanced Energy Materials, IF 25.245)' 2월 9일 字에 게재됐다. (논문명: Mesoporous thorn-covered core-shell cathode and 3D reduced graphene oxide aerogel composite anode with conductive multivalence metal sulfides for high-performance aqueous hybrid capacitors) 현재 리튬 이온 배터리는 대표적인 에너지 저장 시스템으로 에너지 밀도가 높다는 장점이 있다. 그러나 배터리 발화와 전해액 누출 같은 안정성 문제 및 리튬 광물의 높은 가격, 이온의 느린 삽입/탈리과정에 의한 낮은 출력 특성과 짧은 수명 등의 문제가 있어 많은 개선이 필요하다. 반면 물에서 작동하는 금속 산화물 기반 에너지 저장 소자는 안전하고 친환경적이며 가격이 상대적으로 매우 저렴하고 전해질 이온이 전극 물질의 표면에서만 반응해 빠른 충전-방전이 가능하다는 장점이 있다. 따라서 리튬 이온을 대체하면서 기존의 문제점을 극복할 수 있는 차세대 에너지 저장 소자로 주목받고 있다. 하지만 기존의 전기 전도성이 낮은 금속 산화물은 충전/방전 속도 면에서 성능이 떨어졌고 질량 당 표면적이 낮아 많은 양의 이온이 반응하지 못하면서 고용량을 구현하기에 어려움이 있었다. 이에 강정구 교수 연구팀은 전도성이 금속 산화물보다 100배 정도 높은 다가의 금속 황화물을 수계 에너지 저장 시스템의 각각 양극과 음극의 전극 물질로 활용해 고용량과 고출력의 성능을 달성했다. 양극 물질로 쓰인 니켈 코발트 황화물과 음극 물질로 쓰인 철 황화물은 모두 두 개의 산화수 상태로 존재해 작동 전압 범위 내에서 더 풍부한 레독스 반응을 일으켜 고용량을 달성할 수 있는 물질로 알려져 있다. 양극 물질은 표면이 가시로 둘러싸인 메조 다공성 코어-쉘 구조로 표면이 30nm(나노미터) 크기의 니켈 코발트 황화물 나노입자들로 이루어져 있어서 표면적이 높고 이온 확산 통로가 풍부하게 존재해 수계 이온 기반 에너지 저장 시스템에서 고용량과 고출력의 에너지 저장성능을 달성했다. 또한 음극 물질은 환원된 산화 그래핀이 쌓이지 않고 무질서하게 엉킨 3D 환원된 산화 그래핀 에어로젤 구조를 뼈대로 삼고 30nm(나노미터) 크기의다가의 철 황화물 나노입자들이 무수히 올려져 있는 구조로서 역시 풍부한 나노입자에 의해 활성 표면적이 높고 3D 그래핀 구조가 가지고 있는 이온 확산 통로 덕분에 높은 출력의 에너지 저장이 가능하다. 이러한 풍부한 메조 다공성의 이온 확산 통로가 있는 구조는 전해질 이온이 빠른 속도로 전극 깊숙이 빠른 침투가 가능해 고출력의 충전-방전 속도를 나타낼 수 있어 고출력 에너지 요구에 응할 수 있다. 또한 모든 활성물질이 나노입자로 이루어져서 기존의 표면적이 낮은 금속 산화물 전극의 낮은 용량의 문제를 해결했다. 이 수계 하이브리드 저장 소자는 기존의 수계 배터리에 비해 같은 수준의 저장용량을 유지하면서 100배 이상의 높은 에너지 저장용량을 보이며 기존의 리튬이온 배터리보다 높은 빠른 출력 밀도를 보인다. 또한 고용량으로 수십 초 내 급속충전이 가능해 안전성이 요구되는 여러 에너지 저장 시스템에 활용 가능할 것으로 기대된다. 강 교수는 "친환경적인 이 기술은 물에서 작동해 전해액 누출 및 화재의 위험성이 없어 안전성이 뛰어나고 리튬을 이용하지 않아 저비용으로 제작할 수 있고 활용성이 뛰어나다ˮ라고 소개하면서 "표면에서의 빠른 화학반응을 이용한 고 표면적의 전극 물질을 이용해 기존보다 높은 전력 밀도와 에너지 밀도를 갖는 시스템 구현이 가능하므로 수계 에너지 저장 장치의 상용화에 이바지할 것이다ˮ고 말했다. 한편 이번 연구는 과학기술정보통신부 글로벌프론티어사업의 하이브리드인터페이스기반 미래소재연구단과 수소에너지 혁신기술사업의 지원을 받아 수행됐다.
2021.02.25
조회수 92827
세계 최고 수명을 지닌 불타지 않는 ESS(에너지저장시스템) 수계전지 개발
우리 대학 생명화학공학과 김희탁 교수(나노융합연구소 차세대배터리센터) 연구팀이 아연 전극의 열화 메커니즘을 규명하고 이를 해결함으로써 전 세계에서 보고된 모든 레독스 흐름 전지 가운데 가장 오래가는 수명을 가지는 수계 아연-브롬 레독스 흐름 전지 개발에 성공했다고 5일 밝혔다. 생명화학공학과 이주혁 박사과정이 제1 저자로 참여한 이번 연구는 국제 학술지 `Energy and Environmental Science'에 최근(9월) 게재되는 한편 표지논문으로 선정됐다. (논문명: Dendrite-free Zn electrodeposition triggered by interatomic orbital hybridization of Zn and single vacancy carbon defects for aqueous Zn-based flow batteries) 최근 들어 신재생에너지의 간헐성을 보완하고 전력 피크 수요를 충당하기 위해 신재생에너지 및 심야 전력을 대용량으로 저장, 필요할 경우 저장된 에너지를 설비에 공급함으로써 에너지 이용 효율을 높일 수 있는 에너지저장시스템(Energy storage systems, 이하 ESS) 기술이 각광받고 있다. 현재 대부분의 ESS는 값이 저렴한 `리튬이온전지' 기술을 채택하고 있지만, 리튬이온전지는 태생적으로 발화로 인한 화재 위험성 때문에 대용량의 전력을 저장하는 ESS에는 적합하지 않다는 지적을 받아왔다. 실제 2017년~ 2019년까지 2년간 국내에서 발생한 리튬이온전지로 인한 ESS 화재사고 33건 가운데 가동이 중단된 곳은 전체 중 35%에 달한다. 현재까지 집계된 손해액만도 약 7,000억 원 이상으로 추정되고 있다. 따라서 최근에는 배터리 과열 현상을 원천적으로 차단할 수 있는 수계(물) 전해질을 이용한 *레독스 흐름 전지가 큰 주목을 받고 있다. 특히, 초저가의 브롬화 아연(ZnBr2)을 활물질로 이용하는 아연-브롬 레독스 흐름 전지는 다른 수계 레독스 흐름 전지와 비교할 때 높은 구동 전압과 함께 에너지 밀도를 높일 수 있고, 가격이 싸다는 장점 때문에 70년대부터 ESS용으로 개발돼왔다. ☞ 레독스 흐름 전지(Redox flow battery): 레독스 흐름 전지는 양극 및 음극 전해액 내에 활물질을 녹여서 외부 탱크에 저장한 후 펌프를 이용해 전극에 공급하면 전극 표면에서 전해액 내의 활성 물질의 산화·환원 반응을 이용해 에너지는 저장하는 전지이다. 문제는 아연-브롬 레독스 흐름 전지의 경우 아연 음극이 나타내는 짧은 수명 때문에 상용화가 지연되고 있다는 점이다. 특히 아연 금속이 충·방전 과정 중에 보이는 불균일한 돌기 형태의 *덴드라이트 형성은 전지의 내부 단락을 유발해 수명을 단축하는 주요 원인으로 지적되고 있다. 현재 덴드라이트 형성 메커니즘은 명확히 규명되진 않고 있지만 충전 초기 전극 표면에 형성되는 아연 핵의 불균일성 때문일 것으로 전문가들은 추정하고 있다. 이런 문제 해결을 위해 그동안 균일한 핵의 생성을 유도하는 기술이 경쟁적으로 개발돼왔으나, 여전히 충분한 수명향상 효과를 얻지 못하고 있다. ☞ 덴드라이트(Dendrite): 아연 이온이 환원되어 금속 전극 표면에 증착될 때, 금속 표면 일부에서 비정상적으로 성장하는 나뭇가지 형태의 결정. 김희탁 교수 연구팀은 낮은 표면에너지를 지닌 탄소 전극 계면에서는 아연 핵의 `표면 확산(Surface diffusion)'을 통한 `자가 응집(Self-agglomeration)' 현상이 발생한다는 사실에 주목하고 양자 역학 기반의 컴퓨터 시뮬레이션과 전송 전자 현미경 분석을 통해 자가 응집 현상이 아연 덴드라이트 형성의 주요 원인임을 규명하는 데 성공했다. 연구팀은 이와 함께 특정 탄소결함구조에서는 아연 핵의 표면 확산이 억제되기 때문에 덴드라이트가 발생하지 않은 사실을 발견했다. 탄소 원자 1개가 제거된 단일 빈 구멍 결함(single vacancy defect)은 아연 핵과 전자를 교환하며, 강하게 결합함으로써 표면 확산이 억제되고 균일한 핵생성 또는 성장을 가능하게 한다. 김 교수 연구팀은 고밀도의 결함 구조를 지닌 탄소 전극을 아연-브롬 레독스 흐름 전지에 적용해, 리튬이온전지의 30배에 달하는 높은 충·방전 전류밀도(100 mA/cm2)에서 5,000 사이클 이상의 수명 특성을 구현하는데 성공했다. 연구팀 관계자는 지금까지 다양한 레독스 흐름 전지에 대해 보고된 결과 중 가장 뛰어난 수명성능을 지닌 전지라는 점을 강조했다. 우리 대학 나노융합연구소 차세대배터리센터장 김희탁 교수는 "차세대 수계 전지의 수명 한계를 극복하기 위한 새로운 기술을 제시한 게 이번 연구의 성과”라면서 "기존 리튬이온전지보다 저렴할 뿐만 아니라 에너지 효율 80% 이상에서 5,000 사이클 이상 구동이 가능하다는 점에서 신재생에너지의 확대 및 ESS 시장 활성화에 기여할 것”이라고 밝혔다. 한편 이번 연구는 우리 대학 나노융합연구소와 과학기술정보통신부의 지원을 받아 수행됐다.
2020.10.05
조회수 30201
<<
첫번째페이지
<
이전 페이지
1
>
다음 페이지
>>
마지막 페이지 1