본문 바로가기
대메뉴 바로가기
KAIST
연구뉴스
유틸열기
홈페이지 통합검색
-
검색
메뉴 열기
%EC%8B%A4%EC%9A%A9%ED%99%94
최신순
조회순
박정기 교수팀, 빛에 의해 움직이는 고분자를 이용한 나노광학소자 신기술 개발
- 빛으로 나노광학구조의 모양과 크기를 자유자재로 제어할 수 있는 리소그래피 방법 세계 최초 개발- 회절한계를 극복한 영역에서 빛을 다룰 수 있는 나노광학구조로 분자 탐지 및 양자컴퓨터의 실용화 길 열어 생명화학공학과 박정기(朴丁基, 58) 교수팀이 조사되는 빛의 조건을 정교하게 조절하여 모양과 크기가 자유자재로 제어될 수 있는 고분자 나노패턴을 만들고 이를 형틀로 이용해 회절한계를 극복한 영역에서 빛을 다룰 수 있는 나노광학구조를 모양과 크기를 자유롭게 조절하면서 대면적으로 손쉽게 만들 수 있는 방법을 최근 개발했다. 이번 연구결과는 ‘방향성 광유체화 리소그래피를 이용한 모양과 크기가 제어된 나노구조체 제작(Directional Photofluidization Lithography for Nanoarchitectures with controlled shapes and sizes)"이라는 제목으로 나노과학 및 기술 분야의 최고 권위지인 나노 레터스(Nano Letters) 온라인판에 17일 게재됐다. 현재 관련기술은 국내.외 특허 출원중이다. 이번 연구는 교육과학기술부의 21세기 프론티어연구사업단 산하 나노소재기술개발사업단의 지원을 받아 박정기교수 연구실의 주도하에 KAIST 물리학과 이용희 교수, 신종화 박사, 미국 스탠포드대 샨휘 판(Shanhui Fan)교수 등의 공동연구로 이뤄졌다. 지금까지 개발된 나노광학소자 제작 방법은 구조의 모양과 크기, 두 가지를 동시에 그리고 대면적으로 균일하게 제어하는 것이 어려웠다. 특히 10nm 이하의 초미세 영역에서 구조의 모양과 크기를 대면적으로 제어하는 것은 미세구조체 제작 연구 분야에서 달성하기 어려운 과제로 인식되어 왔다. 박교수팀은 빛을 받았을 때 움직이는 고분자를 이용해 이 문제를 해결했다. 고분자 선모양 패턴에 빛을 조사해주면 고분자의 광유체화 현상이 발생해 조사된 빛의 편광 방향에 평행하게 고분자가 이동을 한다. 따라서 고분자의 선패턴 사이의 간격을 나노영역까지 손쉽게 줄일 수 있다. 또한 빛을 부분적으로 조사해주면 원하는 지역에서만 고분자의 광유체화 현상을 발생시켜 원하는 모양의 고분자 나노구조체를 제작할 수 있다. (그림1 참조) 박교수팀은 이를 이용해 양끝이 뽀족한 유선형 모양의 나노안테나를 대면적으로 제작하는데 성공했다. 나노안테나는 현재 일반적으로 이용되고 있는 안테나를 나노크기로 줄인 소자이며 양 끝을 뾰족하게 처리해야만 빛 증폭 효과를 극대화시킬 수 있다. 나노안테나는 회절한계를 극복한 영역에서 빛을 증폭시킬 수 있는 소자로서 광자컴퓨터 및 광자 분자 탐지를 위한 센서와 같은 첨단 광학소자 개발을 위한 가장 핵심적인 요소로 인식되고 있는 기술 중의 하나다. 박교수팀은 같은 원리를 이용해 대면적에 고집적화된 나노선 제작에도 성공했으며 이를 이용한 나노트랜지스터, 양자메모리, 양자디스플레이 등 첨단전자 소자개발에도 새로운 가능성을 보여줬다. 박 교수는 “첨단 광학소자의 필수 요소인 나노안테나 및 나노선 뿐만 아니라 수나노 크기의 대면적 초미세 소자 가능성을 새롭게 열었기 때문에 그 동안 접근하지 못했던 분자 수준의 소자 제작을 가능하게 해줄 것으로 기대된다”며 “실용적 소자 제작과 더불어 초미세 영역의 기초 물리 및 화학 연구에도 새로운 전기가 될 것”이라고 말했다. 이 논문의 제1저자인 이승우(李承祐, 27)연구원은 “이번 연구결과를 토대로 앞으로 광자컴퓨터 및 메모리와 같은 나노광학소자 실용화를 앞당길 수 있는 실제 소자제작 연구를 진행할 것”이라고 말했다.
2009.12.21
조회수 19801
윤춘섭 교수, 世界 最高 출력 청색 고체레이저 개발
- 레이저 디스플레이 실용화 난제 해결, 가정용 TV에서 대형전광판까지 화질의 혁명 열날 머지않아 디스플레이 기술의 완결판으로 일컬어지는 차세대 레이저 디스플레이의 핵심광원인 청색 고체레이저가 世界 最高 출력으로 개발되었다. KAIST(한국과학기술원) 물리학과 윤춘섭(尹椿燮, 54) 교수팀이 LG전자와 공동으로 개발한 청색 레이저는 청색의 색감도가 가장 높은 456nm(나노미터) 파장에서 cw(연속파) 1.7W(와트)의 세계 최고출력을 달성하였다. 지금까지 개발된 456nm 파장의 청색 레이저는 2002년 독일 함부르크(Hamburg)대학에서 달성한 0.84W가 최고 출력이었지만 레이저 디스플레이의 실용화에 필요한 2W 수준에는 미치지 못하였다. 이번에 개발된 청색 레이저는 TEMoo(횡모드oo, Transverse Electro Magnetic)의 단일 모드이고, 레이저 헤드의 크기가 4×4×10 cm3의 소형이며 출력 안정도가 ±1% 이내의 매우 우수한 특성을 보유하고 있다. 레이저 디스플레이는 빛의 삼원색인 청, 녹, 적색의 레이저를 광원으로 사용하여 이들 세 가지 색을 주사방식에 의해 적절한 비율로 혼합함으로써 모든 종류의 자연광을 낼 수 있는 장점을 가지고 있다. 따라서 레이저 디스플레이는 선명도, 색구현, 색대비, 휘도, 화면크기에서 픽셀(화소, Pixel) 방식을 사용하는 CRT, LCD, PDP 등 타 디스플레이 기술의 추종을 불허하는 차세대의 궁극적인 디스플레이 기술로 인식되고 있으며, 일본의 Sony, 미국의 Laser Power Corporation, 독일의 Laser Display Technologie 등 선진 디스플레이 강국이 수면 하에서 치열하게 기술 개발을 진행시키고 있다. 고휘도, 대화면 레이저 디스플레이의 실용화를 위해서는 레이저의 출력이 청색 2W, 녹색과 적색이 3W 이상 이고, 출력 안정도가 ±3% 이내 이어야 한다. 삼원색 광원 중 적색은 적색 고출력 레이저 다이오드를 사용하고, 녹색은 기존 네오디뮴 레이저의 1064 nm 파장을 2차 조화파인 532 nm 파장으로 변환시켜 고출력으로 얻는데 별 문제가 없다. 그러나 청색 파장의 기본파 레이저는 3준위(레벨) 레이저로서 4준위 녹색 레이저와는 달리 상온에서 첫 번째 들뜬 상태 에너지 준위에서의 밀도 분포와 재흡수로 인해 2W급의 고출력을 내는 것이 어려웠다. 이는 레이저 디스플레이의 실용화를 가로막는 가장 큰 장애 요인이 되어 왔는데, 尹교수팀의 2W급 고출력 청색 레이저 개발의 의미는 이러한 장애 요인을 제거하여 레이저 디스플레이의 실용화를 가능케 한다는데 있다. 금번 개발된 2W 급 고출력 청색 레이저 기술은 차세대, 고화질, 대화면 레이저 디스플레이에서 국제적으로 월등히 유리한 위치를 점할 것으로 예상 된다. -------------------- * 고출력 청색 레이저 개발의 의미 디스플레이 기술의 완결판으로 일컬어지는 고선명도, 고색감도, 고휘도, 대화면 레이저 디스플레이는 빛의 삼원색인 청, 녹, 적색의 고출력 레이저 광원이 필수적인데, 이를 위한 cw(연속파) 고출력 녹색 및 적색 레이저는 이미 개발되었으나, 고출력 청색 레이저가 개발되지 못해 레이저 디스플레이 실용화에 가장 큰 장애 요인이 되어 왔다. 최근까지 청색의 색감도가 가장 높은 456 nm 파장의 청색 레이저는 0.84W가 세계 최고 출력이었고, 이는 레이저 디스플레이의 실용화에 요구되는 2W급에 훨씬 못 미치는 수준이다. 따라서 이번 KAIST 물리학과 윤춘섭 교수팀의 2W급 고출력 청색 레이저 개발의 의미는 이러한 장애 요인을 제거하고 레이저 디스플레이의 실용화를 가능케 한다는데 있다.
2004.03.04
조회수 21804
<<
첫번째페이지
<
이전 페이지
1
>
다음 페이지
>>
마지막 페이지 1