-
김희탁, 김신현 교수, 물과 기름에 젖지 않는 대면적 표면 개발
〈 최재호 박사과정, 김희탁 교수, 김신현 교수 〉
우리 대학 생명화학공학과 김희탁, 김신현 교수 공동 연구팀이 물과 기름 등에 젖지 않는 저렴한 대면적 표면을 개발했다.
이 기술은 아조고분자의 광유체화 현상을 이용해 초발수성, 초발유성(Super-omniphobic: 물과 기름 등에 젖지 않는 특성) 막을 개발한 것으로 얼룩 및 부식 방지막 개발 등에 다양하게 응용될 것으로 기대된다.
최재호 박사과정이 1저자로 참여한 이번 연구 결과는 나노기술분야 국제학술지 ‘에이씨에스 나노(ACS Nano)’ 8월호에 게재됐다.
이중요각구조체는 버섯 모양의 구조체를 가진 표면을 뜻한다. 이를 통해 물과 기름처럼 표면에너지가 낮은 액체에 대해 젖지 않는 초발수성, 초발유성(Super-omniphobic)을 갖는다.
하지만 이중요각구조체는 매우 정교한 구조이기 때문에 기존 제작 방식은 여러 단계의 복잡한 공정을 거쳐
야 한다는 단점과 더불어 유연하지 않고 비싼 실리콘 물질 정도만을 제작할 수 있다는 한계가 있었다.
연구팀은 다른 방식으로 이중요각구조체를 제작하기 위해 아조고분자의 독특한 광학적 특성인 국부적 광유체화 현상에 주목했다. 광유체화 현상은 아조고분자가 빛을 받으면 마치 액체처럼 유체화가 되는 현상을 말한다.
이 유체화는 빛을 흡수하는 아조고분자 표면의 얇은 층에서만 부분적으로 일어난다. 연구팀은 이 광유체화 현상을 아조고분자 원기둥 구조에서 일어나게 해 원기둥 윗부분 표면만 선택적으로 흘러내리는 방식으로 버섯 모양의 이중요각구조체를 형성했다.
연구팀이 제작한 구조체의 표면은 매우 낮은 표면에너지를 갖는 액체, 즉 핵산과 같이 표면에 금방 스며들려는 특성을 갖는 액체에도 뛰어난 초발수성, 초발유성을 갖는다. 이 특성은 표면 물질이 고분자 기반이기 때문에 구부러진 상태에서도 유지될 수 있다.
또한 연구팀의 구조체 제작은 아조고분자 원기둥 구조의 틀을 잡고 빛을 조사하는 정도의 간단한 과정만 거치기 때문에 경제적, 실용적으로 큰 장점이 있다.
김희탁 교수는 “이번 연구에서 제안한 새로운 이중요각구조 제작방식을 통해 뛰어난 초발수성, 초발유성 특성을 갖는 표면을 쉽게 제작할 수 있을 것이다”며 “임의의 굴곡을 갖는 표면의 초발수, 초발유성 특성을 부여할 수 있어 생물오손방지 튜브, 얼룩부식 방지 표면 등 다양하게 응용 가능할 것이다”고 말했다.
김신현 교수는 “이번 연구에서 설계한 이중요각구조는 피부로 호흡하며 땅 속에 서식하는 곤충인 톡토기(springtail)의 피부 구조를 모방한 것으로 인간은 자연으로부터 배우고 공학적으로 창조한다는 사실을 다시 한 번 깨달았다”고 말했다.
이번 연구는 KAIST의 엔드 런(End-Run) 프로그램의 지원을 받아 수행됐다.
그림1. 버섯모양의 구조제작 모식도
그림2. 버섯모양 구조의 SEM 이미지
그림3. 다양한 액체들에 대해 superomniphobic 특성을 나타냄을 보여주는 이미지
2017.09.06
조회수 14031
-
김희탁 교수, 빛으로 물질 끌어올려 구조체 제작하는 기술 개발
〈 김희탁 교수 〉
우리 대학 생명화학공학과 김희탁 교수 연구팀이 새로운 형태의 임프린트 리소그래피 기술을 개발했다.
이 기술은 빛을 이용해 물질을 수직으로 끌어올려 마이크로-나노 구조체를 제작하는 방식으로 복잡하고 정교한 구조를 이전보다 훨씬 손쉽게 제작할 수 있을 것으로 기대된다.
최재호 박사과정이 1저자로 참여한 이번 연구는 나노기술분야 국제 학술지 ‘에이씨에스 나노(ACS Nano)’ 1월 12일자 온라인 판에 게재됐다.
임프린트 리소그래피란 모형을 마치 도장을 찍듯이 각인하고자 하는 물질에 찍어 마이크로-나노 구조체를 제작하는 기술이다. 경제적이고 손쉽게 마이크로-나노 구조 제작이 가능해 기존의 포토리소그래피 기술을 대체할 유망한 리소그래피 기술로 손꼽힌다.
그러나 열, 용매, 자외선 등을 필요로 하는 기존의 임프린트 리소그래피 기술은 물질을 수축시키는 특성이 있어 정확한 구조를 제작하기 어렵다는 한계가 있다.
연구팀은 문제 해결을 위해 가시광선 영역의 빛을 아조벤젠 고분자 물질에 조사했다. 이를 통해 아조벤젠 물질을 수직방향으로 끌어올려 마이크로-나노 구조체를 형성하는 새로운 형태의 광유도 임프린트 리소그래피 기술을 개발했다.
아조벤젠 물질은 빛이 편광하는 방향에 따라 액화돼 흐르는 독특한 특성을 갖는다. 이는 편광 방향을 조절한다면 아조벤젠 물질의 움직임을 통제할 수 있다는 뜻이다.
기존의 아조벤젠 물질을 이용한 구조체 제작은 수평 방향으로 흐르는 현상에만 주목해 수직방향으로의 유체화 현상에 대한 이해와 이를 이용한 구조 제어는 거의 이뤄지지 않았다.
연구팀은 아조벤젠 물질을 움직임을 수직방향으로 유도했다. 빛의 수직방향 편광 성분에 의해 수직으로 흐를 수 있게 만들었고 이 흐름이 각인된 모형의 빈 공간을 채우며 마이크로-나노 구조체를 형성하게 된다.
연구팀이 개발한 임프린트 리소그래피 기술은 기존 기술이 갖고 있던 물질의 수축 문제를 극복해 100 나노미터 이하의 나노 구조체까지 구현하는 데 성공했다. 또한 마이크로-나노 구조체가 결합된 다중 규모의 복잡하고 정교한 구조도 제작했다.
연구팀은 앞으로 수직방향의 아조벤젠 물질의 움직임을 이용해 여러 응용분야에 쓰일 정교하고 다양한 마이크로-나노 구조체를 쉽게 제작하는 데 크게 기여할 것이라고 예상했다.
김 교수는 “아조벤젠 물질이 수평방향으로만 물질 이동을 한다는 기존 틀을 깨고 수직방향 이동을 규명했다”며 “이를 이용해 한 층 진보된 형태의 임프린트 리소그래피를 선보였다는 데 의의가 있다”고 말했다.
이번 연구는 KAIST의 엔드-런(End-Run) 프로그램의 지원을 받아 수행됐다.
□ 그림 설명
그림1. 새로운 형태의 임프린트 리쏘그라피 공정 개요도
그림2. 본 기술을 통해 제작된 다양한 구조체
그림3. 복잡한 구조체를 제작한 데이터
2017.02.09
조회수 11320
-
빛으로 수리되는 전기회로 세계최초 개발
# 휘어지는 전자기기가 나오면서 금속 재질의 전기회로는 균열로 인한 불량이 발생할 가능성이 점점 높아지고 있다. 미세하면서도 구조가 복잡해 수리보다는 키트 단위로 부품을 교환하거나 고칠 수 없어 아예 못쓰게 되는 경우도 많다.
# 아이언맨과 같은 인간형 로봇이나 웨어러블 컴퓨터에 사용되는 금속전선은 지속적인 움직임으로 인해 끊어질 수 있기 때문에 상용화에 앞서 반드시 해결해야할 과제다.
우리 학교 생명화학공학과 박정기·김희탁 교수는 성균관대학교 성균나노과학기술원(SAINT) 이승우 교수와 공동으로 끊어진 전기회로에 레이저를 쪼여주면 단락된 부분이 원래 상태로 다시 붙어 전기가 통하게 되는 ‘빛을 이용한 자기회복 전기회로’를 세계최초로 개발했다.
개발된 회로는 주변에서 쉽게 구할 수 있는 발표용 레이저포인터를 2분 정도 조사하는 것만으로도 끊어진 부위를 처음처럼 완벽하게 수리할 수 있다. 휘고 접고 비틀어도 잘 작동되는 연성기판을 사용하기 때문에 플렉시블 전자기기나 웨어러블 컴퓨터는 물론 움직임 많은 인간형 로봇의 전선으로 적용해 단락 시 곧바로 수리할 수 있다.
최근 얇고 휘어지는 고집적회로를 내장한 전자기기 개발이 활발해짐에 따라 전기회로에 구부림 등 외부 자극으로 인해 내부 전기회로가 손상될 수 있다. 고밀도 회로가 적용된 탓에 고장 난 부분만 수리하기가 어려워 주로 모듈단위로 바꿔야하기 때문에 비싼 수리비용과 자원낭비 문제가 대두되고 있다.
연구팀은 조사되는 빛의 편광 방향과 나란하게 움직이는 아조고분자를 휘어지는 성질이 있는 연성필름에 코팅했다. 그 위에 전기전도도가 우수하며 손쉽게 합성이 가능한 은나노와이어(은으로 이루어진 나노사이즈 막대기)를 도포해 휘어지는 전기회로를 완성했다.
완성된 자기회복 전기회로를 테스트해보기 위해 연구팀은 회로에 인위적으로 균열을 만들어 단락시켰다. 회로가 끊어진 부분에 500mw/cm2(단위면적당 발광 에너지) 세기의 레이저 빛을 조사하자 아조고분자가 편광방향과 나란하게 움직였다. 이와 동시에 도포된 은나노와이어가 아조고분자와 같이 움직여 끊어진 부분이 다시 접착돼 단락된 전기전도도가 회복됐다.
박정기 KAIST 교수는 “플렉시블 전자기기의 전기회로 단락문제를 해결해 전자기기 사용수명을 연장시킬 수 있는 가능성을 제시했다”며 “영화 속 아이언맨도 탐낼만한 차세대 신기술”이라고 말했다.
이승우 성균관대학교 교수는 “기존 자기회복 전기회로 기술의 단점이었던 고온을 사용하거나 해로운 용매를 사용하는 것과 같은 복잡한 회복과정이 없다”며 “주변에서 쉽게 구할 수 있는 레이저를 쏘아주면 끊어진 전기전도도가 회복되는 전기회로를 세계 최초로 개발했다”고 이번 연구의 의의를 밝혔다.
한국연구재단이 추진하는 일반연구자사업의 지원을 받아 KAIST와 성균관대학교 교수진의 지도아래 KAIST 강홍석 박사과정 학생이 주도한 이번 연구는 재료 분야의 세계적 학술지 ‘어드밴스드 펑셔널 머티리얼스(Advanced Functional Materials)’ 9월 16일자로 실렸다.
1. 아조고분자 필름에 크랙을 인위적으로 발생시킨 후 빛을 조사해 크랙을 회복시키는 이미지. 조사한 빛은 크랙과 수직한 편광을 갖는 빛이다. 2분의 조사시간만으로도 크랙을 완전히 회복시킨다.
2. 끊어진 전기회로가 다시 접합되는 과정
①아조고분자 필름 위에 은나노와이어를 도포한 후 인위적으로 크랙을 발생시켜 전기전도도 단락을 일으킨다. ②빛을 조사하여 아조고분자의 이동을 유도한다. ③그 효과로 인해 도포된 은나노와이어를 끌고 이동시켜서 다시 은나노와이어 접착을 유도한다. ④단락된 전기전도도가 회복된다. (회복과정으로 인해 'K‘ 모양으로 배열된 전구에 빛이 다시 들어오는 것을 보여줌)
3. 은나노와이어가 도포된 아조고분자 필름의 연성특성 파악. 구부림, 꼬임 등에도 모두 전기전도도를 유지한다. 자기회복 과정을 거친 후에도 전기전도도 특성을 유지한다.
4. 제작한 자기 회복 필름의 웨어러블 기기 적용 가능성 파악. 장난감 손에 아래와 같이 회로를 연결한 후 반복적 구부림을 통해 전기전도도 단락을 시킨 다음 빛을 조사해 전기전도도를 회복할 수 있다.
2014.10.15
조회수 16592
-
이산화탄소 포집 효율을 획기적으로 향상시킨 물질 개발
- 질소대비 CO2 선택성 300배 증가, 네이처 커뮤니케이션즈 게재 -
우리 학교 WS 대학원의 자페르 야부즈 교수, 알리 조스쿤 교수, 정유성 교수 공동연구팀이 질소대비 이산화탄소 선택성을 300배 높인 세계 최고 수준의 CO2흡수제를 개발했다.
최근 전 세계적으로 기후변화 대응을 위한 현실적 대안으로 이산화탄소를 포집하여 저장․처리하는 CCS*기술의 중요성이 부각되고 있다.
* CCS : Carbon Capture and sequestration
현재 이산화탄소를 포집하는 기술로는 액상흡수제를 이용한 습식포집기술, 고체 흡수제를 이용한 건식포집기술, 필름과 같은 얇은 막을 이용하는 분리막 포집기술이 있다.
발전소, 제철소와 같이 이산화탄소 대량 배출원에 적용하게 되는 동 기술은 고온과 다량의 수분이 존재하는 극한조건하에서도 포집효율이 낮아지지 않는 것이 연구개발의 핵심과제이다.
기존에 연구되었던 건식흡수제인 MOF(Metal Organic Framework)나 제올라이트의 경우는 수분 조건에서 불안정하거나 합성이 비싸다는 단점이 존재하였다.
연구팀이 이번에 개발한 흡수제는 건식흡수제로서 ‘아조-코프(Azo-COP)’라고 명명하였는데 값비싼 촉매 없이도 합성이 가능하여 제조비용이 매우 저렴하며, 고온 및 수분 조건에서도 안정한 특성을 나타내었다.
코프(COP)는 간단한 유기분자들을 다공성 고분자형태로 결합시킨 구조체로 동 연구팀이 처음으로 개발한 건식 이산화탄소포집물질이다.
연구팀은 이물질에 ‘아조(Azo)’라는 기능기를 추가로 도입함으로써 질소를 배제하고 혼합기체 중에서 이산화탄소만을 선택적으로 포집하도록 하였다.
‘아조(Azo)"기를 포함하는 아조-코프(Azo-COP)는 일반적 합성방법을 통해 쉽게 제조하였으며, 값비싼 촉매대신 물과 아세톤 등의 용매를 사용해 불순물도 쉽게 제거함으로써 제조비용을 대폭 낮출 수 있었다.
특히, 아조-코프(Azo-COP)는 이산화탄소와 화학적 결합이 아닌 약한 인력을 통해 결합함으로써 흡착제 재생 에너지 비용을 혁신적으로 낮출 수 있으며,
350℃ 정도의 극한 조건에서도 안정해 이산화탄소 포집제로서 활용은 물론 더욱 가혹한 환경의 다양한 분야에서 포집 물질로 활용될 것으로 기대된다.
해당성과는 교과부 산하 (재)한국이산화탄소포집및처리연구개발센터(센터장 박상도) 및 KAIST EEWS 기획단의 지원으로 이루어졌다.
자페르 야부즈 교수와 알리 조스쿤 교수는“Azo-COP를 CO2, N2 분리 실험에 적용한 결과 포집 효율이 수백배 향상됐다”며 “이 물질은 촉매가 필요 없고, 수분 안정성, 구조 다양성 등 우수한 화학적 특성으로 인해 앞으로 이산화탄소 포집을 비롯한 많은 분야에 활용될 것으로 기대한다”고 밝혔다.
한편, 이번 연구 결과는 세계적 학술지인 ‘네이처’ 자매지 ‘네이처 커뮤니케이션즈’ 1월 15일자로 게재됐다.
2013.02.01
조회수 17470