본문 바로가기
대메뉴 바로가기
KAIST
연구뉴스
유틸열기
홈페이지 통합검색
-
검색
메뉴 열기
%EC%96%B4%EB%93%9C%EB%B0%B4%EC%8A%A4%EB%93%9C+%ED%8E%91%EC%85%94%EB%84%90+%EB%A8%B8%ED%8B%B0%EB%A6%AC%EC%96%BC%EC%A6%88
최신순
조회순
전자기기 도움 없이 실시간 체온 모니터링 가능한 초고감도 센서 개발
우리 대학 신소재공학과 김일두 교수 연구팀이 온도에 감응하는 색 변화 염료를 전기방사 기술을 통해 나노섬유 멤브레인(얇은 막)에 적용해 인간의 체온(31.6~42.7℃)을 색 변화를 통해 육안으로 손쉽게 감지할 수 있는 초고감도 센서 플랫폼을 개발했다. 색 변화식 센서는 오직 육안으로 센서의 물리화학적 변화(온도, pH 등)를 감지할 수 있어 사용이 편리한 장점이 있다. 하지만, 기존의 상용화된 필름(film) 타입의 온도 감응 색 변화 센서는 염료의 색상이 필름 내부에 갇혀 외부로 효과적으로 전달되지 않아 색 변화 감도가 낮다는 단점이 있다. 이러한 한계를 극복하고자 본 연구팀은 넓은 비표면적과 높은 기공도를 나타내는 나노섬유 멤브레인에 온도 감응 색염료를 효과적으로 결착해 기존의 필름 타입의 색 변화 멤브레인 대비 인간의 체온 범위의 온도에서 색 변화 민감도를 최대 5배 이상 높일 수 있는 기술을 개발했다. 이 기술로 개발된 센서는 특히 휴대가 가능한 개인 헬스케어 진단기기로 별도의 전자기기의 도움 없이 실시간 체온 모니터링이 가능한 센서다. 전기방사 기술을 이용해 합성된 다공성 나노섬유 멤브레인은 필름 타입의 센서 대비 매우 높은 기공도(~95%)와 10배 이상 높은 빛 투과율을 나타내기 때문에 나노섬유 멤브레인에 결착된 염료의 색을 효과적으로 외부로 전달할 수 있어, 연구팀은 색 변화 센서 감도를 극대화할 수 있음을 확인했다. 연구팀은 이번 연구에서 기존에 주로 보고됐던 무정렬(random) 나노섬유 멤브레인 뿐만 아니라 전기장을 조절해 정렬(aligned)된 나노섬유 멤브레인 및 개별 섬유 가닥들이 초고밀도로 나선상으로 꿰어진 나노섬유 얀(yarn) 구조의 온도 감응형 색 센서를 제조하는 데 성공했다. 연구팀은 나노섬유의 밀도와 기공 구조를 더욱 세밀하게 조절해 색 변화 강도를 한층 더 높일 수 있다. 연구를 주도한 김일두 교수는 "기존에 활용되는 필름 타입의 멤브레인이 아닌 진보된 전기방사 기법을 도입함으로써, 나노섬유 멤브레인의 밀도와 정렬 방향을 조절해 온도 감응 색 변화 센서의 반응성을 극대화할 수 있었다ˮ며 "정렬된 나노섬유 및 얀 타입의 나노섬유 멤브레인을 활용해 마스크, 팔찌, 또는 몸에 붙이는 패치(patch) 타입의 웨어러블 온도 감응 색 변화 센서로 활용 가능성을 제시했다는 측면에서 매우 의미가 있는 연구 결과ˮ라고 말했다. 그리고 "저비용, 대량생산이 가능한 전기방사 기법을 활용했기 때문에 상용화 가능성이 큰 기술이며, 누구나 손쉽게 스스로 체온을 육안으로 진단할 수 있는 자가 진단 기기의 진보는 개인의 지속적인 건강관리에 큰 도움이 될 것이다ˮ고 밝혔다. 이번 연구는 공동 제1 저자인 우리 대학 신소재공학과 김동하 박사(現 MIT 박사후 연구원)와 배재형 박사(우리 대학 신소재, 現 하버드 대학 박사후 연구원)의 주도하에 진행됐으며, 우리 대학 신소재공학과 김일두 교수가 교신저자로 참여했다. 이번 연구 결과는 나노 분야의 권위적인 학술지 `어드밴스드 펑셔널 머티리얼즈(Advanced Functional Materials)' 6월호에 앞 표지 논문으로 선정됐다.
2022.06.30
조회수 5420
김용훈 교수, 페로브스카이트 나노선 기반 소자 구현방안 제시
〈 이주호 박사과정, 무하메드 칸 박사후 연구원, 김용훈 교수 〉 우리 대학 전기및전자공학부 김용훈 교수 연구팀이 저차원 페로브스카이트 나노소재의 새 물성을 밝히고 이를 이용한 새로운 비선형 소자 구현 방법을 제시했다. 연구팀은 최근 태양전지, 발광다이오드(LED) 등 광소자 응용의 핵심 요소로 주목받는 페로브스카이트 나노소재가 차세대 전자 소자 구현에도 유망함을 증명했다. 또한 초절전, 다진법 전자 소자 구현에 필요한 부성 미분 저항 소자를 구현하는 새로운 이론적 청사진을 제시했다. 무하메드 칸(Muhammad Ejaz Khan) 박사후연구원과 이주호 박사과정이 공동 1저자로 참여한 이번 연구는 국제 학술지 ‘어드밴스드 펑셔널 머티리얼즈(Advanced Functional Materials)’ 1월 7일자 온라인판에 게재됐고, 표지논문으로 선정돼 출간될 예정이다.(논문명 : Semimetallicity and negative differential resistance from hybrid halide perovskite nanowires, 하이브리드 할로겐화 페로브스카이트 나노선에서의 준금속성과 부성미분저항 발현) 유무기 하이브리드 할로겐화 페로브스카이트 물질은 우수한 광학적 성능뿐만 아니라 저비용의 간편한 공정으로 제작할 수 있어 최근 태양전지 및 LED 등 다양한 광소자 응용 분야에서 주목받고 있다. 그러나 할로겐화 페로브스카이트의 전자 소자 응용에 관한 연구는 세계적으로도 아직 부족한 상황이다. 김 교수 연구팀은 최근 새롭게 제조 기술이 개발되고 양자효과가 극대화되는 특성을 가진 저차원 유무기 할로겐화 페로브스카이트 물질에 주목했다. 연구팀은 슈퍼컴퓨터를 활용해 우선 1차원 페로브스카이트 나노선의 유기물을 벗겨내면 기존에 보고되지 않은 준 금속성 특성을 발현할 수 있다는 것을 발견했다. 이 1차원 무기 틀을 전극으로 활용해 단일 페로브스카이트 나노선 기반의 터널링 접합 소자를 제작하면 매우 우수한 비선형 부성미분저항(negative differential resistance, NDR) 소자를 구현할 수 있음을 확인했다. 부성미분저항은 일반적인 특성과는 반대로 특정 구간에서 전압이 증가할 때 전류는 오히려 감소해 전류-전압 특성 곡성이 마치 알파벳 ‘N’모양처럼 비선형적으로 나타나는 현상을 말한다. 차세대 소자 개발의 원천기술 이 되는 매우 중요한 특성이다. 연구팀은 나아가 이 부성미분저항 특성은 기존에 보고된 바 없는 양자 역학적 혼성화(quantum-mechanical hybridization)에 기반을 둔 새로운 부성미분저항 원리에 기반함을 밝혀냈다. 연구팀은 저차원 할로겐화 페로브스카이트의 새로운 구조적, 전기적 특성을 규명했을 뿐 아니라 페로브스카이트 기반의 터널링 소자를 이용하면 획기적으로 향상된 부성미분저항 소자 특성을 유도할 수 있음을 증명했다. 김 교수는 “양자역학에 기반한 전산모사가 첨단 나노소재 및 나노소자의 개발을 선도할 수 있음을 보여준 연구이다”라며 “특히 1973년 일본의 에사키(Esaki) 박사의 노벨상 수상 주제였던 양자역학적 터널링 소자 개발의 새로운 방향을 제시한 연구이다”라고 말했다. 이번 연구는 미래창조과학부 중견연구자지원사업, 나노소재원천기술개발사업, 기초연구실지원사업, 글로벌프론티어사업의 지원을 받아 수행됐다. □ 그림 설명 그림1. 어드밴스드 펑셔널 머티리얼즈 표지 그림2. 연구개요
2019.02.21
조회수 18610
최성율, 박상희 교수, 전자기기용 저전력 멤리스터 집적회로 개발
우리 대학 전기및전자공학부 최성율 교수와 신소재공학과 박상희 교수 공동 연구팀이 메모리와 레지스터의 합성어인 멤리스터(Memristor)를 이용해 저전력 비휘발성 로직-인-메모리 집적회로를 개발했다. 레지스터, 커패시터, 인덕터에 이어 4번째 전자 회로 소자인 멤리스터를 통한 기술로 새로운 컴퓨팅 아키텍처(하드웨어와 소프트웨어를 포함한 컴퓨터 시스템 전체 설계방식)를 제공할 수 있을 것으로 기대된다. 장병철, 남윤용 박사과정이 공동 1저자로 참여한 이번 연구는 재료분야 국제 학술지 ‘어드밴스드 펑셔널 머티리얼즈(Advanced Functional Materials)’ 1월 10일자 표지 논문으로 게재됐다. 4차 산업혁명 시대는 사물인터넷, 인공지능 등의 정보통신 기술 기반을 통해 발전되고 있으며 이는 사용자 친화적인 유연, 웨어러블 기기를 활용해 제공될 것으로 보여진다. 이러한 측면에서 저전력 배터리를 기반으로 한 소프트 전자기기의 개발에 대한 필요성이 커지고 있다. 하지만 기존 트랜지스터로 구성된 메모리와 로직회로 기반의 전자 시스템은 문턱전압 이하 수준의 트랜지스터 누설 전류(subthreshold leakage current)에 의한 대기전력 소모로 인해 휴대용 전자기기로의 응용에 한계가 있었다. 또한 기존 메모리와 프로세서가 분리돼 있어 데이터를 주고받는 과정에서 전력과 시간이 소모되는 문제점도 있었다. 연구팀은 문제 해결을 위해 정보의 저장과 로직 연산 기능을 동시에 구현할 수 있는 로직-인-메모리 집적회로를 개발했다. 플라스틱 기판 위에 비휘발성의 고분자 소재를 이용한 멤리스터, 산화물 반도체 소재를 이용한 유연 쇼트키 다이오드 선택소자(Schottky Diode Selector)를 수직으로 집적해 선택소자와 멤리스터가 일대일로 짝을 이루는 1S-1M 집적소자 어레이를 구현했다. 연구팀은 기존의 아키텍처와는 달리 대기 전력을 거의 소모하지 않는 비휘발성 로직-인-메모리 집적회로를 구현해 새로운 컴퓨팅 아키텍처를 개발했다. 또한 어레이 상에서 소자 간에 흐르는 스니크(sneak) 전류라고 불리는 누설 전류 문제도 해결했다. 그 밖에도 연구팀의 기술은 병렬 컴퓨터 방식인 하나의 명령어로 여러 값을 동시에 계산하는 단일 명령 다중 데이터 처리(Single-Instruction Multiple-Data, SIMD)를 구현했다. 최 교수는 “멤리스터와 선택소자의 집적을 통해 유연한 로직-인-메모리 집적회로를 구현한 이번 연구는 유연성과 저전력성을 가진 메모리와 로직을 동시에 제공한다”며 “모바일 및 웨어러블 전자시스템의 혁신을 가져 올 수 있는 원천기술을 확보했다는 의의를 갖는다”고 말했다. 이번 연구는 과학기술정보통신부 한국연구재단이 추진하는 글로벌프론티어사업 등의 지원을 받아 수행됐다. □ 그림 설명 그림1. 저널에 게재된 표지논문 사진 그림2 유연 멤리스티브 비휘발성 로직-인-메모리 회로와 소자 단면 고해상도 투과전자현미경 이미지 그림3. 비휘발성 메모리 소자 응용을 위한 인가전압에 따른 소자 성능 확인 그림4. 유연 1S-1M 집적 소자 어레이의 병렬 로직 연산
2018.02.13
조회수 18178
오일권 교수, 그래핀 기반의 소프트 액추에이터 개발
〈 타바시안 라솔 박사과정, 오 일 권 교수 〉 우리 대학 기계공학과 오일권 교수 연구팀이 두 개의 서로 상반된 그래핀 구조체를 전극으로 사용해 소프트 액추에이터(작동장치)의 성능을 높이는데 성공하였다. 연구팀이 이번 연구를 통해 제작한 액추에이터는 웨어러블 전자기기, 소프트 로봇 등의 분야에서 사용 가능할 것으로 기대된다. 타바시안 라솔(Tabassian Rassoul) 박사과정이 1저자로 참여한 이번 연구는 온라인 국제 학술지 ‘어드밴스드 펑셔널 머티리얼즈(Advanced Functional Materials)’ 1월 31일자에 게재됐으며 표지논문에 선정됐다. 차세대 전자기기에 능동형 소프트 액추에이터를 적용하기 위해서는 액추에이터의 전극이 유연성, 높은 전기 전도성 및 전기 화학적 활성, 내구성 등을 갖는 동시에 높은 효율성을 가져야 한다. 하지만 기존의 소프트 액추에이터는 백금 또는 금 등의 고가 귀금속이 사용됐기 때문에 실제 적용이 어려웠다. 연구팀은 문제 해결을 위해 기능적인 길항성(두 요인이 동시에 작용해 서로의 효과를 상쇄시키는 성질)을 갖는 각기 다른 두 종류의 그래핀 전극을 동시에 사용했다. 연구팀은 전기전도성은 매우 좋지만 전기화학적 활성이 낮은 그래핀 그물망의 단점을 보완하기 위해 질소가 증착된 구겨진 그래핀 입자들을 추가로 적용했다. 그물망 그래핀 메쉬(mesh)와 질소가 증착된 구겨진 그래핀을 결합해 전기화학적으로 기능적 길항성을 갖는 하이브리드 전극을 제작해 소프트 액추에이터에 적용했다. 연구팀이 합성한 그래핀 메쉬 구조는 그래핀 튜브들이 서로 엮인 그물망 형태의 구조를 갖는다. 특히 그물망 구조의 물결 모양 패턴 덕분에 다른 유형의 그래핀 구조보다 우수한 신축성을 갖는다. 또한 화학기상증착법(Chemical vapor deposition, CVD) 방법으로 합성하기 때문에 높은 전기 전도도를 갖는 고품질 그래핀 그물망을 제작할 수 있다. 이 하이브리드 전극에서 그래핀 그물망은 신속하고 균일한 전하 분포 촉진, 질소가 증착된 구겨진 그래핀은 전하를 효율적으로 저장하는 서로 상반된 역할을 각각 수행한다. 이를 통해 재료의 비용적 단점을 보완함과 동시에 전극의 성능 요건을 충족했다. 연구팀은 이번 연구를 통해 제작된 액추에이터는 햅틱 피드백 시스템, 웨어러블 핼스케어 전자기기, 능동촉각 시스템, VR 및 AR용 능동형 디스플레이, 소프트 로봇 등의 분야에서 사용 가능할 것으로 기대된다. 오 교수는 “이번 연구결과를 통해 소프트 액추에이터의 성능향상 원리를 이해하는 기반 연구가 될 것이다”며 “차세대 유연 전자산업에서의 소프트 액추에이터 기술 활용이 가속화되는 계기가 될 것으로 기대한다”고 말했다. 이번 연구는 한국연구재단 리더연구자지원사업의 지원을 받아 수행됐다. □ 그림 설명 그림1. 논문 커버 이미지 그림2. 기능적 길항성을 갖는 그래핀 구조 전극 사진 및 소프트 액추에이터 개요
2018.02.07
조회수 12735
최성율 교수, 이차원 소재 이용한 초저전력 유연메모리 개발
〈 최성율 교수, 장병철 박사과정 〉 우리 대학 전기및전자공학부 최성율 교수와 생명화학공학과 임성갑 교수 공동 연구팀이 2차원 소재를 이용한 고집적, 초저전력 비휘발성 유연 메모리 기술을 개발했다. 연구팀은 원자층 두께로 매우 얇은 이황화몰리브덴 채널 소재와 고성능의 고분자 절연막 소재를 이용해 이 기술을 개발했다. 우명훈 석사(현 삼성전자 연구원)와 장병철 박사과정 학생이 공동 1저자로 참여한 이번 연구는 국제적인 재료분야 학술지 ‘어드밴스드 펑셔널 머티리얼즈(Advanced Functional Materials)’ 11월 17일자 표지 논문으로 게재됐다. 사물인터넷, 인공지능, 클라우드 서버 기술 등의 등장으로 인해 메모리 중심의 컴퓨팅 전환과 함께 웨어러블 기기 산업의 수요 증가로 고집적, 초저전력 비휘발성 유연 메모리에 대한 필요성이 커지고 있다. 특히 원자층 두께의 매우 얇은 이황화몰리브덴 반도체 소재는 최근 포스트 실리콘 소재로 주목받고 있다. 이는 얇은 두께로 인해 기존 실리콘 소자에서 나타나는 단채널 효과를 억제해 고집적도 및 전력 소모 측면에서 장점을 갖기 때문이다. 또한 얇은 두께로 인해 유연한 특성을 가져 웨어러블 전자소자로의 응용이 가능하다는 이점이 있다. 하지만 이황화몰리브덴 반도체 소재는 불포화 결합(dangling bond)을 갖지 않는 표면 특성으로 인해 기존의 원자층 증착 장비로는 얇은 절연막을 균일하고 견고하게 증착하기 어렵다는 한계가 있다. 게다가 현재의 액상 공정으로는 저유전율 고분자 절연막을 10나노미터 이하로 균일하게 대면적으로 증착하기가 어려워 저전압 구동이 불가능하고 포토리소그래피 공정과 호환이 이뤄지지 않았다. 연구팀은 문제 해결을 위해 ‘개시제를 이용한 화학 기상증착법(initiated chemical vapor deposition, iCVD)’을 이용해 고성능의 고분자 절연막을 개발해 해결했다. 연구팀은 iCVD 공정을 이용해 이황화몰리브덴 반도체 소재 위에 10나노미터 두께의 터널링 고분자 절연막이 균일하고 견고하게 증착됨을 확인했다. 연구팀은 기존의 이황화몰리브덴 반도체 메모리 소자가 20V 이상의 전압으로 구동되는 반면 이번에 제작한 소자는 10V 부근의 저전압으로 구동됨을 확인했다. 최 교수는 “인공지능, 사물인터넷 등 4차산업혁명의 근간인 반도체 소자기술은 기존 메모리 소자를 뛰어넘는 저전력성과 유연성 등의 기능을 갖춰야 한다”며 “이번 기술은 이를 해결할 수 있는 소재, 공정, 소자 원천 기술을 개발했다는 의의를 갖는다”고 말했다. 이번 연구는 과학기술정보통신부 한국연구재단이 추진하는 글로벌프론티어사업, 미래소재 디스커버리 사업 등의 지원을 받아 수행됐다. □ 그림 설명 그림1. Advanced Functional Materials 표지 그림2. 제작된 비휘발성 메모리 소자의 개념도 및 소자 단면 고해상도 투과전자현미경 이미지
2017.12.18
조회수 20240
연필심에서 배터리까지 탄소의 무한 변신
- “차세대 이차전지나 태양전지, 디스플레이 개발을 위한 기술적 진보 이뤄” - 그래핀과 탄소나노튜브를 새로운 3차원 형태로 조립에 성공 -‘어드밴스드 펑셔널 머티리얼즈’ 특집기획 초청논문 게재 연필심의 원료인 흑연이나 다이아몬드등과 같이 순수하게 탄소로만 이루어진 물질들이 우리주변에서 다양한 소재나 부품으로 널리 쓰이고 있다. 특히 최근에는 탄소나노튜브나 그래핀과 같이 나노미터 크기를 갖는 탄소나노소재들이 새롭게 발견돼 학계와 산업계로부터 많은 관심을 끌고 있다. 꿈의 신소재로 불리는 그래핀과 탄소나노튜브는 탄소원자가 2차원적 평면상에 벌집 모양으로 결합된 화학구조로 되어있다. 이로 인해 다이아몬드보다 강도가 높으면서 잘 굽혀질 수 있고, 투명하면서도 전기가 잘 통하는 등 기존의 다른 소재들이 갖지 못한 우수한 특성들을 가지고 있다. 그러나 자연 상태에서는 이들이 뭉쳐있거나 층층이 쌓여 흑연을 이루고 있어 개별적으로 분리해내기에 어려운 문제점이 있었다. 분자조립 나노기술의 세계적 연구그룹인 KAIST(총장 서남표) 신소재공학과 김상욱 교수 연구팀은 꿈의 소재라 불리는 그래핀과 탄소나노튜브를 3차원 형태로 조립하는 새로운 원천기술을 개발했다. 연구팀은 그동안 오랜 연구역량을 축적해 온 분자조립 나노기술을 이용해 그래핀과 탄소나노튜브를 입자 단위로 분리한 후 새로운 3차원 형태로 조립하는 데 성공했다. 또한, 이 과정에서 값싼 천연 흑연으로부터 단일층의 그래핀 유도체를 매우 높은 순도로 얻어내는 데 성공했다. 김상욱 교수는 “이번 연구로 그래핀계 탄소소재가 가진 넓은 표면적, 우수한 전기전도성, 기계적 유연성 등의 우수한 물성을 차세대 이차전지나 태양전지, 디스플레이 등에 이용하기 위해 필요한 중요한 기술적 진보를 이뤘다”며 “이번 논문 게재로 연구팀이 탄소소재 연구에서 세계적 선도그룹으로 인정받고 있음을 다시 한 번 확인했다”고 말했다. 김 교수는 이번 연구내용으로 4월말 미국 샌프란시스코에서 개최되는 국제재료학회(Materials Research Society)에서 초청 강연을 할 예정이다. 한편, 이번 연구결과는 신소재분야 세계적 학술지인 ‘어드밴스드 펑셔널 머티리얼즈(Advanced Functional Materials)’ 4월 22일자에 특집기획 초청논문(Invited Feature Article)으로 발표됐다. 논문이 소개된 ‘어드밴스드 펑셔널 머티리얼즈’의 특집초청논문은 세계적인 연구그룹의 최신 연구동향을 엄격한 심사를 통해 선별, 초청하는 기획논문이다.(끝) ※용어설명그래핀: 육각의 벌집구조로 결합한 탄소가 연속적으로 연결되어 탄소 원자 한 층의 두께를 가진 2차원의 평판 모양을 이룬 탄소소재 탄소나노튜브: 육각의 벌집구조로 결합한 탄소가 수 nm(나노미터) 크기의 직경을 갖는 튜브를 형성한 탄소소재
2011.04.25
조회수 13977
<<
첫번째페이지
<
이전 페이지
1
>
다음 페이지
>>
마지막 페이지 1