-
스핀 소자 기반 물리적 복제방지 보안기술 개발
우리 대학 신소재공학과 박병국 교수팀이 물리학과 김갑진 교수 연구팀 및 현대자동차와 공동연구를 통해 자성메모리(Magnetic random-access memory, MRAM)를 기반으로 사람의 지문과 같이 매번 다른 패턴을 갖는 하드웨어 보안인증 원천 기술을 개발하는 데 성공했다고 30일 밝혔다.
박병국 교수 연구팀은 반강자성체-하부강자성체-비자성체-상부강자성체 다층박막 구조에서 무자기장(field-free) 스핀-궤도 토크(spin-orbit torque, SOT)로 동작하는 MRAM 소자의 스위칭 극성을 무작위적으로 분포시켜 물리적 복제 불가능성(physical unclonable function, 이하 PUF)을 지닌 보안소자를 개발하는 것이 가능함을 입증했다. 이 기술은 고온 및 고자기장 등의 환경에서도 높은 동작 신뢰도 및 무작위성을 유지하면서 작동 가능해 사물인터넷(IoT)을 비롯한 다양한 보안시스템에 응용될 수 있을 것으로 기대된다.
PUF를 이용한 하드웨어 기반 보안 소자는 동일한 공정 과정을 통해 제작해도 공정 편차에서 발생하는 제어되거나 예측할 수 없는 반도체소재/소자 간의 차이를 이용해 보안용 인증키를 형성하는 기술이다. 이는 기존 소프트웨어 기반 보안시스템과 다르게 외부 공격에 대해 높은 저항성을 지니는 장점이 있기에 최근 증가하고 있는 사물인터넷 기기 해킹 등의 보안 위협을 해결할 기술로 주목받고 있다.
하지만 기존에 주로 연구됐던 상보적 금속 산화물 반도체(complementary metal oxide semiconductor, CMOS) 소자 기반 물리적 복제방지기술은 외부 환경 변화에 민감하며 반복 동작 시 신뢰도가 낮아지는 문제점이 있다. 이에 반해 자성메모리(magnetic random-access memory, MRAM)를 포함한 자화를 이용해 정보를 저장하는 스핀트로닉스 기반 소자는 높은 내구성 및 안정성을 지니고 있고 환경 변화에 비교적 민감하지 않다. 따라서 이러한 특성을 이용해 물리적 복제방지기술을 개발한다면 현행 반도체 공정 기술과 호환이 가능하며 보안인증 등 다양한 활용 범위를 가지는 비휘발성 메모리 기반 보안 기술 개발을 기대할 수 있다.
신소재공학과 이수길 박사와 강재민 박사과정이 공동 제1 저자로 참여한 이번 연구는 국제 학술지 `어드벤스드 머티리얼스(Advanced Materials)'에 11월 10일 字 온라인 게재됐다. (논문명 : Spintronic physical unclonable functions based on field-free spin-orbit torque switching)
연구팀은 교환결합이 형성된 다층박막을 제작해 고온에서 교류 자기장 인가를 통해 교환결합의 방향의 좌우로 50:50의 비율을 갖는 무작위한 분포 생성했다. [그림1(a)] 이때 생성된 교환결합의 방향이 상부 강자성체의 무자기장 스위칭 부호를 결정하는 성질을 이용해 무작위한 분포 방향을 전기적으로 0과1의 이진법분포로 바꿔 출력했으며 이를 보안키로 활용하는 물리적 복제 방지 기술을 개발했다. [그림1(b) 및 1(c)]
연구팀이 개발한 스핀 기반 물리적 복제방지 기술은 50,000번 이상의 반복 동작 시에도 에러가 발생하지 않는 높은 내구성을 보이며 반도체소자가 기본적으로 요구하는 -100℃부터 125℃까지 넓은 온도 범위에서도 안정적으로 작동한다. 또한 무작위성의 원천으로 교환결합의 방향을 이용했기 때문에 자성체 기반 소자임에도 불구하고 외부 자기장을 이용해 저장된 무작위분포를 바꾸지 못하는 것을 확인했다.
공동 제1 저자인 이수길 박사와 강재민 연구원은 "이번 연구는 차세대 MRAM의 주요 기술인 스핀-궤도 토크 기반으로 보안소자 기술을 개발할 수 있다는 것을 제시한 것에 의미가 있으며 향후 유력한 차세대 메모리인 MRAM에 보안 소자 기술을 접목하는 연구가 활발히 이뤄질 것으로 예상 된다ˮ고 밝혔다.
한편 이번 연구는 현대자동차 및 과학기술정보통신부 PIM인공지능반도체핵심기술개발 사업과 중견연구자지원 사업 연구과제의 지원을 받아 수행됐다.
2022.12.02
조회수 5752
-
나노 크기 인공 지문으로 복제불가 사물인터넷 보안, 인증 원천기술 개발
우리 대학 신소재공학과 김상욱 교수 연구팀이 DGIST 로봇및기계전자공학과 김봉훈 교수, 성균관대 화학공학/고분자공학부 권석준 교수와 공동연구를 통해 사람의 지문과 같이 매번 다른 형태를 형성하는 무작위적인 분자조립 나노 패턴을 이용한 새로운 IoT(사물인터넷) 보안/인증 원천기술을 개발했다고 9일 밝혔다.
최근 IoT 기술이 발전함에 따라 다양한 기기들이 인터넷을 통해 연결된 초연결 시대가 도래하고 있다. 그러나 IoT 기기들의 해킹 사례가 빈번하게 보고되고 있으며, IoT 기술을 안전하게 사용할 수 있느냐에 대한 의문이 제기되는 실정이다.
우리 주위에 흔히 사용되는 인증 방법으로 사람의 지문이나 핸드폰 등에서 제공해주는 QR 패턴을 들 수 있다. 사람의 지문은 모든 사람에게 다르게 형성되므로 각 개인을 식별하기 위한 인증 매체로 오래전부터 사용돼왔으나, 그 크기가 눈에 보일 정도로 커서 쉽게 복제할 수 있다는 단점을 가지고 있다.
반면 최근까지도 코로나 방역에 큰 역할을 했던 QR코드는 사용할 때마다 매번 다른 패턴을 형성하므로 복제가 어렵지만, 새로이 패턴이 생길 때마다 무선통신으로 등록을 해야 하므로 에너지 소모가 크고 개인의 프라이버시가 침해되는 문제점이 지적되기도 했다.
이번에 공동연구팀이 개발한 인증기술은 김상욱 교수가 세계 최초/최고기술을 인정받고 있는 분자조립 나노 패턴 기술을 이용해 서로 다른 모양을 가지는 수십억 개의 나노 패턴을 저비용으로 만들어낼 수 있으며, 높은 보안 수준을 유지하면서도 초고속 인증이 가능하다. 또한 연구팀은 나노 크기의 소형화를 통해 눈에 보이지 않는 투명소자나 초소형 장치 또는 개미 혹은 박테리아에도 부착함으로써 미생물 인식 칩으로써의 활용 가능성도 제시했다.
공동연구팀이 개발한 기술은 복제 방지를 위한 다양한 하드웨어 인증시스템에 유용할 뿐만 아니라, 기존 소프트웨어 인증과 달리 전자기 펄스(EMP) 공격과 같은 최첨단 무기 체계에도 내구성이 있어 향후 군사 및 국가 안보 등에도 활용성이 높을 것으로 전망된다. 나아가 이상적인 난수 생성 소재 (true random number generator)로서의 활용성도 기대된다.
신소재공학과 김상욱 교수, DGIST 로봇및기계전자공학과 김봉훈 교수, 성균관대 화학공학/고분자공학부 권석준 교수가 공동 교신저자 및 KAIST 신소재공학과 졸업생인 김장환 박사가 제1 저자로 참여한 이번 연구는 전자공학 분야 최고 권위 학술지인 `네이처 일렉트로닉스(Nature electronics, JCR 상위 0.18 %)'에 7월 26일 字 게재됐다. (논문명 : Nanoscale physical unclonable function labels based on block co-polymer self-assembly).
또한 공동연구팀은 기술 개발 과정에서 국내 특허, 미국 특허, 유럽 특허 및 PCT를 출원해 이번 기술의 지적 재산권을 확보했다고 밝혔다. 해당 특허는 KAIST 교원 창업 회사인 `(주)소재창조'를 통해 사업화를 진행할 계획이다.
한편 이번 연구는 한국창의연구재단의 지원을 받아 수행됐다.
2022.08.09
조회수 8017
-
이건재 교수, 유창동 교수, 유연 압전 화자인식 음성센서 개발
〈 이 건 재 교수 〉
우리 대학 신소재공학과 이건재 교수와 전기및전자공학부 유창동 교수 공동 연구팀이 인공지능 기반의 화자(話者) 인식용 유연 압전 음성센서를 개발했다.
이번 연구를 통해 개인별 음성 서비스를 스마트 홈 가전이나 인공지능 비서, 생체 인증 분야 등 차세대 기술에 활용 가능할 것으로 기대된다.
이번 연구 결과는 국제 학술지 ‘나노 에너지(Nano Energy)’ 9월호에 ‘민감도’와 ‘화자인식’ 논문 두 편으로 동시 게재됐고 현재 관련 기술은 실용화 단계에 있다. (민감도 논문 : Basilar Membrane-Inspired Self-Powered Acoustic Sensor Enabled by Highly Sensitive Multi Tunable Frequency Band, 화자인식 논문 : Machine Learning-based Self-powered Acoustic Sensor for Speaker Recognition)
음성 센서는 인간과 기계 사이의 자유로운 소통을 가능하게 만드는 가장 직관적인 수단으로 4차 산업혁명의 핵심 기술로 주목받고 있다. 음성센서 시장은 2021년 대략 160억 달러 규모로 커질 것으로 예상된다.
그러나 현재 산업계에서는 음성 신호 수신 시 정전용량을 측정하는 콘덴서 형식을 사용하기 때문에 민감도가 낮고 인식 거리가 짧아 화자 인식률에 한계가 있다.
이번 연구에서 이 교수 연구팀은 인간의 달팽이관을 모사해 주파수에 따라 다른 영역이 진동하는 사다리꼴의 얇은 막을 제작했다. 음성신호에 따른 공진형 진동을 유연 압전 물질을 통해 감지하는 자가발전 고민감 음성 센서를 개발했다.
연구팀의 음성 센서는 기존 기술 대비 2배 이상 높은 민감도를 가져 미세한 음성 신호를 원거리에서도 감지할 수 있다. 또한 다채널로 신호를 받아들여 하나의 언어에 대해 복수 개의 데이터를 얻을 수 있다.
이 기술을 기반으로 누가 이야기하는지 찾아내는 화자인식 시스템에 적용해 97.5%의 화자인식 성공률을 무향실에서 달성했고 기존 기술 대비 오류를 75% 이상 줄였다.
화자인식 서비스는 음성 분야에 세상을 바꿀 next big thing으로 기대를 받고 있다. 기존 기술은 소프트웨어 업그레이드를 통한 접근으로 인식률에 한계가 있었지만 연구팀의 기술은 하드웨어 센서를 개발함으로써 능력을 크게 향상시켰다. 추후 첨단 소프트웨어를 접목한다면 다양한 환경에서도 화자 및 음성 인식률을 높일 수 있을 것으로 예상된다.
이건재 교수는 “이번에 개발한 머신 러닝 기반 고민감 유연 압전 음성센서는 화자를 정확하게 구별할 수 있기 때문에 개인별 음성 서비스를 스마트 가전이나 인공지능 비서에 접목할 수 있을 것이며 생체 인증 및 핀테크와 같은 보안 분야에서도 큰 역할을 할 수 있을 것이다”고 말했다.
이번 연구는 스마트 IT 융합시스템 연구단의 지원을 받아 수행됐다.
<관련 영상>
https://www.youtube.com/watch?v=QGEVJxCFVpc&feature=youtu.be
□ 그림 설명
그림1. 인간의 달팽이관을 모사한 유연 압전 음성 센서 구조
그림2. 인공지능을 통한 화자 인식 개략도
2018.10.04
조회수 11849