본문 바로가기
대메뉴 바로가기
KAIST
연구뉴스
유틸열기
홈페이지 통합검색
-
검색
메뉴 열기
%EC%9E%90%EC%84%B1%EC%B2%B4
최신순
조회순
마그논 오비탈 홀 효과로 반도체 발열문제 실마리
기존 정보처리 기술을 혁신적으로 발전시켜 초고속 초고집적 차세대 반도체 기술을 구현할 것으로 기대되는 스핀트로닉스와 오비트로닉스는 줄발열*로 인한 에너지 소모 문제가 필연적으로 동반되는 치명적인 결점이 있었다. 한국 연구진이 초저전력 오비탈** 기반 정보처리 기술의 기틀을 세울 수 있을 기술을 개발하여 화제다. *줄 발열: 도체에 전류가 흐를 때 일어나는 발열 현상. **오비탈: 입자 회전 운동으로 발생되는 각운동량을 뜻함. 우리 대학 물리학과 김세권 교수 연구팀이 포항공과대학교 물리학과 이현우 교수팀과의 공동 연구로 반강자성체*에서 마그논 오비탈 홀 효과**를 세계 최초로 발견해 물리 및 화학 분야 세계적인 학술지 `나노 레터스(Nano Letters)'에 게재했다고 17일 밝혔다. *반강자성체: 인접한 원자의 전자스핀이 서로 반대로 정렬하여 순 자성이 없는 물질을 말함. *마그논 오비탈 홀 효과: 축구의 바나나킥처럼, 마그논이 회전방향(오비탈)에 따라 진행궤적이 휘어지는 현상을 의미한다. 마그논계에서의 오비탈 홀 효과는 기존에 예측된 바가 없는 새로운 현상이기에 학문적으로 흥미로우며, 기존 스핀 자유도에 국한되었던 마그논 동역학을 오비탈 자유도를 통해 한 단계 확장하는 의의가 있음. 마그논*을 이용한 스핀트로닉스 소자의 경우 줄 발열로 인한 에너지 소모 없이 기존의 컴퓨팅 기술을 대체할 수 있다는 장점이 있어 전 세계 각국 학계에서 경쟁적으로 연구가 이뤄지고 있다. 마그논 스핀에 관해서는 지난 수십 년간 활발히 연구됐으나, 마그논 오비탈의 특성에 관한 이론 정립은 아직 아무도 시도하지 않은 문제였다. *마그논: 양자화된 스핀 파동을 뜻함. 물리학과 김세권 교수 연구팀은 MnPS3(삼황화린망간)와 같이 벌집 격자를 이루는 2차원 반강자성체에서 강한 마그논 오비탈 홀 효과가 나타난다는 것을 세계 최초로 발견했다. 기존에 알려진 마그논 홀 효과는 스핀궤도결합에 기인하기에 그 크기가 작은 데 반해, 이번 연구를 통해 발견된 마그논 오비탈 홀 효과는 스핀궤도결합과 무관하게 결정구조에서 기인해 크기가 상당히 크다는 것을 연구팀이 이론적으로 보였다. 또한 연구팀은 전기적으로 마그논 오비탈 홀 효과를 측정할 수 있는 실험방법도 제시했다. 이는 스핀 자유도에만 국한되어 있던 마그논 연구의 범위를 스핀과 오비탈로 확장한 연구 결과로 마그논 오비트로닉스라는 연구의 새 장을 열어 줄 것으로 예상된다. 김세권 교수는 "마그논 오비탈과 그 수송이론의 정립은 아직 세계적으로 아무도 시도하지 않은 독창적이고 도전적인 문제이고, 기존 정보처리 기술의 한계를 혁신적으로 뛰어넘는 초저전력 오비탈 기반 정보처리 기술의 기틀을 세울 수 있을 것ˮ이라고 기대감을 내비쳤다. 이번 연구는 우리 대학 김세권 교수, 고경춘 박사, 안대현 학생, 그리고 포항공과대학교 이현우 교수의 공동 연구로 진행되었으며, 삼성미래기술육성사업, 한국연구재단 해외우수과학자 유치사업 플러스(브레인 풀 플러스), 세종과학펠로우십의 지원을 받아 수행됐다.
2024.06.17
조회수 2758
양자 컴퓨터로 새로운 물성 연구 성공
양자 물질을 연구하거나 설계할 때 기존의 폰노이만식 전자컴퓨터를 이용한 계산은 근본적인 한계를 가진다. 양자계의 경우 양자 얽힘 등의 효과로 인해 계산량이 기하급수적으로 증가하기 때문이다. 따라서 양자물질 설계를 위해 물질의 특성을 알아내고자 할 때, 양자컴퓨터를 이용하는 양자 시뮬레이션이 필요하다. 우리 대학 물리학과 안재욱 교수 연구팀이 코펜하겐 대학 클라우스 뭴머(Klaus MØlmer) 교수 연구팀과 함께 양자 시뮬레이션을 수행하는 양자 컴퓨터 플랫폼으로 최근 가장 주목을 받는 리드버그 원자 양자 컴퓨터를 이용해 양자 자성체의 극단적 특성을 구현하는데 성공했다고 11일 밝혔다. 자성체 물질은 하드 디스크와 같은 전자제품을 비롯해 전력 발전 등에도 사용되는 등 현대 기술의 핵심 요소다. 최근에는 상온 자성체를 넘어서 양자적 특성이 두드러지는 초저온에서 양자 자성체 특성에 관한 연구가 활발히 이뤄지고 있다. 초저온에서 수행되는 물성 분석 및 계측 연구는 MRI 등의 의학 기기 등에 응용될 뿐만 아니라, 차세대 초정밀 제어계측공학을 촉발할 것으로 기대된다. 유명 물리학자 리처드 파인만은 1983년 양자계의 특성을 인공적인 양자계로 모방해 연구하는 양자 시뮬레이션을 제안하였다. 인공적으로 모방한 양자계의 특성을 연구하면 기존 양자계의 특성을 알아낼 수 있다. 양자 시뮬레이션을 이용한 양자 자성체의 연구는 지난 10년간 세계 유수의 대학과 연구소에서 이뤄지고 있으며 이전까지 알려지지 않은 양자 물질의 특성들을 실험적으로 확인하는 성과를 보였다. 현재 양자 물질을 시뮬레이션하는 데 있어 중요한 이슈 중 하나는 극단적인 상황 속 양자 물질의 현상을 관찰하는 것이다. 한편 이와 같은 양자 시뮬레이션을 수행하는 양자 컴퓨터 플랫폼으로 최근 가장 주목을 받는 것은 리드버그 원자다. 리드버그 원자는 최외각 전자가 이온화되어 떨어지기 직전의 매우 높은 에너지를 머금고 있는 원자로, 일반 원자의 만 배 정도의 지름을 가지며 (10의 24제곱)배 정도 더 큰 상호작용을 한다. 우리 대학 물리학과 안재욱 교수 연구팀은 최근 리드버그 원자를 이용해 최대 156큐비트급의 양자 컴퓨터 계산을 선보인 바 있다. 이번 연구에서 글로벌 공동연구팀은 리드버그 원자를 이용한 양자 컴퓨터를 이용해 양자 자성체를 설명하는 모형 중 하나인 하이젠베르크 모형*을 양자 컴퓨터로 모방해 구현했다. 특히 이전의 하이젠베르크 모형의 구현과 다르게, 이번 연구에서는 리드버그 원자의 강한 상호작용을 이용한 극단적 이방성 (3차원 중 특정 방향이 다른 방향 대비 1000배 이상 강하게 상호작용하는 특성으로 새로운 연구영역이 확보됨)을 구현하는 데 성공했다. *하이젠베르크 모형: 하이젠베르크 자성체 모형은 자성체 스핀 간의 모든 방향 (x, y, z 방향) 상호작용을 가정한 모형으로 양자 자성체의 대표적 모델 중 하나임. 연구를 주도한 안 교수는 “이번 연구는 리드버그 양자컴퓨터를 이용해 새로운 양자 물성을 연구할 수 있음을 보였다”라고 밝히고 “양자컴퓨터를 이용하는 물성 연구가 활발해질 것”이라고 기대했다. 우리 대학 물리학과 김강흔 대학원생 연구원과 덴마크 오르후스 대학의 팬 양(Fan Yang) 박사후 연구원이 참여한 이번 연구는 국제 학술지 `피지컬 리뷰 X (Physical Review X)' 2월 14권에 출판됐다. (논문명 : Realization of an Extremely Anisotropic Heisenberg Magnet in Rydberg Atom Arrays). 한편 이번 연구는 삼성미래기술재단과 한국연구재단의 지원으로 수행됐다.
2024.03.11
조회수 3758
차세대 반도체 솔리톤 안정화 기술 최초 개발
초고속 초저전력 차세대 반도체 기술을 구현할 스핀트로닉스 기술을 한 단계 성장시키는 원동력으로 위상적 솔리톤이라는 구조체를 이용해 정보를 저장하고 전송할 수 있는 초고속 비휘발성 메모리 소자 기술이 개발되었다. 우리 대학 물리학과 김세권 교수 연구팀이 기초과학연구원 복잡계 이론물리 연구단(PCS-IBS) 김경민 박사팀, 한양대학교 물리학과 박문집 교수팀과의 공동 연구로 뒤틀림 자성체*를 이용해 위상적 솔리톤을 안정화시킬 수 있는 기술을 세계 최초로 개발해 물리 및 화학 분야 세계적인 학술지 `나노 레터스(Nano Letters)'에 게재했다고 20일 밝혔다. *자성체: 자성을 띄는 여러 물체를 통칭함 스핀트로닉스는 성장 한계에 다다른 기존 반도체 기술의 근본적인 문제점들을 전자의 양자적 성질인 스핀을 이용해 해결하고자 하는 연구 분야다. 이는 기존 정보처리 기술을 혁신적으로 발전시켜 초고속 초저전력 차세대 반도체 기술을 구현할 것으로 기대되고 있다. 한편 솔리톤이란 특정한 구조가 주변과 상호작용을 통해 사라지지 않고 계속 유지하는 현상을 말하며, 위상적 솔리톤이라는 구조체를 이용해 정보를 저장하고 전송할 수 있는 초고속 비휘발성 메모리 소자 개발이 전 세계 각국 학계와 산업계에서 경쟁적으로 연구가 이뤄지고 있다. 이전까지 차세대 메모리 소자 개발을 위해 연구됐던 위상적 솔리톤으로는 스핀 구조체로 자연계에 존재하는 다양한 자성체 중 수직 이방성*이라고 하는 특수한 성질을 갖는 자성체에서만 안정하다고 알려져, 물질 선택의 제한으로 인해 솔리톤 기반 정보처리 기술 발전에 어려움이 있었다. * 수직 이방성: 자화 방향이 자성체에 수직한 방향을 선호하게 되는 성질 김세권 교수 연구팀은 특정 단층 강자성체* 두 겹을 서로 뒤틀어 접합시켜 이중층 자성체를 구성할 경우, 수직 이방성을 띠지 않는 다른 종류의 자성체에서도 위상적 솔리톤을 안정화시킬 수 있음을 세계 최초로 발견했다. *강자성체: 자성체 중에서도 상온의 철과 같이 자발적 자화를 띄는 물체를 뜻함 이번 연구를 통해 발견된 안정한 위상적 솔리톤은 수직이방성이 아닌 수평 이방성을 띄는 자성체에 존재하는 ‘메론’이라고 불리는 스핀 구조체로서 이전에는 그 안정화 메커니즘이 알려지지 않았던 솔리톤이다. 메론 안정화 기술의 확보로 지금까지 수직 이방성 자성체에만 국한되어 있었던 솔리톤 기반 차세대 반도체 기술 연구를 다양한 자성체로 확대 발전시킬 수 있을 것으로 기대되며, 스핀트로닉스 기술을 한 단계 성장시키는 원동력으로 작용할 것으로 예상된다. 이번 연구 결과는 자성체 내부에서는 안정하지 않은 위상적 솔리톤이 두 자성체를 뒤틀어 접합할 경우, 자성체 간 상호작용을 통해 안정화될 수 있다는 것을 보인 첫 예시다. 여러 자성체를 뒤틀어 접합시키는 경우 자성체의 종류와 뒤틀림 각도를 조절함으로써 무한히 많은 자성 시스템을 구현할 수 있으므로, 이번 연구 결과는 뒤틀림 자성체 기반 스핀 기술이라고 하는 넓은 연구 영역을 새로이 개척했다고 판단된다. 우리 대학 김세권 교수는 "이번 논문은 무한히 많은 가능성을 갖는 뒤틀림 자성체 기반의 새로운 물리 현상 탐색과 활용 연구의 시발점으로 작용할 것ˮ이라고 기대감을 내비쳤다. 이번 연구는 우리 대학 김세권 교수, 우리 대학 고경춘 박사, 그리고 PCS-IBS 김경민 박사, 한양대학교 박문집 교수의 공동 연구로 진행되었으며, 한국연구재단 해외우수과학자 유치사업 플러스(브레인 풀 플러스)의 지원을 받아 수행됐다.
2024.02.20
조회수 3297
페리자성체의 새로운 특성 발견
우리 대학 물리학과 김갑진 교수와 이상민 교수 공동연구팀이 희토류-전이금속 페리자성체 필름에서 자화를 결정하는 에너지 레벨에 따른 새로운 특성과 스핀-글라스 현상을 관측하였다고 밝혔다. 두 연구팀은 수직자기이방성이 있는 희토류-전이금속 페리 자성체/비자성금속 필름 구조에서 면내 방향의 외부 자기장을 인가하여 측정 에너지 레벨이 다른 분석 방법에 따라 다른 반응을 확인하였으며, 저온에서 스핀상태가 굳는 현상을 확인하였다. 이는 기존 희토류-전이금속 페리 자성체 관련 연구 결과들이 분석법에 따라 상이된 결과를 보여준 이유를 설명 할 수 있는 결과로써 관련 연구들이 고려하고 나아갈 방향을 시사하였다. 우리 대학 물리학과 박지호 연구원과 물리학과 김원태 연구원이 공동 제1저자로 참여한 본 연구는, 우리 대학 신소재공학과 박병국 교수팀, GIST 전기전자컴퓨터공학부 함병승 교수팀, KBSI 조영훈 박사팀의 공동연구로 진행되었으며, 권위 있는 국제학술지 ‘네이처 커뮤니케이션(Nature Communications)’에 9월 21일 온라인 게재됐다. (논문명 : Observation of spin-glass-like characteristics in ferromagnetic TbCo through energy-level-selective approach) 기존의 연구들은 희토류와 전이금속의 자화를 유도하는 전자의 에너지 레벨을 고려하지 않고 분석을 하거나 두 개의 자화를 거시적인 관점에서만 해석한 연구 결과들이 주를 이루었다. 이에 따라 전반적인 에너지 레벨에 따른 분석과 미시적인 관점을 통한 측정 및 분석이 필요한 상황이었다. 이번 연구에서 연구팀은 서로 다른 에너지 레벨(페르미 레벨(EF), EF~1.55 eV/3.1 eV, whole energy level)에서의 특성을 4가지의 측정 방법을 통하여 분석하였다. 전이금속의 자화가 지배적인 페르미 레벨에서는 면내 방향의 외부 자기장에 빠르게 반응하는 반면 희토류의 자화가 지배적인 에너지 레벨에서는 매우 느리게 반응하는 것을 확인하였다. 또한, 위와 같은 현상이 일어나는 것을 기반으로 온도를 20 K 까지 낮추었을 때에는 스핀 방향이 굳는 스핀-글라스와 같은 특성이 나타나는 것을 관측하였다. 본 결과는 다른 에너지 레벨에서 자성 특성이 유도되는 물질들로 이루어진 자성체를 분석하는 방향을 시사하며, 페리자성체가 스핀-글라스로써 사용될 수 있는 가능성을 제시하였다. 한편 이번 연구는 KAIST 글로벌 특이점 연구사업, 한국연구재단 선도연구센터/중견연구자지원사업의 지원을 받아 수행됐다.
2022.10.17
조회수 5287
준강자성체를 이용한 차세대 반도체 기술의 발전방향 제시
우리 대학 물리학과 이경진 교수, 김세권 교수 연구팀이 스핀 기반 차세대 반도체 기술(스핀트로닉스)의 최신 연구 동향 및 미래 발전 전략을 정리한 `*준강자성체 기반 스핀트로닉스' 리뷰 논문을 물리 및 재료 분야의 세계적인 학술지 `네이처 머터리얼스 (Nature Materials)' 2022년 1월호에 표지논문으로 게재했다고 6일 밝혔다. ※ 준강자성체: 반강자성체와 같이 서로 이웃하는 자성 이온이 반대 방향으로 정렬되지만, 서로 자성의 크기가 달라서 물질 전체적으로는 자발적인 자성이 남아있는 물체 스핀트로닉스는 성장 한계에 다다른 기존 반도체 기술의 근본적인 문제점들을 전자의 양자적 성질인 스핀을 이용해 해결하고자 하는 연구 분야다. 이는 기존 정보처리 기술을 혁신적으로 발전시켜 초고속 초고집적 차세대 반도체 기술을 구현할 것으로 기대되고 있다. 스핀트로닉스 장치의 핵심 구성 요소는 자성체이기 때문에, 스핀 기반의 초고속 초고집적 정보처리를 구현하기 위해서는 최적의 자성 물질을 규명하는 것이 필수적이다. 지난 수십 년간 스핀트로닉스에서 주로 사용돼왔던 강자성체는 스핀 동역학 속도가 기존 정보 처리 기술의 수준과 유사한 기가헤르츠(GHz) 수준에 머물러 정보 처리 속도 향상에 어려움을 겪고 있었다. 또한, 강자성체가 생성하는 강력한 주위 자기장으로 인해 강자성체 기반 장치들이 서로 강하게 간섭해, 스핀 장치의 집적률을 증가시키는 데도 어려움이 있었다. 물리학과 이경진 교수와 김세권 교수는 지난 수년간의 연구를 통해 새로운 자성체인 준강자성체를 이용하면 강자성체가 갖는 문제점들을 해결해 초고속 초고집적 스핀 기반 정보 처리 장치를 개발할 수 있음을 밝혀왔고, 이를 기반으로 이번 리뷰 논문을 게재했다. 과거 2017년 연구팀은 준강자성체의 스핀 동역학 속도가 기존 정보 처리 기술보다 약 천배 빠른 테라헤르츠(THz) 수준이라는 점을 주목하고, 이를 이용해 스핀 메모리로 활용되는 자구벽을 강자성체보다 월등히 빠른 속도로 구동할 수 있음을 보여 네이처 머터리얼스에 논문을 게재했다. 또한, 2018년 이경진 교수는 반강자성체를 이용하면 스핀 양자 정보의 장거리 전송이 가능함을 밝혀 네이처 머터리얼스에 보고했다. 수년간에 걸친 꾸준한 연구성과로 인해 준강자성체 기반의 초고속 초고집적 스핀트로닉스에 대한 관심이 고조돼, 현재 세계적으로 관련 연구가 활발히 진행중이다. 최신 연구 동향 정리와 더불어, 연구팀은 준강자성체 기반 스핀트로닉스의 미래 발전 방향도 제시했다. 준강자성체 기반의 초고속 자기광학 장치 개발, 준강자성체가 갖는 독특한 스핀파 성질을 이용한 파동/양자 정보처리 장치 개발, 그리고 준강자성체를 이용한 뇌 모사 컴퓨팅 개발 등이 기대된다. 또한, 새로 개발된 준강자성체는 기존의 자성체와 근본적으로 다른 흥미로운 물리현상을 보일 것으로 기대돼 준강자성체 기반의 근본 자성 연구에 대한 발전 방향도 제시했다. 이경진 교수는 "이번 리뷰논문은 그동안 강자성체에만 집중돼왔던 스핀트로닉스 연구를 준강자성체로 확장시키는 데 중요한 이정표가 될 것ˮ이라고 기대감을 내비쳤다. 이번 연구는 이경진 교수, 김세권 교수, 그리고 미국 MIT Geoffrey Beach 교수, 일본 교토대학 Teruo Ono 교수, 네덜란드 Radboud 대학 Theo Rasing, 싱가포르국립대 양현수 교수의 공동 연구로 진행되었으며, 삼성미래기술육성재단과 한국연구재단의 지원을 받아 수행됐다.
2022.01.06
조회수 7395
고속 동작 뉴로모픽 자성 소자 핵심 기술 개발
우리 대학 신소재공학과 박병국, 신소재공학과 정연식, 물리학과 김갑진 교수 연구팀이 고속 동작 자성메모리의 핵심 전극 소재로 활용될 수 있는 *반강자성체의 자화 방향을 전기적으로 제어할 수 있는 소재 기술을 개발했다고 29일 밝혔다. * 반강자성체(antiferromagnetic material): 인접한 원자의 자기모멘트의 방향이 서로 반대 방향으로 평행한 구조를 가져, 외부에서 자기장을 걸었을 때 자성을 띠는 강자성체와는 달리 알짜자화값이 나타나지 않는 물질로 누설자기장이 없고 고속스위칭 특성을 갖는다. 공동연구팀의 결과는 기존의 강자성체 기반 자성 소자보다 집적도가 높고 동작 속도가 10배 이상 빠르다고 예상되는 반강자성체 기반 소자의 개발 가능성을 높였다. 또한, 기존에 알짜 자화값이 존재하지 않아서 자화의 방향을 제어하기 어려웠던 반강자성체를 전기적으로 조절할 수 있는 기술을 개발함으로써 반강자성체의 자화 방향을 연속적으로 제어하여 기존의 이진법을 뛰어넘는 멀티레벨 메모리 특성을 보였다. 이는 뇌의 시냅스 동작을 모방할 수 있어 뉴로모픽 컴퓨팅에 응용될 수 있을 것으로 기대된다. 우리 대학 신소재공학과 강재민 박사과정이 제1 저자로 참여한 이번 연구는 국제 학술지 `네이처 커뮤니케이션스(Nature Communications)'에 11월 5일 字온라인 게재됐다. (논문명 : Current-induced manipulation of exchange bias in IrMn/NiFe bilayer structures) 자성메모리(Magnetic Random Access Memory, MRAM)는 차세대 비휘발성 메모리 소자로 개발되고 있다. 기존 자성메모리는 강자성체를 기반으로 하는데, 고집적 소자에서는 강자성체에서 발생하는 누설 자기장으로 인해 인접한 자기 소자 사이에 간섭이 발생하게 된다. 이에 반해 반강자성체는 알짜 자성을 띠고 있지 않아서 누설 자기장이 발생하지 않아 이를 자성 소자에 적용하면 초고집적 자기메모리 소자 개발이 가능하게 된다. 이를 위해서 반강자성체의 자화 방향을 전기적으로 제어하는 기술의 개발이 요구되고 있다. 연구팀은 교환 결합(exchange bias)*이 형성된 반강자성체/강자성체 이중층 구조를 제작해 반강자성체에서 생성되는 스핀 전류를 이용해 반강자성체의 자화 방향이 전류의 크기와 부호에 따라 가역적으로 회전함을 실험적으로 규명했다. 또한 반강자성체의 자화 방향을 연속적으로 제어해 다중상태 메모리 구성이 가능함을 보였다. * 교환결합(exchange bias): 반강자성체/강자성체 이중층 구조에서 경계면에 있는 스핀 모멘트들이 상호작용으로 결합하는 현상으로 강자성체에 유효자기장이 발생하게 된다. 연구팀이 개발한 반강자성 제어 기술 및 다중상태 스위칭 거동을 활용하면 초고집적 및 초고속 동작이 가능한 반강자성체 기반 자성메모리 및 뉴로모픽 소자의 핵심 기술로써 활용될 수 있을 것으로 기대된다. 제1 저자인 강재민 박사과정은 "이번 연구는 반강자성체의 자화 방향을 스핀 전류로 제어할 수 있음을 실험으로 규명해, 향후 반강자성체를 기반으로 하는 차세대 반도체 기술로 여겨지는 스핀트로닉스 전자소자 개발에 응용될 수 있을 것이다ˮ 라고 밝혔다. 한편 이번 연구는 과학기술정보통신부 미래소재디스커버리사업과 중견연구자지원 사업, KAIST 글로벌 특이점 연구과제의 지원을 받아 수행됐다.
2021.11.30
조회수 7475
기존 대비 10배 이상 빠른 마그논 전송현상 발견
우리 대학 물리학과 이경진, 김세권 교수 연구팀이 고려대학교 이동규 대학원생, 싱가포르국립대 양현수 교수, 이규섭 박사와 공동연구를 통해 *반강자성체에서 초고속 *마그논 전송을 실험적으로 관측하고 그 원리를 이론적으로 규명했다고 4일 밝혔다. ☞ 반강자성체(antiferromagnetic substance): 인접한 원자의 자기 모멘트들이 서로 반대방향으로 향하기 때문에 전체로서는 자력이 나타나지 않는 물질. 어떤 온도를 넘어서면 상자성체와 같은 자성을 나타낸다. ☞ 마그논(magnon): 자기 양자(Magnetic quantum)의 줄여진 신조어로 양자화된 스핀 파동을 뜻한다. 즉, 스핀파를 양자화한 준입자를 가리킨다. 양현수 교수 연구팀은 반강자성 절연체인 산화니켈(NiO)에서 마그논 전송속도가 그동안 알려져 있던 최대 속도보다 10배 이상 빠름을 실험적으로 관측했다. 그리고 이경진 교수 연구팀은 이러한 초고속 마그논 전송이 마찰력에서 기인함을 이론적으로 규명했다. 이 공동연구 결과는 반강자성 마그논을 이용한 정보처리 소자의 고속화 가능성을 열었다는 측면과 마찰력은 소자 특성을 나쁘게 한다는 기존 상식과 달리 짧은 거리에서 마그논 속도를 오히려 증가시킨다는 사실을 규명했다는 측면에서, 스핀트로닉스 분야 응용과 기초과학 모두에서 향후 관련분야 발전에 기여할 것으로 기대된다. 이규섭 박사와 이동규 학생이 공동 제1 저자로 참여한 이번 연구는 국제 학술지 `네이처 나노테크놀로지(Nature Nanotechnology)'에 온라인 출판됐다. (논문명 : Superluminal-like magnon propagation in antiferromagnetic NiO at nanoscale distances). 산화니켈(NiO)은 반강자성 특성으로 인해 효율적인 마그논 전송이 가능하고, 전기적 절연특성으로 인해 스핀 정보 전송 시 열 손실이 없어 차세대 마그논 기반 스핀트로닉스 소자용 소재로 주목받고 있다. 양현수, 이경진 교수 공동연구팀은 2019년 산화니켈(NiO)을 통한 마그논 전류가 매우 큰 스핀 각운동량을 전달하며 그 결과 효율적으로 자화를 반전시킬 수 있음을 보고한 바 있다. [Science 366, 1125-1128 (2019)] 2019년 연구는 마그논이 운반하는 스핀의 크기에 집중한 반면, 이번 연구는 그 속도에 집중했다. 마그논 기반 스핀트로닉스 소자의 저전력 구동을 위해서는 마그논이 전달하는 스핀 정보의 크기와 속도 모두 중요하다. 기존 연구에서는 산화니켈(NiO)의 마그논 속도를 밀리미터 크기의 샘플에 대해 비탄성 중성자 산란을 이용해 간접 측정한 반면, 이번 연구에서는 나노미터 크기의 샘플에 대해 테라헤르츠 분광 장비(THz emission spectroscopy)를 활용해 마그논 속도를 직접 측정했다. 그 결과 기존 간접 측정에서 보고되었던 40km/s에 비해 10배 이상 큰 650 km/s의 빠른 마그논 전송을 관측했다. 이론 연구를 통해 이러한 초고속 마그논 전송이 산화니켈(NiO) 내에서 마그논이 경험하는 마찰력 때문임을 밝혔다. 이러한 초고속 전송 현상은 광학 분야에서 `빛보다 빠른 전송(Superluminal propagation)'으로 불리는 현상과 유사하다. 아인슈타인의 특수상대성 이론에 의하면 빛보다 빠른 전송은 불가능하지만, 손실이 있는 매체에 빛이 지나가는 경우 비정상적 분산관계로 인해 마치 빛보다 빠른 전송이 일어나는 것처럼 보이며 이는 인과율을 위배하지 않는다. 이번 연구에서 연구팀은 빛의 경우와 마찬가지로 마찰력을 갖는 반강자성 물질에서 마그논이 전송되는 경우 비정상적 마그논 분산관계로 인해 유사한 현상이 발생함을 밝혔다. 실제 마그논 소자의 구동 시간은 이러한 비정상적 초고속 마그논 전송에 의해 결정되므로 응용 소자 측면에서 파급력이 있을 것으로 기대된다. 또한 마찰력은 모든 물질에 존재하기 때문에, 이 연구에서 밝힌 초고속 마그논 전송은 매우 일반적 물리현상이라는 측면에서 기초 학문적 가치도 클 것으로 기대된다. 제1 저자인 이규섭 박사는 "자성체 기반의 이중 층에서의 `스핀 전류의 발생현상'을 시분해 테라헤르츠 분광 장비를 통해 비접촉 방식으로 검출하는 연구가 활발히 진행되고 있으며, 이번 연구를 통해 `스핀 전류의 발생에 이은 수송현상에 대한 동역학' 또한 분석됨을 보였다ˮ라며, "나노미터 두께의 정보 소자의 정보전달속도를 초고속 시분해능(~10 펨토초)로 분석하는 데 활발히 사용될 것으로 기대한다ˮ라고 말했다. 이번 연구는 한국연구재단 중견연구과제, SRC센터과제, 싱가포르 정부과제의 지원을 받아 수행됐다.
2021.11.05
조회수 8225
"60년 만에 증명했다" 왼손 방향 스핀파 세계최초 보고
우리 대학 물리학과 김갑진 교수, 김세권 교수, 김창수 박사, 이수길 박사 연구팀이 우리 대학 신소재공학과 박병국 교수, 육종민 교수 연구팀 및 한국표준과학연구원(KRISS, 원장 박현민) 양자기술연구소 양자스핀팀과 함께 협업 연구하여 1960년대 이론으로만 소개됐던 왼손 방향으로 회전하는 스핀파를 세계최초로 증명했다. 이로써 스핀을 이용한 차세대 소자개발에 새로운 지평선이 열릴 것으로 전망된다. 공동연구팀은 전이금속 코발트(Co)와 희토류 가돌리늄(Gd)이 일정 비율로 혼합된 CoGd 준강자성체*에서 왼손 방향의 세차운동**을 하는 스핀파를 측정하고 이에 기반한 물리 현상들을 새롭게 밝혀냈다. *준강자성체(ferrimagnet): 서로 다른 크기의 반평행한 자화들로 이루어진 자성체 **세차운동(precession): 회전하는 천체나 물체의 회전축 자체가 도는 형태의 운동이나 그 현상 스핀(spin)과 일렉트로닉스(electronics)의 합성어인 스핀트로닉스 기술은 전자의 전하와 스핀을 동시에 제어하는 기술로, 기존 전자소자의 기술적 한계를 극복할 수 있을 것으로 전망되고 있다. 스핀들의 집단적 움직임을 나타내는 스핀파의 경우, 작동 주파수가 매우 높은 영역에 분포하고 전력의 소비가 매우 적으므로 초고속 저전력 소자에 적용할 수 있다. 스핀트로닉스를 실현하려면 전자의 스핀 방향을 자유롭게 제어하여 정보를 저장할 수 있어야 한다. 그러나 스핀을 결정하는 물리적 원인과 제어 방법, 스핀의 회전 방향 분석 등 복합적이고 난도 높은 연구가 필요하다. 주변에서 흔히 볼 수 있는 자석을 잘게 쪼개면, 전자스핀 하나에 해당하는 작은 자석까지 나눌 수 있다. 이 작은 자석은 자기장이 주어지게 되면 오른손 방향으로 세차운동을 하는 성질을 갖는다. 그러나 반평행하게 정렬된 코발트와 가돌리늄의 단위 자화는 회전 관성이 더 큰 가돌리늄의 자화 때문에 전체적으로 왼손 방향으로 회전하는 성질을 가질 수 있다. 1960년대에 준강자성체의 세차운동에 대한 이론들이 발표되면서 왼손 방향 운동이 예측됐지만, 현재까지 미시적인 수준에서의 실험으로는 관찰되지 못했던 현상이다. 공동 연구팀은 빛과 스핀파 사이의 충돌을 이용하는 기법인 브릴루앙 광산란법(Brillouin light scattering)을 사용해 이론을 실험으로 증명했다. CoGd 준강자성체에 빛을 쪼아 스핀파와 충돌시킨 후, 되돌아온 빛을 분석해 스핀파가 가진 에너지와 운동량을 알아낸 것이다. 이번 연구에서는 수십 피코초(ps, 1000억분의 1초) 영역에서 왼손 방향 운동을 처음으로 관찰했으며, 준강자성체의 자화보상온도에서 스핀파 에너지가 0 근처로 수렴하고 자기장의 증가에 따라 각운동량 보상온도가 같이 증가하는 현상 등도 새롭게 밝혀냈다. KRISS 황찬용 책임연구원은 “지금까지는 오른쪽으로 도는 자화를 기반으로만 이론이 제시되고 실험이 진행됐다”라며, “스핀파의 왼손 방향 운동을 최초로 규명함으로써 차세대 스핀트로닉스 소자개발에 새로운 지평선이 열릴 것으로 기대된다”라고 밝혔다. 또한 우리 대학 김세권 교수는 "준강자성체의 보상점에서 나타나는 새로운 물리현상을 세계 최초로 관측했다는 점에서 큰 의미를 가진다"고 평했으며, 김갑진 교수는 "이번 연구는 국내 연구진들이 공동연구를 통해 시너지를 일으켜 이룩한 성과로서 그 가치가 있다"고 밝혔다. 국가과학기술연구회 창의형융합연구사업(CAP), 한국연구재단 미래반도체 사업, 미래소재 디스커버리 사업, KAIST 특이점(프렙) 연구의 지원을 받은 이번 연구결과는 물리학 분야의 세계적 학술지인 네이처 머티리얼즈(Nature Materials–IF: 38.887)에 6월 30일 온라인 게재됐다.
2020.06.30
조회수 19863
자기장과 자성체 없이 전기로만 작동 가능한 그래핀 스핀 트랜지스터 돌파구 마련
우리 대학 물리학과 조성재 교수 연구팀이 그래핀으로 자기장, 자성체 없이 스핀 전류를 생성, 검출하는 실험에 성공해 차세대 그래핀 스핀 트랜지스터 개발의 돌파구를 마련했다. 차세대 신소재로 주목받는 그래핀은 탄소 원자가 벌집 모양으로 이루어진 2차원 물질(원자만큼 얇은 물질)로서 전기전도성, 탄성, 안정성이 높아 ‘꿈의 나노 물질’이라고 불린다. 이 그래핀은 전자의 스핀 확산 거리가 길어, 전자스핀을 정보화하는 분야인 스핀트로닉스 응용에 큰 기대를 받아왔다. 하지만 그래핀은 전자의 스핀과 전자의 궤도가 상호작용하는 스핀-궤도 결합 에너지가 매우 약하다는 이유로 스핀 전류를 직접 생성하거나 검출할 수 없다는 한계가 있었다. 조성재 교수 연구팀은 그래핀에 스핀-궤도 결합이 매우 큰 전이금속이자 디칼코게나이드 물질인 2H-TaS2를 접합시켜서 그 인접효과로 그래핀의 스핀-궤도 결합을 100배 이상 증가시키는 데 성공했고 이어 ‘라쉬바 효과’를 유도하는 데 성공했다. ‘라쉬바 효과’란 강한 스핀 궤도 결합으로 그래핀과 같은 2차원 물질 내부의 전기장이 자기장으로 전환되는 효과를 말한다. 이것을 이용해 스핀 전류를 생성, 검출하는 효과를 ‘라쉬바-에델스타인 효과’라고 부르는데 이번 연구에서는 이 효과를 그래핀에서 최초로 구현했다. 리준리 박사후 연구원이 제1 저자로 참여한 이번 연구는 국제 학술지 ‘에이씨에스 나노 (ACS Nano)’ 4월 8일 字 온라인판에 게재됐다. (논문명 : Gate-Tunable Reversible Rashba−Edelstein Effect in a Few-Layer Graphene/2H-TaS2 Heterostructure at Room Temperature). 라쉬바 효과가 그래핀에 유도되면, 라쉬바-에델스타인 효과에 의해 전하 전류와 스핀 전류가 상호 전환이 가능하다. 다시 말해, 자기장이나 자성체 없이 그래핀에 전류를 흘려줌으로써 스핀 전류를 생성시킬 수 있고, 그래핀 층에 흘러들어오는 스핀 전류를 전하 전류 혹은 전압 측정을 통해 검출할 수 있다. 조 교수 연구팀은 또 트랜지스터의 단자 사이에 인가되는 전압인 게이트 전압으로 그래핀 이종접합에 생성되는 스핀 전류의 크기와 방향을 제어하는 데 성공했다. 이는 추후 자기장, 자성체 없이 동작 가능한 그래핀 스핀 트랜지스터의 초석을 마련한 획기적인 연구성과로 평가받는다. 조성재 교수는 “이번 연구는 그래핀 이종접합에 자기장, 자성체 없이 전기적으로만 스핀 전류를 생성, 검출, 제어할 수 있음을 보인 최초의 연구로서 전기적으로만 작동 가능한 그래핀 스핀 트랜지스터의 개발로 이어질 것”이라며 “특히, 상온에서 실험이 성공했기 때문에 응용 가능성이 매우 크기 때문에 향후 우리나라 비메모리 산업뿐 아니라 세계적으로 스핀트로닉스 관련 물리학 및 산업에 응용할 수 있는 효과를 기대할 수 있어 의미가 매우 크다”고 강조했다. 한편, 이번 연구는 한국연구재단 미래반도체 신소자원천기술개발사업의 지원을 받아 수행됐다.
2020.05.18
조회수 15819
양찬호 교수, 전기적 위상 결함 제어기술 개발
〈 양 찬 호 교수, 김 광 은 박사과정 〉 우리 대학 물리학과 양찬호 교수 연구팀이 강유전체 나노구조에서 전기적인 위상 결함을 만들고 지울 수 있는 기술을 개발했다. 이 기술을 통해 전기적 위상 결함 기반의 저장 매체를 개발한다면 대용량의 정보를 안정적으로 저장할 수 있을 것으로 기대된다. 이번 연구는 포스텍 최시영 교수, 포항 가속기연구소 구태영 박사, 펜실베니아 주립대학 첸(Long-Qing Chen) 교수, 캘리포니아 대학 라메쉬 교수 등과 공동으로 수행됐다. 김광은 박사과정이 1저자로 참여한 이번 연구는 국제 학술지 ‘네이처 커뮤니케이션즈(Nature Communications)’ 1월 26일자에 게재됐다. 위상학은 물체를 변형시켰을 때 물체가 가지는 성질에 대한 연구를 하는 학문으로, 원과 삼각형은 위상학적으로 동일한 물질이라고 할 수 있다. 2016년도 노벨 물리학상 발표 기자회견에서 노벨위원회는 위상학의 개념을 구멍이 한 개 뚫린 베이글 빵, 구멍이 없는 시나몬 빵, 유리컵 등에 비유했다. 시나몬 빵과 유리컵은 다르게 보이지만 구멍이 없다는 점만 따지면 위상학적으로 같은 물질이 된다. 하지만 구멍의 개수가 다른 베이글과 시나몬 빵은 위상학적으로 다른 물질이 되는 식이다. 즉 물질에서 위상학적이라 함은 연속적인 변형으로는 그 특성을 변화시킬 수 없는 절대적인 보존량을 말한다. 이러한 위상학적 특징을 이용해 정보저장 매체를 만들면 외부의 자극으로부터 보존되며 사용자의 의도대로 쓰고 지울 수 있는 이상적인 비휘발성 메모리를 제작할 수 있다. 강유전체와 달리 강자성체(자기적 균형이 깨진 상태, 외부 자기장을 제거해도 자기장이 그대로 남아있음)의 경우는 소용돌이 형태의 위상학적 결함 구조가 이미 구현됐다. 반면 외부 전기장 없이도 스스로 분극을 갖는 강유전체는 자성체에 비해 위상학적 결함 구조를 더 작은 크기로 안정시키고 더 적은 에너지를 이용해 조절할 수 있다는 장점이 있음에도 불구하고 초보적인 연구 단계에 머물러 있었다. 실험적으로 위상학적 결함 구조를 어떻게 안정화시키며 어떠한 방식으로 조절할 것인지에 대한 연구가 부족했기 때문이다. 연구팀은 문제 해결을 위해 강유전체 나노구조에서 비균일한 변형을 줘 위상학적 결함 구조를 안정시키는 데 성공했다. 연구팀은 강유전체 나노접시(ferroelectric nanoplate) 구조를 특정 기판 위에 제작해 접시의 바닥면에는 강한 압축 변형을 주는 동시에 옆면과 윗면은 변형에서 자유로운 구조를 만들었다. 이러한 구조는 방사형으로 압축변형 완화(Compressive strain relaxation)가 일어나 격자의 변형이 오히려 강유전체의 소용돌이 구조를 안정화시키게 된다. 연구팀은 이번 연구가 고밀도, 고효율, 고안정성을 갖춘 위상학적 결함기반 강유전 메모리에 핵심적인 원리를 제시했다고 말했다. 양 교수는 “강유전체는 부도체이지만 위상학적 강유전 준입자가 국소적으로 전자 전도성을 수반할 수 있어 새로운 양자소자 연구로 확대될 수 있을 것이다”고 말했다. 이번 연구는 한국연구재단의 창의연구지원사업, 선도연구센터지원사업, 글로벌프론티어사업 등의 지원을 받아 수행됐다. □ 그림 설명 그림1. 전기적 위상 결함 개수를 조절하여 만든 5가지의 다른 위상 구조
2018.02.08
조회수 29286
김갑진 교수, 초고속 동작 자기메모리 핵심 기술 개발 성공
〈 김 갑 진 교수 〉 우리 대학 물리학과 김갑진 교수와 고려대학교 이경진 교수 연구팀이 차세대 자구벽 기반 자기메모리의 속도를 획기적으로 향상시키는 기술을 개발했다. 이 연구는 물리·재료 분야 최고 권위의 학술지인 네이처 머티리얼즈(Nature Materials) 9월 25일자에 게재됐다. 현재 사용되는 메모리 소자인 D램(D-RAM)과 S램(S-RAM)은 속도는 빠르나 전원이 꺼지면 메모리가 사라지는 휘발성 특성이 있고, 플래시 메모리(Flash memory)는 비휘발성이나 속도가 느리고, 하드 디스크 드라이브(HDD)는 용량은 크나 전력 사용량이 크고 충격에 약하다는 한계가 있다. 기존 메모리의 단점을 해결하기 위해 ‘자구벽 기반 자기메모리’를 개발 중이다. 자구벽 메모리의 핵심 동작원리는 전류에 의한 자구벽 이동이다. 자성 나노선을 사용하여 비휘발성 특성을 확보하고, 기계적 회전을 없앰 으로써 전력사용량을 줄인 고집적․저전력의 차세대 메모리이다. 그러나 현재까지 연구결과, 자구벽 메모리의 동작 속도는 최대 수백 m/s로 속도에 한계가 있고, 이는 자구벽이 회전하면서 움직이는 ‘워커붕괴현상*’ 때문이라고 알려져 있다. 따라서 자구벽 메모리의 실용화를 위해 워커붕괴현상을 제거하여 동작 속도를 높일 수 있는 핵심기술 개발이 요구됐다. 자구벽 메모리 연구는 대부분 ‘강자성체’ 물질을 사용했으며, 강자성체의 경우 자구벽이 회전하는 워커붕괴현상을 피할 수 없다. 연구팀은 자기메모리 연구에 ‘페리자성체’인 GdFeCo를 사용한 결과 특정조건을 만족할 경우 워커붕괴현상을 없앨 수 있는 원리를 발견했고, 이를 이용해 자구벽의 이동 속도를 상온에서 2 km/s 이상까지 증가시키는데 성공했다. 자구벽 메모리는 고집적·저전력·비휘발성을 갖춘 메모리로서 이번 연구로 발견한 초고속 동작 특성이 추가된다면 하드디스크를 뛰어넘는 차세대 메모리가 될 것으로 기대된다. 김갑진 교수는 “이번 연구는 페리자성체의 각운동량이 0인 지점에서 나타나는 새로운 물리 현상을 발견했다는 점에서 의미가 크고, 향후 차세대 메모리 구현을 앞당길 수 있을 것으로 기대된다”고 밝혔다. 이 연구는 한국연구재단의 신진연구자지원사업, 선도연구센터지원사업(응집상 양자 결맞음 연구센터)과 DGIST 위탁연구(바이오자성 글로벌 연구센터) 등의 지원을 받아 수행됐다. □ 그림 설명 그림1. 페리자성체를 이용한 자구벽 메모리 소자의 개념도 그림2. 자구벽 속도 측정 소자의 개략도 및 실험 결과
2017.10.20
조회수 13817
<<
첫번째페이지
<
이전 페이지
1
>
다음 페이지
>>
마지막 페이지 1