본문 바로가기
대메뉴 바로가기
KAIST
연구뉴스
유틸열기
홈페이지 통합검색
-
검색
메뉴 열기
%EC%A0%84%EB%8F%84%EC%84%B1+%EA%B3%A0%EB%B6%84%EC%9E%90
최신순
조회순
피부 모니터링부터 뇌심부 해석까지 쉽게 가능
실시간으로 심박수를 측정할 수 있는 스마트 워치, 심장 박동수를 조절하는 페이스메이커 등 생체신호를 지속적으로 측정해 다양한 병을 진단하거나 치료할 수 있는 전자소자인 생체전자소자에 관한 연구가 활발히 진행되고 있다. KAIST 연구진이 생체조직 접촉 시 손상을 최소화하고 3D 마이크로니들 구조로 조직표면부터 심부까지 측정할 수 있는 전도성 하이드로젤 소재를 개발해 화제다. 우리 대학 신소재공학과 스티브 박 교수, 바이오및뇌공학과 박성준 교수 공동연구팀이 3D 프린팅을 통해 다양한 형태의 생체전자소자를 쉽고 빠르게 제작할 수 있는 전도성 고분자 기반 전극 물질을 개발했다고 7일 밝혔다. 이번 연구를 통해 기존 2D 전극 패터닝 기술로 접근하기 어려웠던 한계점을 극복해, 원하는 위치 및 심부 영역의 뇌 신경세포를 자극 및 측정할 수 있어, 뇌의 심부 영역에서 뇌의 활성화 원리를 정확하게 해석할 수 있을 것으로 기대된다. 또한 3D 프린팅을 통해 이 기술은 피부에 부착하는 헬스케어 모니터링 소자부터 생체 삽입형 소자에 이르기까지 광범위하게 활용할 수 있을 것으로 기대된다. 기존 생체전자소자에 사용됐던 금속 물질은 단단한 물성으로 인해 연약한 생체조직에 상처를 입힐 수 있다는 문제점이 있었다. 또한, 이 문제를 보완하기 위해 개발됐던 전도성 하이드로젤 소재는 낮은 전기전도성을 가지고, 생체적합성을 개선하기 위해 소자 제작 후 24시간 이상의 독성 제거 공정을 진행해야 한다는 문제점이 있었다. 또한, 2D 구조의 전극 패터닝만 가능하다는 한계점 때문에 다양한 형태의 소자를 제작하기 어려웠다. 박 교수 연구팀은 전도성 고분자를 나노미터 크기의 콜로이드 형태로 가공해 유화 작용을 유도함으로써 잉크의 유변학적 특징*을 개선하고, 생체적합성에 악영향을 미치는 독성 물질을 원심분리 공정을 통해 제거함으로써 3D 프린팅이 가능하면서 후처리 공정이 필요 없는 고전도성 하이드로젤 잉크를 개발했다. *유변학적 특성: 잉크의 유동성과 그에 따른 변형, 그 응답인 응력 등의 특성을 말하며 특성이 높을수록 잉크의 압출 직후 인쇄된 형태를 유지할 수 있으며, 낮으면 압출 직후 인쇄된 형태를 유지하기 어렵다. 이 재료는 선행연구 대비 약 1.5배(286 S/cm)의 전기전도도를 가지며, 고해상도 패터닝(~50μm), 전방위 3D 전극 패터닝이 가능하다는 장점을 가진다. 또한 생체조직과 비슷한 물성(영 계수 750kPa)를 가져, 생체조직과의 접촉 시 손상을 최소화할 수 있다. 연구팀은 개발한 신소재 전극을 기반으로 심전도 측정(ECG) 및 근전도 측정(EMG) 측정 타투, 뇌 피질전도도(ECoG) 측정소자, 3D 뇌 탐침 측정 소자를 개발해 기능성을 검증했다. 또한 높은 전하 저장 능력을 활용, 낮은 전압(60mV)으로 쥐의 좌골 신경을 자극하는 소자를 개발해 생체 자극 소자로서의 성능을 확인했다. 더불어 복잡한 3D 회로를 필요한 적용 분야에 맞추어 제작할 수 있고 3D 마이크로니들 구조로 전극을 패터닝해 조직 표면에 있는 생체신호뿐만 아니라 조직 심부에 있는 뉴럴 인터페이스의 제작이 가능해졌다. 연구를 주도한 스티브 박 교수는 "기존 3D 프린팅 기술을 이용해 제작되는 전자소자의 경우 전도성 및 생체적합성을 개선하기 위해 장시간 및 복잡한 형태의 후처리가 필요해 래피드 프로토타이핑(Rapid prototyping)을 장점으로 가져갈 수 있는 3D 프린팅 기술의 모든 장점을 이용할 수 없었다”며, “이번 연구에서는 이러한 단점을 해결해 향후 환자 맞춤형 바이오 전자소자 및 다양한 3D 회로 응용 분야에 활용될 수 있을 것으로 기대된다ˮ라고 말했다. 신소재공학과 오병국 박사과정과 백승혁 석사, 바이오및뇌공학과 남금석 석박사통합과정이 공동 제1 저자로 참여한 이번 연구는 국제 학술지 `네이처 커뮤니케이션즈(Nature Communications)'에 7월 11일 게재됐다. (논문명 : 3D printable and biocompatible PEDOT:PSS-ionic liquid colloids with high conductivity for rapid on-demand fabrication of 3D bioelectronics) 이번 연구는 한국연구재단 나노 및 소재기술개발사업, 중견 사업 및 ETRI의 지원을 받아 수행됐다.
2024.08.07
조회수 2412
쭉쭉 늘어나는 최고 성능의 태양전지 개발
웨어러블 전자소자의 시장 규모가 급격히 커지며 에너지 공급원으로서 잡아당겨 늘려도 작동할 수 있는 스트레쳐블 태양전지가 각광 받고 있다. 이러한 태양전지를 구현하기 위해서는 빛을 전기로 전환하는 광활성층의 높은 전기적 성능과 기계적 신축성 확보가 필수적인데, 이 두 가지 특성은 서로 상충관계를 가지고 있어서 스트레쳐블 태양전지의 구현은 매우 어려운 문제였다. 우리 대학 생명화학공학과 김범준 교수 연구팀이 높은 전기적 성능과 신축성을 동시에 갖는 새로운 형태의 전도성 고분자 물질을 개발해 세계 최고 성능의 스트레처블 유기태양전지를 구현했다고 26일 밝혔다. 유기 태양전지(organic solar cells)는 빛을 받아 전기를 생산하는 광 활성층이 유기물로 구성되는 전자소자로, 기존 무기 재료 기반 태양전지에 비해 가볍고 유연하다는 장점이 있어 몸에 착용할 수 있는 웨어러블 전자소자에 사용 가능하다. 특히, 태양전지는 이러한 전자소자의 전력을 공급하는 필수적인 소자이지만, 기존 고효율 태양전지는 신축성을 가지기 어려워서 웨어러블 소자로 거의 구현된 바가 없다. 김범준 교수 연구팀은 높은 전기적 성질을 가지는 전도성 고분자에 고무처럼 늘어나는 고신축성 고분자를 화학 결합을 통해 연결하여, 높은 전기적 성능과 기계적 신축성을 동시에 가지는 새로운 형태의 전도성 고분자를 개발하였다. 개발된 고분자는 현재 세계 최고 수준의 광전변환효율 (19%)을 가지는 유기태양전지를 구현하면서도, 기존 소자들에 비해 10배 이상 높은 신축성을 달성하였다. 이를 통해 40% 이상 잡아당겨도 작동하는 세계 최고성능의 스트레처블 태양전지를 구현하였으며, 이를 통해 사람이 착용가능한 태양전지의 응용 가능성을 증명했다. 김범준 교수는 "이번 연구를 통해 세계 최고성능의 스트레쳐블 유기 태양전지를 개발했을 뿐만 아니라 새로운 개념의 고분자 소재 개발을 통해 자유형상 및 신축성을 요구로 하는 다양한 전자소자에 응용가능한 소재 원천 기술을 개발했다는 것에 큰 의의가 있다ˮ라고 밝혔다. 이진우, 이흥구 연구원이 공동 제1 저자로 참여하고, 기계공학과 김택수 교수, 생명화학공학과 리섕 교수팀이 공동으로 진행한 이번 연구는 국제 학술지 `줄(Joule)'에 12월 1일 출판됐다. (논문명: Rigid and Soft Block-Copolymerized Conjugated Polymers Enable High-Performance Intrinsically-Stretchable Organic Solar Cells). 이번 연구는 한국연구재단의 지원을 받아 수행됐다.
2023.12.26
조회수 3616
유승협 교수, 효율성과 유연성 갖춘 OLED 기술 개발
〈 유 승 협 교수 〉 우리 대학 전기및전자공학부 유승협 교수와 POSTECH 신소재공학과 이태우 교수 공동 연구팀이 손상 없이 반복적으로 휘어지면서 우수한 효율을 갖는 플렉서블 유기발광다이오드 (OLED) 기술을 개발했다. 그래핀, 산화티타늄, 전도성 고분자를 복합 전극으로 활용하는 이 기술로 효율 극대화와 우수한 유연성을 동시에 얻을 수 있어 향후 편의성과 활용도를 높일 수 있을 것으로 기대된다. 최성율 교수, 김택수 교수가 공동 연구팀으로 참여하고 이재호 박사과정 학생, POSTECH 한태희 박사와 박민호 박사과정 학생이 공동 1저자로 수행한 이번 연구는 국제 학술지 ‘네이처 커뮤니케이션즈(Nature Communications)’ 6월 2일자 온라인 판에 게재됐다. 현재 플렉서블 OLED 기술은 엣지형 스마트폰, 커브드 OLED 텔레비전 등에 사용되지만 플렉서블 OLED를 곡면 형태로 휘게 만든 후 고정 시키는 방식으로만 적용되고 있다. 반복적 휨이 가능한 플렉서블 OLED의 구현을 위해선 소재 및 관련 기술의 지속적 발굴이 중요하다. 특히 반복적으로 휘어질 때 각 구성 요소들이 깨지거나 손상되지 않도록 하는 것이 매우 중요하다. 그래핀은 얇은 두께를 통한 우수한 유연성 및 전기적 특성, 광학적 투명성을 갖는다. 이 특성들은 OLED에 주로 사용되는 산화물계 투명전극의 쉽게 깨지는 현상을 극복할 수 있는 기술로 각광받고 있다. 그러나 플렉서블 OLED가 주로 쓰이는 웨어러블 기기는 배터리 용량이 제한적이기 때문에 유연성과 동시에 OLED의 효율을 함께 확보하는 것이 중요하다. OLED는 일반적으로 공진현상(Resonance)(용어설명) 현상을 활용해 발광 효율을 향상시킬 수 있다. 공진현상을 일으키기 위해서는 일정량 이상의 빛 반사가 발생하는 투명 전극이 필요한데 그래핀만을 투명전극으로 사용하면 반사가 적어 광 효율이 낮다는 한계가 있다. 연구팀은 위의 유연성 및 효율성 문제를 해결하기 위해 기존의 그래핀에 산화티타늄(TiO2)과 전도성 고분자 형태를 결합한 복합 전극층을 개발했다. 이 구조에서 각각의 전극 층은 서로의 단점을 보완해주는 협력적 역할을 해 공진 효과를 극대화한다. 연구팀이 개발한 복합전극 층은 산화티타늄의 높은 굴절률과 전도성 고분자의 낮은 굴절률이 함께 활용된다. 이를 통해 전극으로부터의 유효 반사율을 높여줘 공진현상이 충분히 활용될 수 있다. 또한 전도성 고분자의 낮은 굴절률은 표면 플라즈몬의 손실로 인한 효율 감소까지 줄여준다. 기존 27.4%의 양자효율에서 1.5배 향상된 40.5%의 외부양자효율을 보이는 OLED를 구현했다. 이는 동일 발광재료를 이용해 보고된 그래핀 기반 OLED 중 가장 높은 효율이다. 효율을 향상시키는 구조를 도입하면 유연성 등의 다른 특성이 나빠지는 트레이드 오프 현상이 종종 발생한다. 연구팀은 산화티타늄 막이 구부러질 때 깨짐을 방해하는 자체 특성이 있어 기존 산화물 투명전극보다 4배 높은 변형에도 견디는 것을 확인했다. 이를 이용해 유연성 저하를 최소화하고 성능 극대화에 성공했다. 연구팀의 플렉서블 OLED는 곡률 반경 2.3mm에서 1천 회 구부림에도 밝기 특성이 변하지 않아 높은 성능과 유연성을 동시에 확보할 수 있음을 증명했다. 유 교수는 “분야를 넘어선 융합연구가 아니었다면 이번 연구는 불가능했을 것이다”며 “이번 연구 성과가 플렉서블, 웨어러블 디스플레이나 인체 부착형 센서용 플레서블 광원의 성공에 중요한 기틀을 제공할 것이다”고 말했다. 이번 연구는 한국연구재단 공학연구센터 사업의 일환인 차세대 플렉서블 디스플레이 융합센터 (CAFDC), 글로벌 프론티어 소프트 일렉스토닉스 연구단, KAIST 그래핀 연구센터, 산업통상자원부의 IT R&D 사업의 지원을 받아 수행됐다. □ 그림 설명 그림1. 그래핀 복합 전극층 기반 OLED의 동작사진 그림2. 산화티타늄 (TiO2)-그래핀-전도성 고분자 복합 전극 기반 플렉시블 OLED 구조 모식도
2016.06.03
조회수 15015
<<
첫번째페이지
<
이전 페이지
1
>
다음 페이지
>>
마지막 페이지 1