-
미래를 위한 대체 불가 바이오 제조 전략 제시
2021년 서울국제포럼과 KAIST가 공동 개최한 “글로벌 복합위기와 4차 산업혁명의 대전환기, 탄력성장의 도전과 기회” 포럼에서 KAIST 이상엽 특훈교수는 우리나라가 미래 국가경쟁력을 확보하기 위해서는 대체 불가 기술 (non-fungible technology; NFT)을 확보해야 한다고 처음으로 제시한 바 있다. 기후 변화의 심각성에 연간 약 1.1억 톤의 식품 폐기물을 포함한 다양한 유기 폐기물들, 그리고 이산화탄소도 바이오 제조를 위한 원료로 사용하도록 대체 불가능한 바이오기술(Bio-NFT)로 활용하는 것이 이제 선택이 아닌 필수가 됐다.
우리 대학 생명화학공학과 이상엽 특훈교수가 기술 혁신, 원료 공급 최적화 및 적절한 인프라를 통해 바이오 제조의 확장을 포함한 경쟁력 확보 전략 수립에 대한 논문을 네이처 화학공학지(Nature Chemical Engineering)에 월드뷰(Worldview)에 7월 22일 자로 제시했다고 24일 밝혔다.
※ 논문명 : Fungible and non-fungible technologies in biomanufacturing scale-up
※ 저자 정보 : 이상엽(한국과학기술원, 제1 저자, 교신저자) 1명
최근 신진 대사 공학과 합성 생물학의 급성장은 전통적인 화석 자원에 의존하는 제조 공정을 바이오 기반 대안으로 전환할 수 있는 잠재력을 보여주고 있다. 미생물 세포 공장을 통해 화학물질과 재료를 생산하는 바이오 기반 기술은 빠르게 발전하고 있으며, 이는 각각 5.7조 달러, 9.2조 달러, 22.5조 달러의 시장규모를 가진 화학, 식품 및 소비재 등 다양한 산업 부문에 혁신적인 변화를 가져오고 있다. 이는 2조 달러 규모의 제약시장 보다도 훨씬 크다.
그러나 이러한 바이오 제조로의 전환은 기술적, 경제적, 사회적 장벽으로 인해 어려움을 겪고 있다. 점점 더 많은 사람들이 지구 온난화의 현실과 그 악화되는 영향을 인식하면서 환경에 덜 해로운 제품에 대한 선호도가 높아지고 있지만, 실제 구매 결정에 있어서는 가격이 중요한 역할을 한다. 따라서, 각국 정부들은 규제 지원뿐만 아니라 대중과의 소통을 통해 지속 가능한 생산과 소비에 대한 이해와 헌신을 촉진해야 한다.
이 교수는 중요하게 떠오른 바이오 제조 확장, 특히 범용화학물질 생산 등 대체 불가능하지 않은 바이오기술 (not non-fungible)을 위해 풀어야 할 세 가지 주요 과제를 제시했다.
첫째, 미생물 세포 공장의 TRY(titer, rate, yield; 농도, 속도 및 수율)를 최대화하는 것으로 기존 대사공학에 데이터 과학, 인공지능 및 로봇 공학의 통합을 통해 이러한 역량을 강화해야 한다.
둘째, 원료 공급 및 물류의 최적화가 필요하다. 약 6억 톤의 바이오매스가 연간 바이오 기반 재료 생산을 위해 사용될 수 있지만, 최적의 분배 및 공급망이 완전히 구축되지 않았다. 다양한 원료의 사용을 가능하게 하는 기술 개발이 필요하다.
셋째, 인프라 및 시설 건설에 필요한 대규모 자본 투자 문제이다. 최근 들어 건설비용이 급격히 증가하여 최첨단 제조 시설을 구축하는 데 드는 높은 비용은 운영 확장의 재정적 실행 가능성을 어렵게 한다. 바이오 제조시설 구축을 위한 정책자금 투입 등 국가적인 인프라 개념에서의 투자가 요구되며, 단기적인 해결책으로는 완전히 유연한 중형 바이오 정제소를 건설하여 시장에 가장 적합한 제품을 생산할 수 있다고 제시했다.
이 교수는 “기술 혁신, 원료 공급 및 인프라 개발에의 집중적인 노력이 필요하다”고 강조하면서 “이를 통해 산업은 보다 지속 가능하고 경제적으로 실행 가능한 바이오 제조 공정으로 전환할 수 있으며, 이는 글로벌 시장에 큰 영향을 미칠 것이다. 지속 가능한 미래에 기여하고 산업에 상당한 경제적 기회를 제공할 것으로 기대된다.”고 밝혔다.
한편 이번 연구는 과기정통부가 지원하는 석유대체 친환경 화학기술개발사업의 ‘바이오화학산업 선도를 위한 차세대 바이오리파이너리 원천기술 개발’ 과제 (과제책임자 KAIST 이상엽 특훈교수)의 지원을 받아 수행됐다.
2024.07.25
조회수 2225
-
플렉시블 디스플레이용, 저렴한 금속배선 제조기술 개발
- 광학분야 최고권위학술지 ‘네이처 포토닉스’ 뉴스 앤 뷰즈 선정- 진공증착 수준의 고품질 미세 유연금속전극 고효율 제조 기술 개발
글로벌 IT산업에 총성 없는 전쟁이 계속되고 있다. 스마트폰이나 태블릿 컴퓨터보다 편리하게 컴퓨터를 몸에 지니고 다니는 시대로 가는 과도기에 와 있으며, 플렉시블 디스플레이가 집중적으로 조명을 받고 있다.
플렉시블 디스플레이 제조에는 필름 사이에 10μm(마이크로미터)이하의 미세한 금속배선을 형성하는 것이 핵심기술 중 하나다.
KAIST(총장 서남표)는 기계공학과 양민양 교수팀이 대기 중에서 고품질⋅고전도성을 갖는 미세 금속배선을 플렉시블 디스플레이용 필름에 저렴하게 제조하는 기술을 개발하는 데 성공했다고 26일 밝혔다.
플렉시블 디스플레이 미세 금속배선 제조에는 노광이나 진공증착, 도금과 같은 고가의 복잡한 방법이 적용돼 왔다. 최근에는 잉크젯, 롤투롤(Roll to Roll)과 같은 인쇄방법이 시도되고 있다. 그러나 전극으로서 요구되는 특성인 전기 전도성, 전극 품질, 정밀도와 생산성 또는 제조 원가를 충족시키는 데 한계가 있었다.
KAIST 연구팀은 이러한 문제를 광촉매 자가 생성을 이용한 광열화학 반응과 새로운 패턴전사 방식으로 해결했다.
연구팀은 고가의 금속 나노입자 잉크를 대신해 금속원자가 녹아있는 유기물로부터 2~3nm(나노미터)의 극미세 은 나노입자 광촉매를 자가 생성 시킨 후 레이저를 사용한 광화학반응을 유도함으로써 유연한 금속배선을 제조했다.
또한, 레이저를 이용해 고체상태의 패턴을 고분자 필름에 전사하는 방법인 레이저유도 패턴접착전사법(Laser Induced Pattern Adhesive Transfer, LIPAT)을 개발해 PET(폴리에스터)와 같이 열에 약한 유연한 필름에도 적용할 수 있도록 했다.
이 방법으로 10μm이하의 미세한 은 금속배선을 비저항 3.6μΩ·cm의 높은 전도도로 PET, PI, PEN등 다양한 재질의 고분자 필름에 성공적으로 형성했으며 높은 신뢰성도 검증했다.
레이저유도 패턴접착전사법(Laser Induced Pattern Adhesive Transfer, LIPAT)공정
(a) 광촉매 자가생성을 통한 금속배선 형성
(b) 레이저를 이용한 광학적 접착 패턴 전사 (c) 저내열성 플렉시블 기판에 형성된 고전도성 미세 금속배선
이번 연구를 주도한 KAIST 양민양 교수는 “유연한 금속배선 제조에 있어 기존의 은 나노입자 잉크를 사용하는 방법과 비교해 원가를 1/100 수준으로 절감했고, 제조 속도를 최대 100배 이상 향상시켰다”며 “플렉시블 디스플레이 뿐만 아니라 태양전지와 같은 차세대 유연 전자 소자 제조에 획기적인 변화를 가져올 것”이라고 말했다.
KAIST 양민양 교수와 강봉철 박사과정 학생이 주도한 이번 연구결과는 그 우수성을 인정받아 광학분야의 세계적인 과학저널인 네이처 포토닉스(Nature Photonics)지 2011년 4월호 뉴스 앤 뷰즈(News and Views)에 선정됐고, 국내 및 국제 특허 출원을 완료했다.
2011.05.26
조회수 16371
-
유기발광다이오드 고효율 제조기술 개발
- 용액으로 제조해 값싸며, 대기 중에서 제조할 수 있는 OLED 길 열려
차세대 디스플레이로 각광받는 유기발광다이오드(OLED)의 제조공정이 크게 개선된다.
우리학교 기계공학과 양민양 교수팀은 대기 중에서도 쉽게 제조할 수 있는 고분자 유기발광다이오드를 개발하는 데 성공했다.
연구팀은 음극이나 양극과 같은 금속 전극을 제외한 기능성 층(정공주입층, 발광층, 전자수송층, 전자주입층)을 모두 액상으로 제조할 수 있도록 했다. 이 액상물질은 인쇄기술과 같은 용액공정을 적용할 수 있어 매우 저렴한 비용으로 제조가 가능할 것으로 기대된다.
기존 유기발광다이오드에는 LiF, CsF, Cs2CO3 등과 같은 알칼리․알칼리토금속을 포함하는 물질들이 전자주입층으로 구성돼 있다. 이 전자주입물질들이 음극과 발광층 사이에서 전자가 극복해야 할 전자주입장벽을 낮추어 발광효율을 높이는 역할을 하기 때문이다.
그러나 이 물질들은 대기 중에서 불안정할 뿐만 아니라 1nm(나노미터)정도의 초박막을 진공에서 증착을 통해 막을 입혀야 하기 때문에 대면적으로 얇은 층을 구현하기 어렵다. 또한, 아래층의 표면품질에 소자의 효율이 큰 영향을 받는다는 문제가 있어 모든 층을 용액공정으로 소자를 제조하는 데 어려움이 있었다.
양 교수팀은 5nm의 크기를 갖는 산화아연 나노입자 용액과 암모늄 이온용액을 통해 용액공정의 적용이 가능한 전자수송․주입 복합구조를 제시했다. 이들 용액은 알칼리․알칼리토금속을 전혀 포함하고 있지 않아 대기 중에서 안정해 모든 층을 용액공정으로 제조가 가능해졌다.
특히, 산화아연 나노입자층과 암모늄이온 복합층에 존재하는 암모늄 이온은 일정 이상의 전계를 가하면 발광층과 음극 사이에서 이온들이 전계에 따라 정렬해 계면쌍극자(interface dipole)를 형성한다.
이를 효과적으로 발광층과 음극사이의 전자주입 장벽을 낮추어 알칼리․알칼리 토금속을 사용하지 않음에 의해 발생하는 효율이 저감되는 문제를 극복해 발광효율 10cd/A와 휘도 50000cd/m2의 고성능을 구현했다.
한편, KAIST 양민양 교수와 윤홍석 박사과정 학생이 주도한 이번 연구결과는 권위 있는 학술지인 "어플라이드 피직스 레터스(Applied Physics Letters)"지 12월 14일자 온라인 판에 게재됐고 현재 국내 및 국제 특허 출원 완료됐다.
[그림1] 연구팀이 개발한 고휘도 고발광효율 유기발광다이오드
2011.01.25
조회수 13050
-
생명과학과 김학성 교수, 사이언스誌에 논문 발표
“생명요소인 단백질도 설계, 제조한다”
- 단백질의 자연 진화과정을 밝혀 신 기능 단백질 설계 기술 개발
- 의약용 단백질 및 산업용 효소 창출 등 생명공학 분야에서 광범위하게
활용될 수 있는 기반 기술
- 사이언스誌에 중요 논문 중 하나로 소개 : 별도“Perspective"란에
자세한 연구 내용 설명
KAIST 생명과학과 김학성(金學成, 48) 교수 / 박희성(朴熙成, 35) 박사팀이 개발한 ‘신 기능 단백질 설계 기반 기술’이 세계적 학술지인 사이언스 誌에 1월 27일자로 발표했다.
“기존에 존재하는 단백질 골격을 이용한 신 기능 단백질의 설계와 창출 (Design and evolution of new catalytic activity using an existing protein scaffold)“이라는 제목으로 발표되는 이 기술에 대해 사이언스誌는 별도의 “Perspective"란에 연구 내용을 자세히 설명하여, 그 중요성과 파급 효과를 강조하고 있다.
金 교수팀은 자연계에서 단백질이 진화해온 복잡한 과정을 단순화시켜 새로운 기능을 가진 단백질을 효율적으로 설계하고 제조하는 기반 기술을 개발하였다. 이 기술은 의약용 단백질 및 산업용 효소의 개발 등 생명공학 분야에서 광범위하게 활용될 수 있으며 바이오기술(BT)의 산업화라는 점에서 주목된다.
생물체내에는 5만 종류 이상의 다양한 기능을 수행하는 단백질이 존재한다. 자연 진화 과정에서 생성된 다양한 단백질들은 기존 유전자의 염기서열이 변형된 것뿐만 아니라 임의의 길이나 염기서열을 갖는 유전자 조각들이 오랜 시간에 걸쳐 삽입, 제거, 재조합 등의 복잡한 과정의 단계를 거쳐서 만들어진 것으로 밝혀지고 있다.
단백질은 20개의 아미노산으로 구성된 고분자물질로 생명체가 살아가는데 필수적인 역할을 수행한다. 예를 들어 p53 이라는 단백질은 암을 억제하는 기능을 하고, 많은 효소는 우리가 섭취한 음식물로부터 우리 몸에 필요한 복잡하고 다양한 물질과 에너지를 효율적으로 생산하는 역할을 한다. 이러한 단백질은 의약용, 치료용 혹은 산업용으로 광범위하게 사용되고 있다.
특히, 단백질의 일종인 효소(Enzyme)는 최근 선진국을 중심으로 대대적인 연구개발 및 산업화가 추진되고 있는 화이트 바이오테크(White Biotech)분야의 핵심으로 부각되고 있다. 세계적 화학기업, 제약기업, 생명공학 기업들이 산업 목적에 맞는 효소의 개발에 집중적으로 투자하고 있다. 그러나 대부분의 단백질은 특이성, 리간드와의 친화성, 안정성, 활성 등이 실제 의약용이나 산업적으로 사용하기에는 많은 한계점을 가진다. 이를 해결하기 위해 목적에 맞는 특성이나 새로운 기능을 지닌 단백질을 설계하고 창출하는 연구가 지속적으로 진행되어 왔지만 아직까지 만족할 만한 연구 결과는 보고되지 않았다.
金 교수팀은 생물체내에는 수많은 종류의 단백질이 존재하지만 기본적인 골격의 수는 한정되어 있어 서로 다른 기능을 수행하는 단백질들의 경우라도 그 골격은 유사하거나 동일한 경우가 많다는 점에 착안, 새로운 기능을 가진 단백질 설계에 필요한 요소를 기존의 단백질 골격에 동시에 조합적으로 삽입함으로써 신 기능 단백질을 제조할 수 있는 기술을 성공적으로 개발할 수 있었다.
개발된 신 기능 단백질 설계 기술은 앞으로 새로운 단백질 의약품 개발, 산업용 효소 개발, 합성 생물학, 화이트 바이오테크놀러지(White Biotechnology), 생유기 합성 및 단백질 공학 분야에서 광범위하게 활용되어 생명공학의 산업화에 크게 기여할 것으로 기대된다.
또한, 이번 연구결과는 자연계에서 단백질이 어떠한 진화 과정을 거쳐 현재와 같은 다양한 단백질이 존재하게 되었는지에 대한 중요한 해답을 주고 있어 기초 생명과학 분야에서도 매우 획기적인 연구결과로 인식되고 있다.
사이언스誌 투고의 주역인 金 교수는 최근 국제공학회(ECI)에서 주관하는 국제학술대회인 제 18차 효소공학 학술대회(Enzyme Engineering)를 지난해 10월 국내에 유치하여 성공적으로 개최하는 등 국제적으로도 활발한 활동을 펼치고 있다.
2006.01.27
조회수 21780