-
인공지능을 위한 신소재 혁신방향 제시
최근 ‘스타링크’와 같은 초연결 인터넷망과 빠른 통신이 가능한 6G 기술, 초고속 연산장치들이 개발됨에 따라, 이들과 쉽게 융합될 수 있는 초소형 고성능 장치들이 요구되고 있다. 이를 위해 감도가 좋은 센서 소재, 외부 자극을 감지할 수 있는 스마트 소재, 해킹이 불가능한 보안 소재 등 혁신적인 신소재 기술의 중요성이 날로 커지고 있다.
우리 대학 신소재공학과 김상욱 교수 연구팀이 생명화학공학과 리 섕 교수, 전기및전자공학부 권경하 교수, DGIST 로봇 및 기계전자공학과 김봉훈 교수와 함께 4차 산업혁명의 핵심 분야인 사물인터넷(IoT)을 크게 혁신할 수 있는 핵심 신소재를 소개하는 초청 논문을 발표했다고 22일 밝혔다.
김상욱 교수 연구팀은 그간 초미세 반도체회로 구현을 위한 블록공중합체 자기조립 제어(Directed Self-Assembly; DSA) 연구 분야를 세계 최초로 개척했고, 이를 실제 반도체 리소그라피 공정과 융합하는 데 성공해 국제 반도체 로드맵에 등록시켰다.
최근까지도 이 나노소재 기술을 반도체뿐만이 아니라 보안소자, 센서, 유저 인터페이스 등에 다양하게 적용하는 연구 방향을 제시해 국제적으로 선도해왔고, 이번에 그 중요성과 과학기술적 기여도를 인정받아 세계적인 학술지 `네이처 리뷰 일렉트리칼 엔지니어링(Nature Review Electrical Engineering)' 에 퍼스펙티브(perspective) 논문을 초청받아 표지논문으로 발표했다.
김상욱 교수는 “포스트 인공지능 시대의 사물인터넷 시스템은 신소재 기반의 저비용, 저전력, 소형화, 및 지속가능성이 강화된 소자기술의 혁신이 중요한데 자기조립 나노패턴 소재가 매우 중요한 역할을 할 것으로 기대된다”고 밝혔다.
`네이처 리뷰 일렉트리칼 엔지니어링' 은 세계적으로 권위를 인정받는 네이처 저널에서 올해부터 새로 발간한 인공지능 기술등 전기전자 분야 리뷰 전문 학술지로서 관련분야의 세계적인 석학들을 엄격한 기준에 따라 선정하여 논문을 초청한다. 특히 특정 연구 분야를 객관적인 시각으로 소개하는 일반 리뷰(review)와는 달리 저자의 선구적이고 독창적인 시각을 제시하는 퍼스펙티브(perspective) 논문은 극히 소수의 학계 권위자에게만 의뢰하는 것으로 알려져 있으며, 이번 논문은 그 우수성을 인정받아 해당 호의 표지 논문으로 선정되었다. 한편 이번 논문연구는 한국연구재단의 리더연구자 지원사업인 다차원 나노조립제어 창의연구단의 지원을 받아 수행됐다.
*논문명: Intelligent block copolymer self-assembly towards IoT hardware components
2024.02.22
조회수 4248
-
액정 고분자를 통해 ‘올인원 솔루션’ 기술 개발
액정 고분자는 녹아있는 상태에서 액정성을 나타낸 고분자로 높은 내열성과 강도를 가지고 있어서 기존에는 광학 필름이나 코팅 소재로 응용되었지만, 최근에는 가스 및 액체 흡착, 약물 전달, 센서 기술 등의 분야에서 광범위하게 효율적 활용이 가능하다는 연구가 보고되고 있다.
우리 대학 화학과 윤동기 교수 연구팀이 연성 소재(soft material)중 하나인 액정 고분자의 자기조립(self-assembly)을 활용해 다공성 액정 고분자 구조체를 제작하고, 다양한 기능성 나노 입자를 도입해 복합체를 형성할 수 있는 원천기술을 개발했다고 20일 밝혔다.
이번 연구에서 윤 교수팀은 다양한 모양에 조립을 유도할 수 있는 분자 형태로 이루어져 있어 표면 개질, 공간적 한정, 빛, 전기장에 의해 배향이 쉽게 조절되는 특성을 가진 액정의 배향 제어를 기반으로 액정 고분자 기반의 다공성 구조체를 제작했고, 이를 매트릭스로 하여 페로브스카이트(perovksite), 금속유기골격체 (metal-organic framework), 퀀텀닷(quantum dot) 등과 같은 다양한 기능성 나노 입자 도입을 통해 유-무기 복합체(organic-inorganic composite)를 제작하는 것에 집중했다.
연구팀은 매트릭스의 기공에서 나노 입자들을 직접 성장시키거나 이미 제작된 나노 입자들을 도입하는 서로 다른 전략을 개발했다. 이를 통해 도입하고자 하는 기능성 나노 입자의 선택성을 넓혀 범용적인 복합체 제작이 가능하다는 것을 보였다. (그림 1)
연구팀은 또한 두 가지 이상의 나노 입자들을 도입하는 전략을 제시해 다기능성 복합체 제작이 가능하다는 것을 보였다. 기존의 다공성 고분자 기반의 복합체 제작 연구의 경우 하나의 기능성 입자를 도입하고자 하는 것에 초점이 맞추어져 있고, 두 가지 이상의 기능성 도입을 위한 자세한 연구는 부족하다. 연구팀이 이번 연구에서 제안한 다기능성 복합체의 경우 서로 다른 나노 입자들의 기능성을 동시에 가질 수 있어, 기존 기능성 입자들의 활용 범위를 더욱 넓힐 수 있다는 것을 보였다.
화학과 윤동기 교수는 “이 기술은 기존에 알려진 대표적인 무기 입자들을 액정 고분자를 통해 한 번에 제조, 포함할 수 있는 `올인원 솔루션'으로 오염물질 제거, 안정된 디스플레이 소자 개발, 차세대 통신용 인쇄 회로 기판 제조 등에 다기능성을 부여할 수 있다는 점에서 획기적인 기술이라고 할 수 있다”고 언급했다.
이번 연구는 국제 학술지 어드밴스드 머터리얼즈(Advanced Materials)에 “Universal Strategy for Inorganic Nanoparticle Incorporation into Mesoporous Liquid Crystal Polymer Particles”의 이름으로 지난 11월 22일 자에 게재됐다.
이근중†, 박건형†, 박계현, 박영서, 이창재, 윤동기* : 공동 제1 저자, * 교신저자.
한편 이번 연구는 과학기술정보통신부-한국연구재단의 지원을 받은 중견연구자 지원사업, 함께달리기사업의 지원을 받아 수행됐다.
2023.12.20
조회수 4038
-
고성능 조립형 SSD 시스템반도체 최초 개발
최근 인공지능을 훈련하기 위해 더 많은 데이터가 필요해지면서 그 중요성은 더욱 증가하고 있으며, 이에 데이터 센터 및 클라우드 서비스를 위한 주요 저장장치인 고성능 SSD(Solid State Drive, 반도체 기억소자를 사용하는 저장장치) 제품의 필요성이 높아지고 있다. 하지만, 고성능 SSD 제품일수록 SSD 내부의 구성요소들이 서로의 성능에 크게 영향을 미치는 상호-결합형(tightly-coupled) 구조의 한계에 부딪혀 성능을 극대화하기 어려웠다.
우리 대학 전기및전자공학부 김동준 교수 연구팀이 고성능 조립형 SSD 시스템 개발을 통해 차세대 SSD의 읽기/쓰기 성능을 비약적으로 높일 뿐 아니라 SSD 수명연장에도 적용 가능한 SSD 시스템 반도체 구조를 세계 최초로 개발했다고 15일 밝혔다.
김동준 교수 연구팀은 기존 SSD 설계가 갖는 상호-결합형 구조의 한계를 밝히고, CPU, GPU 등의 비메모리 시스템 반도체 설계에서 주로 활용되는 칩 내부에서 패킷-기반 데이터를 자유롭게 전송하는 온-칩 네트워크 기술을 바탕으로 SSD 내부에 플래시 메모리 전용 온-칩 네트워크를 구성함으로써 성능을 극대화하는 상호-분리형(de-coupled) 구조를 제안했으며, 이를 통해 SSD의 프론트-엔드 설계와 백-엔드 설계의 상호 의존도를 줄여 독립적으로 설계하고 조립 가능한 ‘조립형 SSD’를 개발했다.
※온-칩 네트워크(on-chip network): CPU/GPU등의 시스템 반도체 설계에 쓰이는 칩 내부의 요소에 대한 패킷-기반 연결구조를 말한다. 온-칩 네트워크는 고성능 시스템 반도체를 위한 필수적인 설계 요소중 하나로서 반도체칩의 규모가 증가할수록 더욱 중요해지는 특징이 있다.
김동준 교수팀이 개발한 조립형 SSD 시스템 구조는 내부 구성요소 중 SSD 컨트롤러 내부, 플래시 메모리 인터페이스를 기점으로 CPU에 가까운 부분을 프론트-엔드(front-end), 플래시 메모리에 가까운 부분을 백-엔드(back-end)로 구분하고, 백-엔드의 플래시 컨트롤러 사이 간 데이터 이동이 가능한 플래시 메모리 전용 온-칩 네트워크를 새롭게 구성해, 성능 감소를 최소화하는 상호-분리형 구조를 제안했다.
SSD를 구동하는 핵심 요소인 플래시 변환 계층의 일부 기능을 하드웨어로 가속하여 플래시 메모리가 갖는 한계를 능동적으로 극복할 수 있는 계기를 마련하였고 상호-분리형 구조는 플래시 변환 계층이 특정 플래시 메모리의 특성에 국한되지 않고, 프론트-엔드 설계와 백-엔드 설계를 독립적으로 수행하는 설계의 용이성을 가지는 점이 ‘조립형’ SSD 구조의 장점이라고 밝혔다. 이를 통해, 기존 시스템 대비 응답시간을 31배 줄일 수 있었고 SSD 불량 블록 관리기법에도 적용해 약 23%의 SSD 수명을 연장할 수 있다고 연구팀 관계자는 설명했다.
전기및전자공학부 김지호 박사과정이 제1 저자, 전기및전자공학부 정명수 교수가 공동 저자로 참여한 이번 연구는 미국 플로리다주 올랜도에서 열리는 컴퓨터 구조 분야 최우수 국제 학술대회인 `제50회 국제 컴퓨터 구조 심포지엄(50th IEEE/ACM International Symposium on Computer Architecture, ISCA 2023)'에서 6월 19일 발표될 예정이다. (논문명: Decoupled SSD: Rethinking SSD Architecture through Network-based Flash Controllers).
연구를 주도한 김동준 교수는 “이번 연구는 기존의 SSD가 가지는 구조적 한계를 규명했다는 점과 CPU와 같은 시스템 메모리 반도체 중심의 온-칩 네트워크 기술을 적용해 하드웨어가 능동적으로 필요한 일을 수행할 수 있다는 점에서 의의가 있으며 차세대 고성능 SSD 시장에 기여할 것으로 보인다”며, “상호-분리형 구조는 수명연장을 위해서도 능동적으로 동작하는 SSD 구조로써 그 가치가 성능에만 국한되지 않아 다양한 쓰임새를 가진다며”연구의 의의를 설명했다.
이번 연구는 컴퓨터 시스템 저장장치 분야의 저명한 연구자인 KAIST 정명수 교수와 컴퓨터 구조 및 인터커넥션 네트워크(Interconnection Network) 분야의 권위자인 김동준 교수, 두 세계적인 연구자의 융합연구를 통해 이루어낸 연구라는 의미가 있다고 관계자는 설명했다.
한편 이번 연구는 한국연구재단, 삼성전자, 반도체설계교육센터(IDEC), 정보통신기획평가원 차세대지능형반도체기술개발사업의 지원을 받아 수행됐다.
2023.06.15
조회수 4653
-
연어 DNA를 활용해서도 위조방지 가능
30년이 걸린 천경자 화백의 미인도 관련 위작 스캔들을 보면 알 수 있듯이, 복제방지 분야에 문외한일 가능성이 큰 예술창작자에게 추가적인 짐을 지우고 있다. 이를 해결하기 위한 전자적 방식보다는 광학적 방식으로 예술가에게 친화적인 방식인 브러시로 바르는 즉시 형성되는 물리적 복제 방지 기능(PUF)의 위조 방지 플랫폼 기술이 필요하다.
우리 대학 화학과 윤동기 교수 연구팀이 연성 소재(Soft material)의 자기조립(Self-assembly) 시 발생하는 무작위 패턴을 이용해 보안․인증 원천기술을 개발했다고 23일 밝혔다.
최근 사물인터넷의 발달로 다양한 전자기기 및 서비스가 인터넷으로 연결되어 신기능 창출이 가능하게 되는 동시에 개인의 프라이버시를 침해하는 위조 기술도 발달되어 그 피해를 입는 사례가 빈번하게 보고되고 있다. 그에 따라 더욱 강력하고 높은 보안성을 갖춘 위조 방지 기술에 대한 요구가 꾸준히 증가하고 있다.
연구팀이 개발한 이번 연구는 두 종류의 연성 소재가 자기조립되는 과정에서 자발적으로 발생하는 무작위 패턴을 활용해 사람의 지문과 같이 복제 불가능한 보안 기능을 할 수 있다는 것으로, 보안 분야의 전문가가 아니라도 마치 그림을 그리듯이 위조 방지 기술을 구현할 수 있다는 측면에서 큰 의의를 갖는다. 연구팀은 두 가지 방법을 개발했다.
첫 번째 방법은 액정물질을 이용한 것이다. 액정물질이 패턴 기판 속에 갇혀있을 때, 자발적으로 구조체의 대칭 파괴가 발생해 미로와 같은 구조체가 형성된다(그림 1). 오른쪽으로 트인 구조를 0(파랑), 왼쪽으로 트인 구조를 1(빨강)으로 정의하면, 이를 머신러닝을 이용한 객체 인식을 통해 디지털 코드(0과 1)로 변환돼 지문과 같은 역할을 할 수 있다고 연구팀은 확인했다. 본 연구의 경우 기존의 복잡한 반도체 패턴이 필요하지 않고, 핸드폰 카메라 정도의 해상도로 관찰할 수 있기에 비전문가도 사용할 수 있는 획기적인 기술이다. 이들은 기존의 반도체 칩을 이용한 방법에 비해 쉽게 정보를 재구성할 수 있다는 특이점을 가지고 있다.
두 번째 방법은 연어에서 추출한 DNA를 이용한 것이다. 추출된 DNA를 물에 녹여 붓으로 바르게 되면 좌굴 불안정성(Buckling instability)이 발생해 얼룩말의 무늬와 같은 무작위 패턴을 형성하게 된다. 이때, 무작위한 패턴들은 지문의 특징인 능선 끝 (Ridge Ending)과 분기점 (Bifurcation)이 나타나며 이 또한, 0, 혹은 1로 정의하여, 머신러닝을 통해 디지털화를 할 수 있다. 연구팀은 기존에 널리 사용되고 있는 지문 인식 기술을 이 패턴에 적용해 인공지문과 같이 사용했다. 이 방법은 쉽게 붓으로 제작 가능하며 다양한 색을 혼입시킬 수 있으므로 새로운 보안 잉크로 사용될 수 있다.
연구팀이 개발한 보안기술은 간단한 유기 물질만 사용하고 공정이 단순해 저비용으로 쉽게 보안 코드를 제작할 수 있다. 또한, 제조자의 목적에 따라 원하는 모양 및 크기대로 만들 수 있을 뿐만 아니라 같은 방법으로 제작하더라도 형성되는 무작위 패턴은 모두 다르므로 높은 보안 기능을 가능하게 함으로써 무궁무진한 시장성과 잠재력을 가지고 있다.
윤동기 교수는 “이번 연구들은 자기조립 시 발생하는 자연의 무작위성을 있는 그대로 받아들여 제조자조차 복제할 수 없는 인간의 지문과 같은 역할을 하는 패턴을 제작한 것ˮ이라며, “이러한 아이디어는 자연계에 존재하는 수많은 무작위성을 보안 시스템에 적용할 수 있는 기술의 초석이 될 수 있다ˮ고 설명했다.
한편, 두 연구는 모두 국제 학술지 어드밴스드 머터리얼즈(Advanced Materials)에 “1Planar Spin Glass with Topologically-Protected Mazes in the Liquid Crystal Targeting for Reconfigurable Micro Security Media”와 “2Paintable Physical Unclonable Function Using DNA”의 이름으로 5월 6일과 5일 자에 각각 게재됐다.
1박건형, 최윤석, 권석준*, 윤동기* / 2박순모†, 박건형†, 윤동기* : 공동 제1 저자, * 교신저자.
한편 이번 연구는 과학기술정보통신부-한국연구재단의 지원을 받은 멀티스케일 카이랄 구조체 연구센터, BRIDGE융합연구개발사업, 함께달리기사업, 삼성미래기술육성사업 등의 지원을 받아 수행됐다.
2023.05.23
조회수 7314
-
KAIST, 암세포에만 약물 전달 가능한 클라트린 조립체 개발
암을 부작용 없이 효과적으로 치료하기 위해서는 약물을 암세포에 특이적으로 전달할 수 있는 기술이 필요하다. 단백질로 구성되어 있는 단백질 조립체는 암 치료를 위한 약물 전달에 널리 활용되고 있다. 단백질 조립체를 약물 전달에 이용하기 위해서는 암세포를 인식하는 단백질과 암세포를 사멸시키는 약물을 단백질 조립체에 효과적으로 접합시키는 기술, 즉 기능화(functionalization) 기술이 필수적이다. 그러나, 단백질 조립체의 경우 기능화 과정이 매우 복잡하고, 효율이 낮으며, 대부분 작은 크기의 화학 약물(chemical drug)의 적용에만 한정되어 실제 사용에 많은 제약이 있었다.
우리 대학 생명과학과 김학성 교수 연구팀이 암세포에 특이적으로 약물을 전달할 수 있는 클라트린 조립체를 개발했다고 14일 밝혔다.
생체 내 클라트린이라는 단백질 조립체는 세포 안에서 자가조립(self-assembly)되어 물질을 효율적으로 수송(endocytosis)한다. 클라트린 조립체는 먼저 3개의 중쇄(heavy chain)와 3개의 경쇄(light chain)가 결합하여 트리스켈리온(triskelion)이 만들어지고, 이후 트리스켈리온이 자가조립 되어 형성된다. 연구팀은 이에 착안하여, 암세포에 특이적으로 약물을 전달하기 위해 암세포 인식 단백질과 독소 단백질의 기능화가 용이하도록 클라트린 사슬을 설계하였고, 이를 이용하여 새로운 형태의 클라트린 조립체(clathrin assembly)를 얻었다. (그림 1)
개발된 클라트린 조립체는 원 포트 반응(one-pot reaction)으로 두 종류의 단백질(암세포 인식 단백질과 독소 단백질)을 동시에 높은 효율로 접합시킬 수 있어, 향후 약물 전달, 백신 개발 및 질병 진단 등을 포함한 생물 의학 분야에서 광범위하게 활용될 수 있을 것으로 기대된다.
이번 연구에서는 대표적인 종양 표지자인 상피세포성장인자수용체(EGFR)를 인식하는 단백질을 사용하여, 암세포에 특이적으로 약물을 전달할 수 있었다. EGFR을 인식하는 단백질로 기능화된 클라트린 조립체는 결합증대 효과(avidity effect)로 인해, 기존보다 무려 900배 이상 향상된 결합력을 보였다. 연구팀은 이를 기반으로, 독소 단백질을 연결한 클라트린 조립체를 세포에 처리했을 때, 정상 세포에는 영향이 없으나 암세포만 효과적으로 사멸시킨다는 것을 확인했다.
우리 대학 생명과학과 김홍식 박사가 제1 저자로 참여한 이번 연구는 국제 학술지 `스몰(Small)'에 지난 2월 22일 자 19권 8호에 출판됐으며, 표지 논문으로 선정됐다. (그림 2) (논문명 : Construction and Functionalization of a Clathrin Assembly for a Targeted Protein Delivery)
제1 저자인 김홍식 박사는 "클라트린은 기능화가 어렵고 포유류의 세포로부터 추출해서 얻었기 때문에 실질적인 적용이 제한되었다”라며 “이번 연구에서 새로 설계한 클라트린 조립체는 한 번의 반응으로 서로 다른 두 종류의 단백질로 기능화할 수 있고, 대장균에서 생산 가능하여, 생물 의학 분야에서 광범위하게 활용될 수 있는 단백질 조립체 응용 기술이 될 것이다”라고 말했다.
한편 이번 연구는 한국연구재단 글로벌박사양성사업과 중견연구자지원사업의 지원을 받아 수행됐다.
2023.03.14
조회수 5070
-
세계 최고 수준 신축성과 전도성 가진 액체금속 입자로 신축성 인쇄 전자회로 기판 구현
우리 대학 신소재공학과 강지형 교수 연구팀이 고분자 속 전도성 액체금속 입자 네트워크 제조법을 개발하고, 이를 이용해 고무 특성을 갖는 신축성 인쇄 전자회로 기판을 구현했다고 14일 밝혔다.
최근 체내 삽입형 전자소자, 웨어러블 전자소자, 소프트 로보틱스 등에 관한 관심이 증가하면서 우수한 신축성 및 전기적 성질을 갖는 신축성 전자기기에 관한 다양한 연구가 진행됐다. 이러한 신축성 전자기기의 실현을 위해서는 고집적 전자기기 제작의 바탕이 되는 신축성 인쇄 회로 기판이 요구된다.
신축성 인쇄 회로 기판의 실현을 위해 기존에 형태가 변하지 않는 인쇄 회로 기판에 사용되는 구리와 같은 금속을 신축성 고분자 기판 위에 구불구불한 형태로 패터닝을 해 신축성 인쇄 회로 기판을 구현한 연구가 제시됐으나, 이렇게 구조 공학을 통해 만들어진 신축성 인쇄 회로 기판은 신축성이 제한적이고 전자 부품의 밀도가 줄어든다는 한계가 있다. 이러한 한계를 뛰어넘기 위해 자체적으로 늘어날 수 있고 전기전도성을 갖는 전도성 고분자, 금속 나노 물질–고분자 복합체 등이 제시됐으나 이들은 신축 과정에서 급격한 저항 변화를 보여 신축성 인쇄 회로 기판으로 사용되기 어렵다는 한계를 갖고 있다.
이러한 한계를 뛰어넘을 재료로 액체금속이 큰 관심을 받게 됐다. 액체금속은 상온에서 액체의 형태를 띠는 금속으로, 높은 전기전도성과 액체와 같은 자유로운 변형성으로 인해 신축성 전자소자에 사용하기에 적합한 재료로 평가를 받는다. 하지만 액체 상태가 갖는 외부 충격에 대한 불안정성으로 인해 실제 인쇄 회로 기판의 배선으로 사용하는 것에 한계가 있었다.
이를 극복하기 위해 많은 연구진이 액체금속을 마이크로 크기의 입자로 분쇄한 후 고분자와 섞어 우수한 기계적 성질을 부여하고자 했다. 하지만 이렇게 만들어진 액체금속 입자–고분자 복합체는 액체금속 입자 간의 반발력으로 인해 입자 간의 연결이 형성되지 않아 전기가 통하지 않는다는 문제점이 있다.
이러한 문제를 해결하기 위해 강지형 교수 연구팀은 초음파를 이용해 고분자 지지체 내에서 액체금속 입자들을 조립시켜 전도성 네트워크를 형성했고 신축과정에서 저항이 변하지 않는 전극을 개발했다. 이를 이용해 세계 최초로 구조 공학 없이 고무처럼 자유자재로 변형이 가능한(5배 이상 늘어나는) 신축성 인쇄 회로 기판에 응용될 수 있음을 보였다.
연구팀은 절연성 복합체에 초음파를 가하면 액체금속 입자/고분자/액체금속 입자 계면에 나노 크기의 액체금속 입자가 집중적으로 형성되고 전도성 입자 조립 네트워크가 만들어지는 것을 확인했다.
만들어진 네트워크는 기존 인쇄 회로 기판의 배선에 사용되는 구리와 비슷한 수준의 낮은 전기 저항을 갖고, 10배까지 늘렸을 때도 저항이 거의 변하지 않는다. 이와 더불어 복합체의 우수한 기계적 성질로 인해 외부의 물리적 충격에 대한 높은 저항성을 가진다.
특히, 이번 연구는 이전의 기계적 손상을 가해 전도성을 부여하는 방식과 달리 초음파에 기반한 비 파괴적 방식을 이용해 액체금속이 새어 나오는 문제를 해결했고, 이를 통해 다양한 전자 부품과의 높은 접합력을 얻을 수 있었다.
이러한 액체금속 입자 네트워크의 우수한 전기적/기계적 성질, 그리고 높은 접합력에 기반해 연구팀은 신축성 고분자 기판 위에 액체금속 입자 네트워크를 패터닝한 후, 전자 부품과 연결해 신축성 디스플레이 및 광 혈류 측정 센서를 제작함으로써 다양한 신축성 웨어러블 전자소자로의 응용 가능성을 제시했다.
연구팀은 나아가 포토레지스트, 하이드로겔, 자가 치유 고분자 등 다양한 고분자 속에서 동일한 방식으로 액체금속 입자 네트워크를 만듦으로써, 기존의 신축성 전극 연구들이 보여주지 못한 고해상도 광 패터닝, 체내 삽입형 전자소자에 활용되기 위한 낮은 임피던스를 갖는 전극, 자가 치유가 가능한 액체금속 기반 전극 등으로의 다양한 응용 가능성을 확인했다.
신소재공학과 이원범, 김현준 박사과정이 제1 저자로 참여한 이번 연구는 국제 학술지 `사이언스 (Science)' 11월 11일 字 표지 논문으로 게재됐다. (논문명 : Universal Assembly of Liquid Metal Particles in Polymers Enables Elastic Printed Circuit Board).
강지형 교수는 "이번 연구를 통해 개발된 액체금속 입자 조립 네트워크 기반의 복합 전극은 웨어러블 및 생체 삽입형 전자장치 발전과 상용화에 크게 기여할 것ˮ이라고 말했다.
한편 이번 연구는 한국연구재단의 나노소재기술개발사업 미래기술연구실, 우수신진연구사업, ERC 웨어러블 플랫폼 소재기술 센터의 지원을 받아 수행됐다.
2022.11.14
조회수 8781
-
거대 단백질 구조체를 레고 블록 쌓듯 조립하는 기술 개발
우리 대학 생명과학과 김학성 교수와 배진호 박사팀이 거대 (초분자) 단백질을 레고 블록 쌓듯 조립할 수 있는 새로운 기술을 개발했다고 19일 밝혔다. 이 방법으로 단백질 구조체의 크기 및 작용기 수를 원하는 대로 조절할 수 있고 메가 달톤(dalton) 크기의 대칭형 거대 단백질 구조체를 조립할 수 있다. 거대 단백질 구조체는 효율적인 약물 전달, 다양한 백신 개발, 그리고 질병 진단에 활용될 것으로 기대된다.
이번 연구 성과는 국제 저명 학술지인 `어드밴스드 사이언스(Advanced Science)' (IF: 16.806)에 2021년 11월 1일 字 온라인 발표됐다. (논문명: Dendrimer-like supramolecular assembly of proteins with a tunable size and valency through stepwise iterative growth)
자연계에는 매우 다양한 특성과 기능을 갖는 단백질이 존재하며 생명현상을 유지하는데 핵심 역할을 한다. 이러한 단백질 중에는 단량체가 큰 구조체 형태로 조립됐을 때만 정상적 기능을 수행하거나, 어떤 경우에는 조립된 경우가 단량체와 완전히 다른 특성을 나타내며, 심지어는 심각한 질병을 유발하는 경우도 많다.
예를 들어 바이러스의 껍질인 켑시드는 단백질 단량체가 조립(assembly)된 것이고, 치매는 아밀로이드 펩타이드나 타우(tau) 단백질이 파이브릴(fibril) 형태로 조립되면서 발생한다. 따라서, 거대(초분자) 단백질 구조체들의 조립 기작 이해는 단백질의 기능과 질병의 원인 규명 및 치료제 개발에 중요하다. 또한, 단백질 구조체는 뛰어난 생체 적합도 때문에 생명공학 및 의학 분야에서도 응용 가능성이 크다.
현재 많은 연구 그룹에서 자연계에 존재하는 단백질 구조체들의 조립 과정을 모방해 새로운 기능의 단백질 구조체 개발에 많은 연구를 진행하고 있다. 그러나 단백질의 구조적 다양성, 상이한 특성 및 큰 분자량 때문에 원하는 구조체를 자유자재로 조립하는 것은 아직도 어려운 과제로 남아 있다.
김학성 교수 연구팀은 두 종류의 빌딩(building) 블록 단백질을 코어(core) 단백질에 순차적으로 교대로 결합시킴으로써 간편하게 3차원 구조의 대칭형 거대 단백질 구조체를 조립하는 방법을 개발했다(그림 1). 즉, 서로 특이적으로 반응하는 두 쌍의 단백질과 리건드(P1/L1 과 P2/L2)를 이용해 코어(core) 단백질에 두 종류의 빌딩(building) 블록을 순차적, 반복적으로 결합함으로써 크기와 작용 기작 수를 조절하면서 메가 달톤 (Mega Dalton) 크기를 갖는 단백질 구조체를 쉽게 조립하였다.
개발된 구조체는 다양한 분야에 응용 가능하며 하나의 예로서, 이번 연구에서는 단백질 구조체에 박테리아 독소를 결합해 암세포 내로 고효율로 전달할 수 있었고, 결과적으로 암세포를 효과적으로 사멸했다(그림 2). 구조체 단백질의 특징인 다가 효과(avidity effect)로 인해 암 표적에 대한 결합력이 약 1,000배 이상 증가돼 암세포 사멸 효과가 획기적으로 증대됐고 이러한 특성은 백신 개발 및 질병 진단에도 응용될 수 있다.
제1 저자인 배진호 박사는 "이번 연구에서 개발된 거대(초분자) 단백질 구조체 조립 기술은 향후, 약물 전달, 백신 개발, 질병 진단 및 바이오센서 등을 포함한 광범위한 분야에서 새로운 플랫폼 기술로 활용될 수 있을 것ˮ이라고 말했다.
이번 연구는 한국 연구 재단의 중견 연구과제 (NRF-2021R1A2C201421811) 지원을 받아 수행됐다.
2021.11.19
조회수 7587
-
소금, 자가조립 나노캡슐 소재로 쓰이다
우리 대학 기계공학과 김형수 교수와 박광석 박사과정이 소금의 결정화 프로세스를 표면장력 효과로 제어해 나노 및 마이크로 캡슐을 제작하는 원천 기술을 개발했다고 5일 밝혔다. 이를 `결정 모세관 오리가미 기술(Crystal Capillary Origami Technology)'이라고 칭한다.
최근 나노물질 자가 조립기술은 기능성 고분자, 바이오 재료 분야 및 반도체 나노 구조체 제조 등에 활용되는 등 바이오기술(BT) 및 정보통신기술(IT) 분야와 서로 기술적으로 융합 발전되고 있어, 미래 산업에 미칠 경제적 효과가 막대할 것으로 예상되어 그 관심도가 높아지고 있다.
일반적인 자가 조립기술은 미리 정해진 기본 유닛을 이용하는 상향식 (bottom-up approach) 기술 방법이다. 보통 폴리머나 콜로이드 등을 이용해 최종 형태를 구성하게 되고, 이 기술은 분자 수준부터 마이크로미터 수준까지 폭넓은 길이 차원에 적용할 수 있다.
자가 조립기술을 이용하면 나노캡슐을 제작할 수 있는데 공정 특성상 캡슐화를 위해서 경화 과정이 필수적이라 제작공정이 간단하지 않다.
김형수 교수는 “지구상에 존재하는 수많은 미네랄이 있을 텐데 이번 연구에서 사용한 특정 소금들과 같이 기본 결정 구조가 얇고 잘 휘는 성질의 결정을 발견해서 활용할 수 있으면 이멀젼(유화액)이나 액적(물방울) 내부에 원하는 물질을 자발적이고 효과적으로 가둘 수 있다ˮ라고 설명했다.
기계공학과 박광석 박사과정이 제1 저자로 참여한 해당 연구 결과는 국제적 권위 학술단체 영국왕립화학회(Royal Society of Chemistry)의 저명학술지 나노스케일(Nanoscale) 誌에 9월 10일 字 게재됐고, 연구의 우수성을 인정받아 표지논문(Inside Front Cover)으로 게재됐다.
한편 이번 연구는 한국연구재단의 지원을 받아 핵융합기초연구사업(NRF-2021R1A2C2007835)과 삼성전자 산학협력 과제 (IO201216-08212-01)의 지원을 부분적으로 받아 수행됐다.
(논문명: Crystal capillary origami capsule with self-assembled nanostructures)
2021.10.05
조회수 8158
-
김희탁 김상욱 교수, 멤브레인 필요 없는 새로운 물 기반 전지 개발
우리 대학 생명화학공학과 김희탁 교수와 신소재공학과 김상욱 교수 공동 연구팀이 전기화학 소자의 핵심 부품인 멤브레인을 사용하지 않고도 에너지 효율 80% 이상을 유지하면서 1천 번 이상 구동되는 새로운 개념의 물 기반 아연-브롬 전지를 개발했다.
이번 연구를 통해 일본, 미국의 수입에 의존해 온 다공성 분리막이나 불소계 이온교환막을 사용하지 않는 기술로, 해당 기술에 대한 대외 의존도를 낮출 수 있을 것으로 기대된다.
이주혁 박사과정과 변예린 박사후연구원이 공동 1 저자로 참여한 이번 연구는 국제 학술지 ‘어드밴스드 머티리얼즈(Advanced materials)’12월 27일자 표지논문에 선정됐다.(논문명: High-Energy Efficiency Membraneless Flowless Zn-Br Battery: Utilizing the Electrochemical-Chemical growth of Polybromides)
최근 태양광, 풍력 등 신재생에너지의 불안정한 전력 공급을 해결하기 위해 전기 에너지를 미리 저장했다가 필요한 시간대에 사용할 수 있는 에너지저장장치(ESS)가 주목받고 있다.
현재는 리튬이온전지가 에너지저장장치용 이차전지로 사용되고 있으나 발화성 유기 전해액 및 리튬계 소재로 인한 발화의 위험성을 지니고 있다. 지난 2017년부터 올해 10월까지 총 21건의 에너지저장장치 화재사고가 발생했으며, 전체 에너지저장장치 시설 1천 490개 중 35%인 522개의 가동이 중단되기도 했다.
이러한 이유로 물을 전해질로 사용한 비 발화성 물 기반 이차전지 기술이 에너지저장장치용 차세대 이차전지로 주목받고 있다. 특히 다양한 물 기반 전지 기술 중 아연과 브롬을 활물질로 사용하는 아연-브롬 레독스 흐름 전지는 높은 구동 전압 및 높은 에너지 밀도를 가져 1970년대부터 지속해서 개발돼왔다.
그러나 아연-브롬 레독스 전지는 브롬이 아연과 반응해 전지 수명을 단축시키는 문제로 인해 상용화가 지연됐다. 이러한 반응을 억제하기 위해 펌프를 이용해 브롬이 함유된 전해질을 외부 탱크로 이송해 왔으나, 이는 펌프 구동을 위한 에너지 소모 및 브롬에 의한 외부 배관이 부식되는 문제를 동반한다.
브롬을 포획하는 전해질 첨가제 및 브롬의 이동을 차단할 수 있는 멤브레인에 대한 개발이 진행됐으나, 가격증가 및 출력 저하의 문제점이 발생했다.
김희탁 교수와 김상욱 교수 공동 연구팀은 일본, 미국에 의존하던 값비싼 멤브레인 소재와 어떠한 첨가제도 사용하지 않는 새로운 물 기반 아연-브롬 전지를 개발했다.
전해질 내의 이온과 외부 전기회로 사이의 전자를 주고받는 한정된 역할만 수행하던 전극의 기능에 멤브레인과 첨가제가 담당하던 브롬을 포획할 수 있는 기능을 추가했다.
질소가 삽입된 미세기공 구조를 전극 표면에 도입해 미세기공 내부에서 비극성 브롬을 극성 폴리브롬화물로 전환한 뒤, 질소 도핑 카본과 폴리브롬화물간 쌍극자-쌍극자 상호 작용을 통해 폴리브롬화물을 기공 내부에 고정했다.
이 기술은 멤브레인의 기능을 전극이 담당하므로 고가의 멤브레인이 필요 없으며, 브롬을 외부 탱크가 아닌 전극 내부에 저장함으로써 펌프 및 배관을 제거할 수 있어 가격 저감 및 에너지 효율을 증대했다.
연구팀이 개발한 다기능성 전극을 이용한 멤브레인을 사용하지 않는 물 기반의 아연-브롬 전지는 리튬-이온 전지보다 45배 저렴할 뿐 아니라, 에너지 효율 83% 이상을 보이며 1천 사이클 이상 운전이 가능하다.
김상욱 교수는 “차세대 물 기반 전지의 한계를 극복하기 위한 나노소재 기술을 이용한 새로운 해결책을 제시했다”라고 말했다.
김희탁 교수는 “이번 연구를 통해 기존보다 안전하고 경제적인 에너지저장장치의 개발이 가속화되기를 기대한다”라고 말했다.
이번 연구는 KAIST 나노융합연구소, 에너지클라우드 사업단, 과학기술정보통신부 리더연구자지원사업인 다차원 나노조립제어 창의연구단의 지원을 받아 수행됐다.
그림 1. 브롬 활물질을 전극내부에서 폴리브롬화물로 전환하여 저장하는 다기능성 전극의 메커니즘의 모식도와 멤브레인을 장착하지 않고 구동되는 전지의 실제 모습
그림 2. 질소가 도핑된 미세기공이 코팅된 다기능성 전극의 제조 과정
2020.01.08
조회수 17018
-
이도창, 김신현 교수, 반도체 나노막대로 초박막 편광필름 개발
우리 대학 생명화학공학과 이도창, 김신현 교수 연구팀이 반도체 나노막대가 일렬로 배열된 수 나노미터 두께의 편광필름을 개발했다.
이 교수 연구팀은 나노막대입자의 상호작용력을 미세하게 조절해 나노막대들이 스스로 공기-용액 계면에서 일렬종대로 조립되게 설계했다. 이러한 자기조립기술은 전기장이나 패터닝된 기판 등 외부의 도움이 필요하지 않기 때문에 다양한 분야에 폭넓게 응용 및 적용될 수 있을 것으로 기대된다.
김다흰 연구원이 1 저자로 참여한 이번 연구는 국제 학술지 ‘나노 레터스(Nano letters)’ 2월 19권 2호에 출판됐다. (논문명 : Depletion-mediated interfacial assembly of semiconductor nanorods).
반도체 나노막대는 막대의 긴 방향을 따라 편광 빛을 내는 독특한 광학 특성이 있어 디스플레이 분야에서 막대한 빛 손실을 가져왔던 기존 편광판을 대체할 수 있는 전도유망한 나노소재로 주목받고 있다.
단일 나노막대의 편광 특성을 소자 면적의 필름에서 구현하기 위해서는 구성하는 모든 나노막대가 한 방향으로 정렬된 뗏목 형태인 스멕틱(smectic) 자기조립 구조가 필요하다.
그러나 수십 나노미터의 길이와 수 나노미터 두께의 나노막대를 대면적에서 정렬하기 위해서는 전기장을 유도하는 전극 기판 혹은 한정된 공간에서 입자를 조립할 수 있는 패터닝된 기판을 필요로 해 실제 소자에 적용하기에는 한계가 있다.
이렇게 조립된 나노막대 필름은 두께가 불균일하고 두꺼워 균일한 초박막 층을 사용해야 하는 필름 소자에는 적합하지 않았다.
연구팀은 문제 해결을 위해 공기-용액 계면과 나노막대 간의 인력, 나노막대와 나노막대 간의 인력을 순차적으로 유도해 단일층 두께의 나노막대 스멕틱 필름을 제작했다.
연구팀의 고배향 필름 제작 기술은 기판으로 사용된 공기-용액 계면을 용액 증발과 함께 제거할 수 있고 조립 면적에 제한이 없어 소자 종류에 상관없이 적용할 수 있다.
연구팀은 길이 30나노미터, 지름 5나노미터의 나노막대들이 수십 마이크로 제곱 면적에 걸쳐 88%의 정렬도로 초박막 필름을 형성함을 확인했다.
나아가 계면과 나노막대, 나노막대와 나노막대 간 상호작용력을 정량적으로 계산 및 비교함으로써 나노막대가 계면에서 조립되는 원리를 밝혔고, 계면에서 얻을 수 있는 다양한 형태의 자기조립구조를 증명했다.
연구팀이 개발한 반도체 나노막대의 스멕틱 필름은 편광 발광층으로 디스플레이 분야에 활발히 적용돼 소자 두께의 최소화, 비용 절감, 성능 강화 등에 이바지할 수 있을 것으로 기대된다.
1 저자인 김다흰 연구원은 “입자의 상호작용력 조절을 통해 단일층 두께에서 나노막대 스스로가 방향성을 통제하며 고배열로 정렬할 수 있다는 것을 보였다. 이는 외부 힘 없이도 더욱 정교한 자기조립구조가 가능하다는 것을 보여주는 결과이다”라며 “고배열, 고배향을 갖는 다양한 나노입자의 초박막 필름 제작 및 필름 소자에 활발히 사용될 것이다”라고 말했다.
이번 연구는 한국연구재단 나노․소재원천기술개발사업의 지원을 받아 수행됐다.
□ 그림 설명
그림1. 공기-용액 계면에서 나노막대의 자기조립 과정을 보여주는 모식도
그림2. 나노막대 표면을 감싸고 있는 리간드 층 밀도에 따른 자기조립구조 모식도와 전자현미경 이미지
2019.03.20
조회수 12082
-
김상욱 교수, 홍합접착제 이용해 성능 높인 그래핀 섬유 개발
〈 김인호 박사과정, 김상욱 교수〉
우리 대학 신소재공학과 김상욱 교수 연구팀이 흑연계 그래핀을 이용해 우수한 물성을 갖는 신개념의 탄소섬유를 개발했다.
연구팀이 개발한 탄소섬유는 홍합접착제로 잘 알려진 폴리도파민(poly-dopamine)을 이용해 그래핀 층간 접착력을 높여 고강도, 고전도도를 갖는다. 이 신소재는 직물형태의 다양한 웨어러블 장치용 원천소재로 활용 가능할 것으로 기대된다.
김인호 박사과정이 1저자로 참여한 이번 연구는 재료과학분야 국제 학술지 ‘어드밴스드 머티리얼즈(Advanced Materials)’ 10월 4일자 표지논문으로 선정됐다. (논문명 : Mussel-Inspired Defect Engineering of Graphene Liquid Crystalline Fibers for Synergistic Enhancement of Mechanical Strength and Electrical Conductivity, 홍합접착제를 이용한 구조적 결함 제어를 통한 고강도/고전도도의 그래핀 액정 섬유 제조)
김상욱 교수 연구팀은 그래핀이 액체에 분산됐을 때 액정을 형성하는 새로운 현상을 최초로 밝히고 관련 원천특허를 보유하고 있다. 이후 그래핀 액정을 기반으로 하는 다양한 신소재 관련 후속연구를 통해 해당 분야를 선도하고 있다.
최근에는 그래핀 액정을 이용한 값싼 습식 섬유공정을 통해 기존 탄소섬유보다 훨씬 저렴한 탄소섬유의 제조가 가능한 것으로 규명됐다.
그러나 현재까지의 공정으로는 섬유 형성 과정에서 그래핀 층의 접힘 현상이 발생해 공극이 발생한다는 고질적인 문제점이 있다. 이러한 구조적 결함은 탄소섬유의 기계적 물성 뿐 아니라 전기전도성도 취약하게 만든다.
김 교수 연구팀은 문제 해결을 위해 자연계의 홍합에서 영감을 얻어 개발된 고분자인 도파민의 접착 성질에 주목했다. 다양한 분야에서 연구되는 이 도파민을 이용하면 그래핀 층간의 접착력을 증가시켜 구조적 결함을 방지하는 효과를 기대할 수 있다.
연구팀은 이를 통해 구조적 결함이 제어된 고강도의 탄소섬유 제작에 성공했다. 또한 폴리도파민의 탄화과정을 통해 전기전도도 역시 향상된 섬유를 제조하는 데 성공했다.
연구팀은 도파민에 열처리를 가하면 그래핀과 유사한 구조를 갖는다는 이론을 바탕으로 그래핀 액정 상에서 도파민의 고분자화 조건을 최적화시켰고, 이를 섬유화해 기존 그래핀 섬유의 본질적인 결함 제어 문제를 해결했다.
또한 도파민의 구조 변환을 통해 기존 고분자의 근본적 한계인 전도도 측면에서 손해를 보지 않으면서, 도파민 분자에 존재하는 질소의 영향으로 전기전도도 측면에서도 물성이 향상됨을 확인했다.
연구를 주도한 김상욱 교수는 “그래핀 액정을 이용한 탄소섬유는 기술적 잠재성에도 불구하고 구조적 한계를 극복해야 하는 한계가 있었다”며 “이번 기술은 추후 복합섬유 제조 및 다양한 웨어러블 직물기반 응용소자에 활용 가능할 것이다”고 말했다.
신소재공학과 박정영 교수, KIST 정현수 박사의 지원을 받아 수행된 이번 연구는 과학기술정보통신부 리더연구자지원사업인 다차원 나노조립제어 창의연구단과 글로벌프론티어사업(하이브리드인터페이스기반 미래소재연구단), 나노․소재원천기술개발 사업의 지원을 받아 수행됐다.
□ 그림 설명
그림1. 어드밴스드 머티리얼즈 표지
그림2. (좌) 일반적인 그래핀 섬유의 단면과 (중), (우) 도파민을 이용하여 두단계로 결함 제어된 후의 그래핀 섬유의 단면의 전자현미경 이미지
2018.10.17
조회수 14177
-
박인규, 정연식 교수, 모바일 기기 탑재 가능한 고성능 수소센서 개발
〈 가오민 연구원, 박인규 교수, 조민규 연구원 〉
우리 대학 기계공학과 박인규 교수, 신소재공학과 정연식 교수 공동 연구팀이 폴리스티렌(Polystyrene) 구슬의 자기 조립(self-assembly) 현상을 이용해 고성능의 실리콘 기반 수소센서를 개발했다.
연구팀이 개발한 수소 센서는 제작 과정이 단순하고 비용이 저렴해 모바일 기기에 탑재할 수 있어 전력 소모에 어려움을 겪는 모바일 분야에 기여할 수 있을 것으로 기대된다.
가오 민(Gao Min) 연구원, 조민규 박사후 연구원, 한혁진 박사과정이 참여한 이번 연구는 나노 분야 국제 학술지 ‘스몰(Small)’ 3월 8일자 표지논문에 선정됐다.
청정에너지인 수소 가스는 차세대 에너지원으로 각광받고 있다. 현재도 냉각 시스템이나 석유 정제시설 등 다양한 산업분야에서 활용되고 있지만 무색, 무취의 가연성 물질이기 때문에 조기 발견이 어려워 고성능 수소 센서를 개발하는 것이 중요하다.
그러나 기존 수소 센서들은 부피가 크고 소모 전력이 높으며 제작비용이 상대적으로 높은 단점이 있다.
공동 연구팀은 수백 나노미터 (nm) 직경의 폴리스틸렌 구슬들을 자기조립 현상을 이용해 규칙적으로 실리콘 기판 위에 배열시켰다. 이를 이용해 수십 나노미터 수준의 그물 모양 패턴을 구현해 초소형 고성능 수소 센서를 개발했다.
이 기술은 수소가스가 센서에 노출되면 팔라듐 나노입자와 반응해 팔라듐의 일함수(work function)가 변화하고 그에 따라 실리콘 나노 그물 내 전자의 공핍 영역(depletion region)의 크기가 변화하면서 전기 저항이 바뀌는 원리이다.
이번에 개발한 수소 센서는 최소 선폭 50 나노미터 (nm) 이하의 실리콘 나노 그물 구조 센서를 저비용으로 구현할 수 있다.
일반적으로 수소 센서의 성능은 민감도, 반응속도, 선택성 등에 따라 구분된다. 연구팀의 센서는 0.1%의 수소 농도에서 10%의 민감도와 5초의 반응속도를 기록해 기존 실리콘 기반 수소 센서보다 50% 이상 빠르고 10배 이상 높은 민감도를 보였다.
박인규 교수는 “기존의 값비싸고 복잡한 공정을 거치지 않고도, 단순한 방법으로 초미세 나노패턴 구현이 가능하며, 수소센서 뿐만 아니라 다양한 화학, 바이오센서에도 응용이 가능할 것이다”고 말했다.
과학기술정보통신부의 나노소재기술개발사업, 한국연구재단의 국민위해인자에 대응한 기체분자식별․분석기술개발사업, 해양수산부의 해양수산환경기술개발사업, KUSTAR-KAIST 사업의 지원을 받아 수행됐다.
□ 그림 설명
그림1. 스몰(Small) 2018년 3월 8일자 Issue 표지논문
그림2. 완성된 수소센서의 일반 사진 (왼쪽), 전자현미경 사진 (중간, 오른쪽)
그림3. 수소 농도 변화에 따른 수소센서의 감지 그래프
2018.04.04
조회수 21211