-
김용훈 교수, 단일 분자 소자의 전극 계면 특성 규명
〈 김 용 훈 교수와 김후성 박사과정, 김한슬 박사 〉
우리 대학 EEWS 대학원 김용훈 교수 연구팀이 10년 이상 나노 분야 주요 난제로 남아있던 단일분자 전자소자의 금속전극-분자 계면 원자구조와 소자특성 간 상관관계를 규명했다.
이번 연구 성과는 국제 과학 학술지인 ‘미국 화학회지(Journal of the American Chemical Society)’ 6월 21일자에 게재됐다.
단일분자 전자소자는 OLED 등을 통해 알려진 유기소자로서 2003년 미국에서 처음 구현됐다. 분자전자소자(molecular electronics)는 차세대 반도체 소자의 후보군으로 관련 연구들이 활발히 수행되고 있다.
분자를 전자소자로 활용하기 위해선 분자-전극 형태의 원자구조가 구체적으로 어떻게 형성되는지 이해하는 것이 중요하다. 분자 전자소자는 크게 분자, 전극, 둘을 잇는 연결자로 구성된다.
2006년 미국 애리조나 대학의 타오(Nongjian Tao) 교수를 포함한 연구팀은 한 종류의 분자에서 여러 개의 전류 값이 나올 수 있음을 규명했으나 그 전류 값의 크기와 개수, 원인 등은 명확히 밝혀지지 않았다.
특히 그 원인에 대해서는 관련된 분자와 금속전극 간 계면의 원자구조가 여러 가지 형태를 띠고 있기 때문이라는 추측만 있었고 명확히 밝혀지지는 않았다.
김 교수 연구팀은 주사탐침현미경 등을 이용해 단분자 소자가 구현되는 과정을 슈퍼컴퓨터를 활용해 재현했다.
접합 구조의 여러 가지 형태를 찾는 것은 결국 황(S) 원자 주변의 금(Au) 원자 몇 개가 어떤 형태로 배열되는지 확인하는 것인데 이것을 배위수(coordination number)라고 부른다.
〈 김 용 훈 교수와 연구팀 〉
연구팀은 분자와 금속 전극 간 결합의 원자구조 배위수에 따라 금속전극 사이에서 전류 값이 변화하는 것을 확인했다. 또한 분자가 당겨질 때 단순히 금속과 분자 사이 결합이 끊어지는 게 아니라 금속전극의 원자구조가 쉽게 변형돼 결국은 금속과 금속 사이의 결합의 끊어지는 것을 규명했다.
일본 오사카 대학의 카와이(T, Kawai) 교수는 위와 같은 김 교수의 이론을 뒷받침하기 위해 소자 인장에 따른 전류의 증가를 포함하는 실험을 수행했다.
한, 일 공동연구팀은 슈퍼컴퓨터를 이용한 제1원리 계산과 첨단 나노소자 제조 및 측정을 통해 유기 소자의 계면 특성을 원자 수준에서 성공적으로 규명했다. 연구팀은 나노과학-나노기술 분야에서 10년 이상 풀리지 않던 난제를 해결했다.
이번 성과는 향후 OLED, 바이오센서, 유기태양전지 등 다양한 유기소자 분야에 활용 가능할 것으로 기대된다.
김 교수는 “이번 연구는 나노 분야에서 이론 연구가 실험을 선도하는 역할을 성공적으로 수행함을 보여주는 예가 될 것이다”고 말했다.
이번 연구는 미래창조과학부의 중견연구자지원사업, 글로벌프론티어사업, 나노소재기술사업과 KISTI 슈퍼컴퓨터의 지원을 받아 수행됐다.
□ 그림 설명
그림1. 분자 전기전도도 실험 측정방법의 개념도
그림2. 대표적인 세 가지 분자-금속전극 접합 원자구조와 이에 상응하는 외력에 따른 전도도 변화 패턴
2017.07.04
조회수 17818
-
최광욱 교수, 기관의 크기를 조절하는 유전자 발견
〈최 광 욱 교수〉
우리 대학 생명과학과 최광욱 교수 연구팀이 돌연변이 유전자의 세포분열이 증가하고 기관이 비정상적으로 커지는 현상의 원인을 밝혔다.
연구팀은 우리 몸의 각 기관이 정상적인 크기로 자라게 하는 히포네트워크(Hippo Network) 내에서 쉽원(Schip1)이라는 새로운 단백질을 발견하고 기능 원리를 규명했다.
이번 연구는 셀(Cell) 자매지인 ‘디벨롭멘탈 셀(Developmental Cell) 7일자 온라인 판에 게재됐다. (논문명: Drospohila Schip1 links Expanded to Tao-1 to regulate Hippo signaling)
생명체에는 각 기관들이 적절한 크기가 되도록 스스로 조절하는 능력이 있다. 이것을 가능하게 만드는 각 요소들은 서로 네트워크를 이뤄 작동하고, 그 네트워크를 히포 네트워크라 부른다.
이 히포네트워크에 유전적 혹은 후천적으로 문제가 발생하면 조절능력을 상실해 기관에서 종양을 만들게 되고 생명을 위협하는 요소가 된다. 따라서 네트워크를 구성하는 요소를 밝히고 완성시키는 것은 불확실한 종양의 발생원인 규명에 필수적이다.
과학계는 지속적 연구를 통해 히포네트워크의 구성요소들과 기능 및 역할을 발견했다. 하지만 이 네트워크에서 중심적으로 작동하는 두 요소인 ‘타오 원(Tao-1)’과 ‘익스팬디드(Expanded)’ 사이의 기작은 밝혀지지 않았다.
익스팬디드와 타오원이 네트워크 내에서 관련이 있다는 점은 밝혀졌지만 어떤 방식으로 연결됐는지, 직접적인 연관은 무엇인지에 대한 부분은 밝혀내야 할 숙제로 남아 있었다.
연구팀은 문제 해결을 위해 히포 네트워크 유전자가 처음 발견된 초파리를 이용했다. 히포 네트워크는 초파리부터 인간까지 거의 동일한 유전자에 의해 조절되고 있기 때문이다.
연구팀은 초파리 히포네트워크 내 쉽원(Schip1) 요소가 익스팬디드와 타오원 사이의 매개체라는 사실을 규명했다. 쉽원은 타오원을 세포막으로 끌어들이는 역할을 하고 익스팬디드는 쉽원이 적절한 위치를 잡게 해 준다.
이 쉽원 유전자에 돌연변이가 생길 경우 세포분열이 크게 증가하고 결과적으로 기관의 크기가 비정상적으로 커지는 등 암 조직에서 나타나는 여러 형질이 발생한다.
연구팀은 쉽원 유전자가 초파리 뿐 아니라 인체에도 잘 보존돼 있기 때문에 종양의 원인 규명 및 치료법 개발에도 중요한 역할을 할 것이라고 밝혔다. 향후 고등 생명체를 이용한 추가적 연구가 진행될 것으로 기대된다.
최 교수는 “지금까지 단절됐던 상류와 하류 요소를 이어주는 중요한 고리를 찾았다”며 “이는 매우 의미있는 발견이다”고 말했다.
정형록 박사과정이 주도한 이번 연구는 교육부와 한국연구재단이 추진하는 중견연구자지원사업과 글로벌 연구실지원사업의 일환으로 수행됐다.
□ 그림 설명
그림1. 쉽원이 없을 때 초파리 눈 크기 변화
그림2. 이전의 완성되지 않았던 히포네트워크와 현재 본 논문을 통해 완성된 히포 네트워크
그림3. 쉽원 돌연변이에서 히포의 양이 급격하게 늘어나는 모습
2016.03.18
조회수 12259