본문 바로가기
대메뉴 바로가기
KAIST
연구뉴스
유틸열기
홈페이지 통합검색
-
검색
메뉴 열기
%ED%83%84%EC%86%8C%EB%82%98%EB%85%B8%ED%8A%9C%EB%B8%8C
최신순
조회순
반도체 활용 탄소나노튜브로 고정밀 가공 가능하다
탄소나노튜브*는 강철보다 강도가 높아 반도체, 센서, 화학, 군수산업 등 다양한 응용 분야에 활용된다. 하지만 실제 사용시 금속/세라믹 소재가 표면에 코팅되어야 한다. 한국 연구진이 탄소나노튜브의 표면을 균일하게 코팅할 수 있게 보조하는 나노전사인쇄 기반 패터닝 기술 개발에 성공했다. *탄소나노튜브(carbon nanotube; CNT): 다이아몬드의 주성분인 탄소들이 6각형 고리 형태로 연결되어 지름 1나노미터(1m의 10억분의 일)의 긴 대롱 모양을 하고 있는 것 우리 대학 기계공학과 박인규 교수, 김산하 교수가 고려대(총장 김동원) 세종캠퍼스 안준성 교수, 한국기계연구원(원장 류석현) 정준호 박사와 공동연구를 통해 `탄소나노튜브의 원자 침투성(atomic permeability) 향상을 위한 고정밀 나노패터닝 기술'을 개발했다고 8일 밝혔다. 고성능 반도체, 센서, 에너지 소자를 구현하기 위해서는 수직 성장된 탄소나노튜브 표면에 기능성 물질을 코팅하는 것이 필수적이지만, 합성된 탄소나노튜브는 높은 응집률을 갖고 있어서 원자 침투성이 떨어지고 내부에 기능성 물질을 균일하게 코팅하는 것이 불가능하다. 이를 극복하기 위해 탄소나노튜브의 마이크로 패터닝 등 다양한 전략적 기술이 개발되고 있지만 균일한 코팅을 위한 높은 원자 침투성을 갖는 탄소나노튜브의 구현은 아직 미흡한 실정이다. 공동 연구팀은 정교하게 제작된 금속 또는 금속산화물 나노구조체를 전사할 수 있는 나노 임프린팅 공정을 접목한 공정을 개발했다. 그 결과, 다양한 형상의 나노 패턴을 따라 탄소나노튜브 성장을 구현해 원자 침투성의 개선을 통한 기능성 물질 코팅의 품질 향상을 이룩했다. 일례로, 원자층 증착법을 통한 세라믹 원자의 코팅을 수행한 나노 패턴된 탄소나노튜브는 기존 탄소나노튜브의 높은 응집률로 인한 세라믹 원자 증착 균일도 저하 한계를 개선해, 나노 패턴된 탄소나노튜브의 상단부에서 하단까지 나노 스케일로 균일한 세라믹 코팅 결과를 보였다. 이처럼 세라믹 코팅 품질의 개선은 탄소나노튜브의 기계적 복원 특성을 높일 수 있기에 반도체, 센서, 에너지 소자의 반복적 활용 및 산업적 적용을 위해 반드시 선결돼야 하는 작업이다. 또한, 전자빔 증착법과 같은 물리적 증착법 역시 나노 패턴으로 인한 원자 침투성의 증진으로 인해 패턴이 없는 탄소나노튜브가 상단에만 금속이 증착되는 것에 비해, 나노 패턴된 탄소나노튜브는 내부까지 금속이 증착되는 결과를 보였다. 이와 같은 금속 증착 품질의 개선은 가스 센서와 같은 활용을 위한 촉매 역할을 해 보다 민감하고 반응성이 우수한 센서 활용이 가능해진다. KAIST 박인규 교수는 "개발된 수직 정렬 탄소나노튜브의 나노패턴화 공정은 탄소나노튜브 기능성 코팅 응용에 있어 본질적인 문제인 낮은 원자 침투성을 해결할 수 있을 것으로 기대되고, 추후 기계적 화학적 응용을 포함한 탄소나노튜브의 산업 전반적 활용으로 이어질 수 있을 것이다ˮ라며 "이는 나노 소재의 구조화 및 기능화와 같은 나노테크놀로지의 압도적 선도 국가가 되기 위한 발판이 될 것이다ˮ고 연구적 의의를 설명했다. 한국기계연구원 하지환 박사후연구원, KAIST 기계공학과 양인영 박사과정, 고려대 세종캠퍼스 안준성 교수가 공동 제1 저자로 참여한 이번 연구는 저명 국제 학술지 `어드밴스드 펑셔널 머티리얼즈(Advanced Functional Materials, Impact Factor 19, JCR 4.2%)' 지난 6월 온라인판에 출판됐으며, 학술지 전면 표지논문으로 선정됐다. (논문명: Nanotransfer Printing for Synthesis of Vertically Aligned Carbon Nanotubes with Enhanced Atomic Penetration) 한편 이번 연구는 과학기술정보통신부 및 산업통상자원부, 한국과학기술원의 재원으로 한국연구재단 중견연구자지원사업, 산업기술알키미스트프로젝트, 도약연구 프로젝트의 지원을 받아 수행됐다.
2024.11.08
조회수 1018
초장기간 작동 뇌-기계 인터페이스 개발
수술이 불가피한 삽입형 신경 인터페이스의 경우, 한 번의 수술로도 최대한 많은 정보를 얻을 수 있고 장기간 사용가능한 디바이스의 개발이 필요하다. 한국 연구진이 1년 이상 사용가능한 다기능성 신경 인터페이스를 개발하여 향후 뇌 지도, 질환 연구 및 치료에 획기적인 발전을 가져올 것으로 기대한다. 우리 대학 바이오및뇌공학과 박성준 교수 연구팀과 한양대학교(총장 이기정) 바이오메디컬공학과 최창순 교수 연구팀이, 열 인발공정(Thermal Drawing Process, TDP)*과 탄소나노튜브 시트를 병합해 장기간 사용 가능한 다기능성 섬유형 신경 인터페이스를 개발했다고 24일 밝혔다. ☞ 열 인발공정 : 열을 가해 큰 구조체의 복잡한 구조체를 빠른 속도로 당겨 같은 모양 및 기능을 갖춘 섬유를 뽑아내는 일 또는 가공. 뇌신경 시스템 탐구를 위한 삽입형 인터페이스는 생체 시스템의 면역 반응을 줄이기 위해 생체 친화적이며 부드러운 물질을 사용하면서도, 다양한 기능을 병합하는 방향으로 발전해 왔다. 하지만 기존의 재료와 제작 방법으로는 다양한 기능을 구현할 수 있으면서도 장기간 사용가능한 디바이스를 만들기 어려웠고, 특히 탄소 기반 전극의 경우 제조 및 병합 과정이 복잡하고 금속 전극에 비해 기능적 수행 능력이 떨어진다는 문제점이 있었다. 연구팀은 문제 해결을 위해 이번 연구에서 탄소나노튜브 시트 전극과 고분자 광섬유를 병합했다. 탄소나노튜브 섬유가 한 방향으로 배열된 탄소나노튜브 시트 전극을 통해 신경세포 활동을 효과적으로 기록했고, 광 전달을 담당하는 고분자 광섬유에 이를 감아 머리카락 크기의 다기능 섬유를 제작했다. 연구팀은 제작된 섬유는 우수한 전기적, 광학적, 기계적 성질을 보였음을 확인했다. 해당 뇌-기계 인터페이스를 실제 쥐 모델에 삽입한 결과, 전기적 신경 활성신호, 화학적 신경전달물질(도파민)을 잘 측정하고 광유전학적 조절을 통해 행동학적 산출을 이끌어낼 수 있음을 확인했다. 또한 연구팀은 1년 이상 광학적으로 발화된 신경 신호와 자발적으로 발화된 신경 신호를 측정함으로써 초장기간 사용 가능성도 보여줬다. 이번 연구 결과는 국제 학술지 `어드밴스드 머터리얼스(Advanced Materials)'에 2024년 3월 29일 字로 출판됐다. (논문명: Structurally Aligned Multifunctional neural Probe (SAMP) using forest-drawn CNT sheet onto thermally drawn polymer fiber for long-term in vivo operation) 박성준 교수는 "전기적 신경 활성신호와 더불어 화학적 신경전달물질 기록 및 광학적 조절 기능을 갖춘 초장기간 사용가능한 차세대 신경 인터페이스의 개발 성과ˮ임을 강조하며, "향후 대동물 적용 및 자기공명영상 장비와 동시 사용을 통해 뇌 질환의 세부적인 메커니즘 파악과 전뇌적(Whole brain) 기록 및 조절 분야에 사용될 수 있을 것ˮ 이라고 말했다. 한편 이번 연구는 과학기술정보통신부, 한국연구재단 나노및소재기술개발사업, 경찰청 미래치안도전기술개발사업의 지원을 받아 수행됐다.
2024.04.24
조회수 3354
고용량 배터리 수명 증대 영상화하다
전기자동차에서 볼 수 있는 고용량 배터리에 사용되고 있는 실리콘 활물질은 기존 음극 활물질인 흑연 대비 높은 용량 값(4200 mAh/g)을 갖고 있으나, 충전 및 방전 간 400%에 달하는 높은 부피 팽창/수축률이 배터리 수명에 악영향을 미치고 있다. 이를 해결하기 위해서 단일벽 탄소나노튜브를 소량 첨가해 수명 특성이 향상되는 결과를 얻었는데, 이런 향상이 어떻게 가능한지 나노스케일에서 영상화한 연구 결과가 공개됐다. 우리 대학 신소재공학과 홍승범 교수 연구팀이 LG에너지솔루션과 협업해 배터리의 수명 특성 향상 메커니즘 영상화 결과를 국제학술지‘에이씨에스 에너지 레터스(ACS Energy Letters, Impact Factor: 22)’에 게재했다고 19일 밝혔다. (논문명: Spatially Uniform Lithiation Enabled by Single-Walled Carbon Nanotubes) 연구팀은 이전에는 실리콘 활물질이 충·방전을 거치면서 전자 전도 네트워크가 열화되는 과정을 영상화하였는데, 이번 연구에서는 단일벽 탄소나노튜브의 존재로 인해서 그 형태를 유지하고 있는 전자전도 네트워크가 활물질 내에 균일한 충·방전이 가능하도록 기능하고 있음을 보여 수명 증대 메커니즘을 검증했다. 구체적으로 연구팀은 원자간력 현미경(Atomic Force Microscopy) 기반의 켈빈 프루브 현미경(Kelvin Probe Force Microscopy)를 이용해 1회 및 90회 충·방전 싸이클 후의 전극 내 천연흑연과 실리콘 산화물 입자에서의 표면 전위를 측정 및 영상화했다. 이를 통해 단일벽 탄소나노튜브(Single-Walled Carbon Nanotube, SW-CNT)가 첨가된 전극에서는 활물질 내 표면 전위가 균일하게 분포하고 있는 반면, 첨가되지 않은 기존 전극의 경우에는 90회 충·방전 후에 불균일한 표면전위를 보여, 전자 전도 네트워크가 제대로 기능을 발휘하지 않아 불균일한 충·방전이 됨을 연구팀은 확인했다. 이처럼 활물질 내부의 표면 전하를 영상화할 수 있는 기술은 실리콘 활물질 뿐만 아니라, 다양한 전극 시스템에 적용될 수 있으며, 향후 배터리 충전 및 방전 상태 균일성을 확인하고 수명 향상 연구로 발전할 수 있다. 이번 연구의 제1 저자인 신소재공학과 박건 연구원은 “충·방전 시 수반되는 실리콘 계열 활물질의 급격한 부피 변화에도 불구하고 가느다란 탄소나노튜브가 전자 전도 채널을 유지하고 이로 인해 전극 내에 균일한 충·방전을 가능케하는 것이 매우 신기한 일이었는데, 이를 나노스케일에서 직접 영상화해 그 역할을 미시세계에서 이해할 수 있었던 것이 큰 의미가 있다”라고 말했다. 교신 저자인 홍승범 교수는 “원자간력 현미경을 활용해서 나노스케일에서 일어나는 전기화학적인 현상을 영상화하고 이를 통해서 배터리 성능 및 수명을 향상할 수 있는 혁신적인 아이디어를 창출할 수 있게 되어 매우 기쁘다”라고 말했다. 이번 연구는 LG에너지솔루션, LG에너지솔루션-KAIST Frontier Research Lab.과 KAIST 글로벌 특이점 사업의 지원을 받아 수행됐다.
2023.09.19
조회수 4103
150% 쭉쭉 늘어나는 전자 섬유 개발
전자 섬유는 최근 각광받고 있는 사용자 친화 웨어러블 소자, 헬스케어 소자, 최소 침습형 임플란터블 전자소자에 핵심 요소로 여겨져 활발하게 연구가 진행되고 있다. 하지만 고체 금속 전도체 필러(Conductive filler)를 사용한 전자 섬유를 늘려서 사용하려 할 경우, 전기전도성이 급격하게 감소해 전기적 성질이 망가진다는 단점이 있다. 우리 대학 신소재공학과 스티브 박, 전기및전자공학부 정재웅, 바이오및뇌공학과 박성준 교수 공동 연구팀이 높은 전도도와 내구성을 가지는 액체금속 복합체를 이용해 신축성이 우수한 전자 섬유를 개발했다고 25일 밝혔다. 전자 섬유의 늘어나지 않는 단점을 해결하기 위해 연구팀은 고체처럼 형상이 고정된 것이 아닌 기계적 변형에 맞춰 형태가 변형될 수 있는 액체금속 입자 기반의 전도체 필러를 제시했다. 액체금속 마이크로 입자는 인장이 가해질 경우에 그 형태가 타원형으로 늘어나면서 전기 저항 변화를 최소화할 수 있다. 하지만 그 크기가 수 마이크로미터이기 때문에, 기존에 이용된 딥-코팅(dip-coating)과 같은 단순한 방법으로 실에 코팅하는 것이 불가능하다. 연구진은 액체금속 입자가 높은 밀도로 실 위에 전달될 수 있고, 블레이드와 기판 사이에서 현탁액의 조성을 실시간으로 바꾸면서 화학적 변성을 통해 액체금속 입자를 실과 접착시킬 수 있는 새로운 방법인 현탁액 전단(suspension shearing) 방법을 통해 이를 해결했다. 추가로 기계적 안정성이 우수한 탄소나노튜브(CNT)가 포함된 액체금속 입자를 한층 더 코팅하는 방식으로, 액체금속 복합체의 기계적 안정성도 확보할 수 있었다. 제작된 신축성 전자 섬유는 추가적인 공정이 필요 없이 우수한 초기전도성을 보였고(2.2x10^6 S/m), 기존의 고체 금속 전도체 기반 섬유들과는 다르게 150% 늘려도 전기저항 변화가 거의 없다. 기계적 안정성도 우수해 반복되는 변형 실험에도 전기적 성질을 유지할 수 있었고, 다양한 전자 부품들과 쉽게 통합될 수 있다. 연구팀은 이를 이용해 실제 상용화된 옷에 다양한 전자회로를 구현했다. 나아가서 연구팀은 액체금속 복합체를 코팅하는 방법이 다양한 실에 호환 가능하고, 재료의 생친화성이 우수하기 때문에, 이를 이용해 신경과학 연구에 사용할 수 있는 섬유형 바이오 전자 섬유를 구현했다. 연구팀은 제안된 코팅 방법을 이용해 기계적 변형에 영향을 받지 않는 뇌 활동 전극, 신경 자극 전극, 다기능성 옵토지네틱 프로브를 제작해 넓은 범용성과 높은 공정 신뢰성을 갖는다는 것을 보였다. 우리 대학 이건희 박사, 이도훈 박사과정, 전우진 박사과정 학생이 공동 제1 저자로 참여한 이번 연구는 국제 학술지 `네이쳐 커뮤니케이션즈(Nature Communications)' 온라인 판에 7월 13일자 출판됐다. (논문명: Conductance stable and mechanically durable bi-layer EGaIn composite-coated stretchable fiber for 1D bioelectronics) 스티브박 교수는 "옷에 다양한 전자 공학적인 기능을 웨어러블 형태로 구현하는 가능성을 보여준 연구로 최근에 각광받고 있는 환자 편의성을 높인 웨어러블 헬스케어 소자나 최소침습형 임플란터블 전자소자 개발의 새로운 방향성을 제시한 의미있는 결과ˮ 라고 말했다. 한편 이번 연구는 한국연구재단, KAIST의 지원을 받아 수행됐다. 이건희 박사는 포스코청압재단의 지원을 받고 있다.
2023.07.25
조회수 6024
김용훈 교수, 차세대 탄소섬유 개발 위한 이론 규명
우리 대학 EEWS대학원 김용훈 교수 연구팀이 고품질 탄소섬유 개발에 필요한 고분자 전구체와 저차원 탄소 나노소재 간 계면의 원자구조 및 전자구조적 특성을 규명했다. 이번 연구로 차세대 탄소섬유 개발의 이론적 청사진을 제시할 것으로 기대된다. 이주호 박사과정이 1저자로 참여한 이번 연구 성과는 국제 과학 학술지인 ‘어드밴스드 펑셔널 머티리얼즈(Advanced Functional Materials)’ 4월 11일자에 속표지(Inside Back Cover) 논문으로 게재됐다. 탄소섬유는 매우 가벼우면서도 뛰어난 기계적, 열적 특성을 갖고 있기 때문에 초경량 자전거, 골프 클럽 등 스포츠 용품부터 자동차, 항공우주, 원자력 등 다양한 첨단 기술 분야에 활발히 활용되고 있는 신소재이다. 탄소섬유는 전구체(precursor) 고분자를 방사, 안정화 및 탄화 등의 작업을 통해 얻어지며 현재 폴리아크릴로나이트릴(polyacrylonitrile, PAN)이 탄소섬유의 주 전구체로 사용되고 있다. 고품질 차세대 탄소섬유를 얻는 방법으로 탄소나노튜브(carbon nanotube, CNT)를 탄소섬유 전구체 고분자 매트릭스에 분산시켜 고분자의 결정성을 높이는 연구가 대표적이다. 탄소나노튜브와 전구체 고분자의 조합이 탄소섬유의 물성을 향상시킬 수 있다는 것도 실험을 통해 확인된 바 있다. 그러나 20년 이상의 연구에도 탄소나노튜브와 전구체 고분자 간 상호작용에 대한 이해는 실험적 접근법의 어려움으로 인해 부족한 상황이다. 따라서 탄소나노튜브를 활용한 고품질 탄소섬유 제작 기술은 한계가 있었다. 김 교수 연구팀은 슈퍼컴퓨터를 활용해 양자역학적 제1원리 기반 멀티스케일 시뮬레이션을 수행해 대표적인 탄소섬유 전구체인 폴리아크릴로나이트릴 고분자가 탄소나노튜브 계면에서 배열되는 과정을 원자 수준에서 체계적으로 재현했다. 또한 탄소나노튜브-폴리아크릴로나이트릴 고분자 계면이 특히 좋은 특성을 보일 수 있는 이유를 연구했다. 폴리아크릴로나이트릴 고분자의 단위체가 누워있는 형태의 특정 원자구조를 선호하고, 이 때 양전하와 음전하가 균형 있게 이동하는 계면 특유의 특성이 발현되므로 이 계면 구조를 최대화 시키는 것이 최적의 대규모 폴리아크릴로나이트릴 고분자 정렬을 유도할 수 있음을 밝혔다. 또한 폴리아크릴로나이트릴 고분자의 정렬도가 그래핀 나노리본과의 계면에서 극대화되는 것을 확인해 최근 각광을 받고 있는 그래핀을 이용해 탄소 섬유의 품질을 더욱 향상시킬 수 있다는 가능성도 제시했다. “김 교수는 양자역학에 기반한 전산모사가 첨단 소재·소자의 개발을 위한 기본원리를 제공해 줄 수 있음을 보여준 연구의 예다”며 “이러한 전산모사 연구의 중요성은 컴퓨터 성능 및 전산모사 이론체계의 비약적인 발전과 더불어 더욱 커질 것이다”라고 말했다. 이번 연구는 미래창조과학부 중견연구자지원사업, 나노소재원천기술개발사업, 기초연구실지원사업, 글로벌프론티어사업의 지원을 받아 수행됐다. □ 그림 설명 그림1. 어드밴스드 펑셔널 머티리얼즈 표지 그림2. 연구 개요 모식도
2018.04.26
조회수 20242
최양규 교수, 실리콘 반도체보다 5배 빠르고 저렴한 탄소나노튜브 반도체 개발
우리 대학 전기및전자공학부 최양규 교수 연구팀이 국민대학교 최성진 교수와의 공동 연구를 통해 탄소나노튜브를 위로 쌓는 3차원 핀(Fin) 게이트 구조를 이용해 대면적의 탄소나노튜브 반도체를 개발했다. 이동일 연구원이 제 1저자로 참여한 이번 연구는 나노 분야 학술지 ‘에이씨에스 나노(ACS Nano)’ 12월 27일자에 게재됐다. (논문명: Three-Dimensional Fin-Structured Semiconducting Carbon Nanotube Network Transistor) 탄소나노튜브로 제작된 반도체는 실리콘 반도체보다 빠르게 동작하고 저전력이기 때문에 성능이 훨씬 뛰어나다. 그러나 대부분의 전자기기는 실리콘 재질로 만들어진 반도체를 이용한다. 높은 순도와 높은 밀도를 갖는 탄소나노튜브 반도체의 정제가 어렵기 때문이다. 탄소나노튜브의 밀도가 높지 않아 성능에 한계가 있었고 순도가 낮아 넓은 면적의 웨이퍼(판)에 일정한 수율을 갖는 제품을 제작할 수 없었다. 이러한 특성들은 대량 생산을 어렵게 해 상용화를 막는 걸림돌이었다. 연구팀은 문제 해결을 위해 3차원 핀 게이트를 이용해 탄소나노튜브를 위로 증착하는 방식을 사용했다. 이를 통해 50나노미터 이하의 폭에서도 높은 전류 밀도를 갖는 반도체를 개발했다. 3차원 핀 구조는 1마이크로미터 당 600개의 탄소나노튜브 증착이 가능해 약 30개 정도만을 증착할 수 있는 2차원 구조에 비해 20배 이상의 탄소나노튜브를 쌓을 수 있다. 그리고 연구팀은 이전 연구를 통해 개발된 99.9% 이상의 높은 순도를 갖는 반도체성 탄소나노튜브를 이용해 고수율의 반도체를 확보했다. 연구팀의 반도체는 50나노미터 이하의 폭에서도 높은 전류밀도를 갖는다. 실리콘 기반의 반도체보다 5배 이상 빠르면서 5배 낮은 소비 전력으로 동작 가능할 것으로 예상된다. 또한 기존의 실리콘 기반 반도체에 쓰이는 공정 장비로도 제작 및 호환이 가능해 별도의 비용이 발생하지 않는다. 제 1저자인 이동일 연구원은 “차세대 반도체로서 탄소나노튜브 반도체의 성능 개선과 더불어 실효성 또한 높아질 것이다”며 “실리콘 기반 반도체를 10년 내로 대체하길 기대한다”고 말했다. 이번 연구는 미래창조과학부 글로벌프론티어사업 스마트IT융합시스템 연구단과 미래유망융합파이오니아 사업의 씨모스 THz 기술 융합 연구단의 지원을 받아 수행됐다. □ 그림 설명 그림1. 3차원 구조의 탄소나노튜브 전자소자의 모식도 및 실제 SEM 이미지 그림2. 개발된 8인치 기반의 대면적 3차원 탄소나노튜브 트랜지스터 전자 소자의 사진 및 단면을 관찰한 투과 전자 현미경 사진
2017.01.04
조회수 15095
화학적 도핑을 통한 탄소신소재 개발
- 재료분야 저명 학술지 ‘어드밴스드 머티리얼스’ 25주년 특집호 발표 - 우리 학교 신소재공학과 김상욱 교수가 ‘화학적 도핑을 통한 탄소 신소재 개발’을 주제로 재료분야 저명학술지 ‘어드밴스드 머티리얼스(Advanced Materials)’ 25주년 기념 초청 리뷰논문(10월 14일자)을 게재했다. 이번 논문에서 김 교수는 그래핀과 탄소나노튜브에 다양한 이종원소 도핑을 통해 새로운 탄소 소재를 개발하고, 적용 가능한 수준까지 재료의 특성을 끌어올려 배터리, 광촉매 등은 물론 미래 기술로 각광받고 있는 태양전지, 휘어지는 디스플레이 등에도 응용될 것이라고 전망했다. ‘도핑’은 운동경기에서 좋은 성과를 내기 위해 선수들이 약물이나 주사 등을 사용하는 것으로 널리 알려져 있다. 그러나 과학계에서는 순수한 물질에 필요한 불순물을 첨가시키는 것을 ‘도핑’이라고 부른다. 두 가지 도핑 모두 성능을 향상시키는 데 도움이 된다는 공통점을 가지고 있지만 과학계의 도핑은 부작용이 없으며 요구되는 성능을 획득하는데 반드시 필요한 존재라는 특징을 갖고 있다. 실리콘 반도체의 경우에도 다양한 원소가 도핑된 반도체를 사용해 요구 성능을 확보하고 있다. 최근 주목받는 그래핀이나 탄소나노튜브와 같은 신소재는 재료 특성이 매우 우수한 것으로 알려져 있지만 산업적으로 활용하기 위해서는 다양한 원소를 도핑이란 첨가 방법을 통해 재료 특성을 우수하게 끌어올리는 방법이 필요했다. 도핑을 할 경우 탄소원자로만 구성된 그래핀과 탄소나노튜브에 다른 원소의 주입이 가능하게 되고 이들 원소의 특징에 따라서 전자를 주거나 받게 되어 전기를 보다 잘 통하게 할 수 있다. 또 반응성을 향상시켜 산업적 응용을 방해하던 낮은 용매 분산성을 향상시킬 수 있게 된다. 이와 함께 향상된 용매 분산성과 전기 전도도는 그동안 탄소 계열 신소재에서는 불가능하게 여겨졌던 용액 공정을 가능하게 할 수 있다. 이를 통해 휘어지는 반도체, 오래가는 배터리, 효율 높은 광촉매 등의 개발을 가능하게 한다. 김상욱 교수는 “이번 기술 개발로 현재 사용되는 배터리보다 더 오래가는 배터리, 더 빛을 잘 차단해주는 자외선 차단제, 태양열로 가는 자동차 및 휘어지는 휴대폰 등에 활용할 수 있는 신소재의 개발이 한층 더 앞당겨진 것으로 기대된다”고 말했다. 어드밴스드 머티리얼스는 재료분야 최고 수준의 학술지로 이번 25주년 기념 특집에서는 세계적으로 저명한 재료 과학자들로 구성된 학술지 편집진이 엄격한 심사과정을 거쳐 선정한 가장 선도적인 업구업적을 내고 있는 연구자들을 초청해 연구 성과를 소개했다. 그림1. 도핑을 통해 만들어진 탄소 신소재와 이들의 다양한 적용사례 - 1. 태양전지, 2. 휘어지는 기판, 3. 액정, 4. 선택적 흡착제, 5. 에너지 저장 및 변환소자, 6. 복합재료(왼쪽 위부터 시계방향)
2013.11.05
조회수 15156
신개념 나노발전기 원천기술 개발
- 나노복합체 이용해 복잡한 공정과 고비용 문제 해결 -- 어드밴스드 머터리얼스 6월호 표지논문 게재 - 우리 학교 연구진이 나노복합체를 이용해 나노발전기를 적은 비용으로도 대면적으로 만들 수 있는 원천기술 개발에 성공했다. 우리 대학 신소재공학과 이건재 교수 연구팀이 나노복합체를 이용한 신개념 나노발전기 원천기술을 개발해 재료분야 세계적 학술지인 ‘어드밴스드 머터리얼스(Advanced Materials)’ 6월호 표지논문에 게재됐다. 이번에 개발된 기술은 간단한 코팅 공정을 통해 만들어 비용을 획기적으로 줄일 수 있을 뿐만 아니라, 넓은 면적도 쉽게 제작 가능해 공정이 복잡했던 기존의 한계를 극복해냈다는 평가를 받고 있다. 나노발전기는 나노 크기(10억분의 1m)의 물질을 사용해 전기를 생산하는 발전기로, 압전 물질에 압력이나 구부러짐 등과 같은 물리적 힘이 가해질 때 전기가 발생하는 특성인 ‘압전 효과’를 이용한다. 압전 효과를 이용하는 발전기술은 2009년 MIT가 선정한 10대 유망기술에 선정됐으며, 2010년 미국의 유명한 과학월간지 파퓰러사이언스(Popular Science)가 선정한 세계를 뒤흔들 45가지 혁신기술에 포함되기도 했다. 나노발전기 개발을 위한 압전 물질은 2005년 미국 조지아공대 왕중린 교수팀이 세계 처음으로 나노발전기 개념을 제시하면서 적용한 ‘산화아연(ZnO)’이 유일했다. 2010년 KAIST 신소재공학과 이건재 교수 연구팀은 산화아연보다 15~20배 높은 압전 특성을 갖고 있는 세라믹 박막물질인 ‘티탄산화바륨(BaTiO3)’을 이용해 나노발전기 효율을 한층 업그레이드 시킨데 이어, 이번에는 나노복합체를 이용해 간단한 공정으로 제작하는 데 성공해 적은 비용으로도 넓은 면적의 나노발전기를 구현해낼 수 있게 됐다. 연구팀은 수백 나노 크기의 고효율 압전 나노입자인 ‘티탄산화바륨’과 비표면적이 크고 전기 전도성이 높은 ‘탄소나노튜브’ 또는 ‘산화 그래핀(RGO)’을 폴리머(polydimethylsiloxane, PDMS)와 섞은 후 간단한 코팅공정을 통해 넓은 면적의 나노발전기 제작에 성공했다. 이건재 교수는 “압전효과를 바탕으로 한 ‘나노자가발전 기술’은 적은 기계적 힘만으로도 전기를 생산할 수 있어 차세대 에너지 기술로 각광을 받고 있지만, 기존 기술은 제작공정이 복잡하고 고가의 비용문제 및 소자크기의 한계성을 극복하지 못했다”고 말했다. 아울러 “이번에 개발된 기술에 패키징 및 충·방전 기술을 융합하면, 반영구적으로 자가발전 및 저장이 가능한 새로운 형태의 에너지 시스템 개발에 응용될 수 있다“고 덧붙였다. 한편, 이번 기술은 해외 1건, 국내 2건의 특허가 출원 및 등록됐다. <동영상>http://www.youtube.com/watch?v=90rk7G3t30k&feature=player_embedded 압전 나노복합체 제작공정과 소자를 다양한 방법으로 구부릴 때마다 전기가 발생하는 것을 보여주는 동영상 ※응용사례 - 에너지블럭(부산 서면역 적용) 지하철 선로에 압전소자를 적용해 전동차 운행으로 얻어지는 진동을 통해 발전하는 장치로 국내 최초의 압전에너지 상용화 제품http://blog.naver.com/ioyou64?Redirect=Log&logNo=130093513496 - 이스라엘은 고속도로에 압전발전기를 적용해 발생되는 전기로 가로등을 밝히고 있음 - 필립스는 사람이 리모컨 버튼을 누르는 힘만으로 전기를 생산해 배터리가 없어도 작동되는 리모컨 개발 - 수 많은 나노 발전기를 겹쳐 옷감 형태로 만든 재킷을 입으면 단순히 걷는 것과 같은 일상생활만으로도 휴대전화나 MP3 등을 충전할 수 있을 것으로 예상됨 - 아주 작은 전원만으로도 몸속에서 독자적인 임무를 수행하는 나노센서 개발가능 ※그림설명 그림1. 압전 나노입자를 포함하는 복합물질에서 구부림에 의해 전기가 생성되는 것을 보여주는 그림. 그림2. 구부러질 때마다 전기를 만드는 나노복합체 기반의 자가발전기(논문표지)
2012.06.12
조회수 18212
탄소나노튜브로 물이 스스로 빨려 들어가는 현상 원인 규명
- PNAS 발표, “효율성을 극대화한 차세대 해수 담수화막 활용 가능 기대”- 지금까지 현상만 알려졌을 뿐 그 원인이 정확히 설명되지 못했던, 물을 싫어하는 탄소나노튜브* 안으로 물이 스스로 빨려 들어가는 ‘반직관적 실험 현상’이 국내 연구진에 의해 규명되었다. *) 탄소나노튜브 : 각 탄소가 3개의 다른 탄소와 결합되어 있는 흑연의 탄소 원자 배열과 같은 모양(6각형의 벌집모양)을 가지면서, 원통형으로 말아서 튜브 형태로 만든 나노(10억분의 1미터) 구조체 우리 학교 EEWS 대학원 정유성 교수가 주도하고, 캘리포니아공대 윌리엄 고다드 교수가 참여한 이번 연구는 교육과학기술부(장관 이주호)와 한국연구재단(이사장 오세정)이 추진하는 WCU(세계수준의 연구중심대학)육성사업의 지원(지속가능한 에너지 공학기술사업단)을 받아 수행되었다. 이번 연구결과는 자연과학분야의 권위 있는 학술지인 ‘미국립과학원회보(PNAS)’ 7월 19일자에 게재되었고, 한 주간에 흥미로운 연구결과들을 별도로 소개하는 "This Week in PNAS", ’C&EN News" 및 "Nature Materials"의 "Research Highlights"에 선정되는 영예를 얻었다. (논문명 : Entropy and the driving force for the filling of carbon nanotubes with water) 정유성 교수팀은 물을 싫어하는 탄소나노튜브 안으로 물이 스스로 빨려 들어가는 반직관적인 실험현상의 원인이 물 분자 간의 수소결합 때문으로, 나노채널과 같은 제한된 나노공간에서는 물의 무질서도가 증가하기 때문에 발생한다는 사실을 분자동력학 계산을 통해 밝혀냈다. 일반적으로 분자가 자유로운 액체 상태에서 제한된 나노 크기에 갇힐 경우, 무질서도와 화학결합이 감소되면서 불안정한 상태가 될 것으로 예상했지만, 연구팀은 탄소나노튜브에 갇힌 물의 경우 제한된 공간에서 물 분자 간의 수소결합이 약해지면서 밀도가 낮아지고, 오히려 무질서도가 증가하여 더욱 안정되는 특이한 현상을 나타낸다는 사실을 확인하였다. 특히 연구팀은 1.1과 1.2 나노미터의 지름을 갖는 나노튜브에서는 실온(섭씨 25도)임에도 불구하고 물이 얼음과 같은 구조를 띄는 현상도 관찰하였다. 정유성 교수는 “이번 연구는 계산과학이 실험측정만으로 설명하기 어려운 나노크기의 제한된 공간에서 나타나는 다양한 현상을 규명한 좋은 예”라고 정의하고, ‘’기존의 역삼투압 막에 비해 탄소나노튜브 내에서는 물의 수송속도가 현저히 빨라 에너지 효율적인 차세대 해수 담수화막을 효율적으로 설계하는데 기여할 것”이라고 연구의의를 밝혔다.
2011.07.27
조회수 15873
생체모방 탄소나노튜브 섬유 합성기술 개발
- 재료분야 저명 국제학술지 ‘어드밴스드 머티리얼스’ 표지 논문 게재- 강도가 3배 이상 향상된 차세대 초경량 초고강도 전도성 신소재 개발 홍합을 지지하고 있는 섬유형태의 족사는 강한 파도가 치는 해안가와 같은 다른 생물이 살기 어려운 환경에서도 바위에 단단히 붙어서 생존한다. 이러한 특성은 홍합 족사의 독특한 구조와 고강도 접착성 때문이다. 우리학교 신소재공학과 홍순형 교수와 화학과 이해신 교수, 생명과학과 故 박태관 교수로 구성된 공동연구팀이 자연계의 홍합 족사 구조를 모방해 탄소나노튜브를 기반으로 한 초고강도 전도성 섬유 제조 원천기술개발에 성공했다. 탄소나노튜브는 1991년 일본의 이지마 교수(현 성균나노과학기술원장)에 의해 발견된 이후 우수한 전기적, 열적, 그리고 기계적 특성으로 차세대 신소재로 각광 받았으나 길이가 수 나노미터 수준으로 미세해 산업용 제품으로 응용하는 데 한계가 있었다. KAIST 연구팀은 이러한 난제를 자연계의 홍합 족사 구조에 착안해 해결했다. 홍합 족사에는 콜라겐 섬유와 Mefp-1 단백질이 가교 구조(cross-linking structure)로 결합되어 있다. 이 Mefp-1 단백질속에는 카테콜아민이라는 성분이 있어 콜라겐 섬유끼리 강하게 결합한다. 연구팀은 고강도 탄소나노튜브 섬유가 콜라겐 섬유 역할을, 고분자 구조 접착제가 카테콜아민과 같은 역할을 하도록 했다. 그 결과 길이가 길고 가벼우면서도 끊어지지 않는 초경량 초고강도 탄소나노튜브 섬유를 개발했다. KAIST 홍순형 교수는 “개발된 탄소나노튜브 섬유는 기존의 구조용 탄소강에 비해 강도가 3배 이상 향상된 차세대 초경량 초고강도 고전도성 신소재”라며 “향후 방탄소재, 인공근육소재, 방열소재, 전자파 차폐소재, 스텔스소재 및 스페이스 엘리베이터 케이블 등 다양한 산업계에 응용이 가능하다”고 말했다. 아울러 “새로운 나노융합 소재 산업의 기술혁신을 이룰 수 있을 것”이라고 홍 교수는 덧붙였다. 이번 연구결과는 독일에서 발간되는 재료분야 국제저명학술지인 어드밴스드 머티리얼스(Advanced Materials) 5월 3일자 표지 논문으로 선정됐으며, 최근 국내 및 국외에 4건의 특허 출원 및 등록이 결정됐다. 한편, 이번 연구는 교육과학기술부 21세기 프론티어 연구개발 사업단, 세계수준의 연구중심대학(WCU) 육성사업, KAIST 나노융합연구소 등으로부터 지원받아 수행됐다.
2011.05.11
조회수 24231
연필심에서 배터리까지 탄소의 무한 변신
- “차세대 이차전지나 태양전지, 디스플레이 개발을 위한 기술적 진보 이뤄” - 그래핀과 탄소나노튜브를 새로운 3차원 형태로 조립에 성공 -‘어드밴스드 펑셔널 머티리얼즈’ 특집기획 초청논문 게재 연필심의 원료인 흑연이나 다이아몬드등과 같이 순수하게 탄소로만 이루어진 물질들이 우리주변에서 다양한 소재나 부품으로 널리 쓰이고 있다. 특히 최근에는 탄소나노튜브나 그래핀과 같이 나노미터 크기를 갖는 탄소나노소재들이 새롭게 발견돼 학계와 산업계로부터 많은 관심을 끌고 있다. 꿈의 신소재로 불리는 그래핀과 탄소나노튜브는 탄소원자가 2차원적 평면상에 벌집 모양으로 결합된 화학구조로 되어있다. 이로 인해 다이아몬드보다 강도가 높으면서 잘 굽혀질 수 있고, 투명하면서도 전기가 잘 통하는 등 기존의 다른 소재들이 갖지 못한 우수한 특성들을 가지고 있다. 그러나 자연 상태에서는 이들이 뭉쳐있거나 층층이 쌓여 흑연을 이루고 있어 개별적으로 분리해내기에 어려운 문제점이 있었다. 분자조립 나노기술의 세계적 연구그룹인 KAIST(총장 서남표) 신소재공학과 김상욱 교수 연구팀은 꿈의 소재라 불리는 그래핀과 탄소나노튜브를 3차원 형태로 조립하는 새로운 원천기술을 개발했다. 연구팀은 그동안 오랜 연구역량을 축적해 온 분자조립 나노기술을 이용해 그래핀과 탄소나노튜브를 입자 단위로 분리한 후 새로운 3차원 형태로 조립하는 데 성공했다. 또한, 이 과정에서 값싼 천연 흑연으로부터 단일층의 그래핀 유도체를 매우 높은 순도로 얻어내는 데 성공했다. 김상욱 교수는 “이번 연구로 그래핀계 탄소소재가 가진 넓은 표면적, 우수한 전기전도성, 기계적 유연성 등의 우수한 물성을 차세대 이차전지나 태양전지, 디스플레이 등에 이용하기 위해 필요한 중요한 기술적 진보를 이뤘다”며 “이번 논문 게재로 연구팀이 탄소소재 연구에서 세계적 선도그룹으로 인정받고 있음을 다시 한 번 확인했다”고 말했다. 김 교수는 이번 연구내용으로 4월말 미국 샌프란시스코에서 개최되는 국제재료학회(Materials Research Society)에서 초청 강연을 할 예정이다. 한편, 이번 연구결과는 신소재분야 세계적 학술지인 ‘어드밴스드 펑셔널 머티리얼즈(Advanced Functional Materials)’ 4월 22일자에 특집기획 초청논문(Invited Feature Article)으로 발표됐다. 논문이 소개된 ‘어드밴스드 펑셔널 머티리얼즈’의 특집초청논문은 세계적인 연구그룹의 최신 연구동향을 엄격한 심사를 통해 선별, 초청하는 기획논문이다.(끝) ※용어설명그래핀: 육각의 벌집구조로 결합한 탄소가 연속적으로 연결되어 탄소 원자 한 층의 두께를 가진 2차원의 평판 모양을 이룬 탄소소재 탄소나노튜브: 육각의 벌집구조로 결합한 탄소가 수 nm(나노미터) 크기의 직경을 갖는 튜브를 형성한 탄소소재
2011.04.25
조회수 14003
나노튜브를 이용한 유기태양전지 효율 향상 기술 개발
우리학교 신소재공학과 김상욱 교수팀과 전기및전자공학과 유승협 교수팀이 탄소나노튜브를 유기태양전지에 적용해 에너지 변환효율을 크게 향상시키는데 성공했다. 이 연구결과는 재료공학의 세계적 학술지인 어드밴스드 머티리얼스(Advanced Materials)지 최신호(11월 30일, 화) 온라인 판에 게재됐다. 반도체고분자의 광반응을 통해 전기에너지를 생산하는 유기태양전지는 고가의 실리콘을 사용하지 않아 가격이 저렴하다. 또한, 잘 휘고 투명해 여러 분야에 적용 가능한 미래 친환경 에너지원이다. 이 전지는 휴대 전자기기나 스마트 의류, BIPV(Building Integration Photovoltaic : 건물 외피에 전지판을 이용하는 건물 외장형 태양광 발전) 등 다양한 분야에 응용이 기대된다. 유기태양전지가 다른 태양전지에 비해 효율이 낮은 중요한 이유 중 하나는 태양빛을 받아 전자와 정공을 형성시키는 반도체고분자의 수송특성이 낮아 생성된 전자나 정공이 효율적으로 외부로 전달되지 못한다는 점이다. 이러한 문제를 해결하기 위해 반도체고분자의 수송특성을 향상하려는 다양한 연구들이 전 세계적으로 진행되어 왔다. 특히, 탄소나노튜브나 나노와이어 등을 이용해 전자나 정공의 빠른 수송 경로를 제공해주는 방법이 꾸준히 연구되어 왔다. 그러나 이들 연구에서는 전자와 정공이 동시에 탄소나노튜브나 나노와이어에 주입되어 자기들끼리 재결합 함으로써, 결국 외부에서 채집되는 전류가 증대되지 못하거나 오히려 감소하는 고질적인 문제가 발생했다. 이러한 문제를 포함해 유기태양전지들은 상용화하기에는 아직 낮은 광변환 효율을 보여 이에 대한 성능향상이 시급히 요구되어 왔다. KAIST 연구팀은 유기 태양전지의 반도체고분자에 붕소 또는 질소 원소로 도핑된 탄소나노튜브를 적용해 전자나 정공 중 한쪽만을 선택적으로 수송하도록 함으로써 이들의 재결합을 막아 유기태양전지의 효율을 33%까지 크게 향상시키는데 성공했다. 또한 도핑된 탄소나노튜브는 유기용매 및 반도체고분자내에서 매우 쉽고 고르게 분산되는 특성을 보여 기존의 값싼 용액공정을 그대로 사용해 효율이 향상된 태양전지를 만들 수 있음을 확인했다. 이 연구결과로 반도체고분자가 이용되는 유기트랜지스터나 유기디스플레이 등 다양한 전자기기의 성능향상도 가능할 것으로 기대된다. 김상욱 교수는 “이번 연구결과를 통해 나노소재 기술이 유기태양전지의 성능향상에도 크게 기여할 수 있음을 알아냈다”며 “앞으로 나노소재 기술을 이용한 차세 대 에너지개발을 위한 연구에 노력하겠다”고 말했다. 이번 연구는 KAIST EEWS(Energy, Environment, Water, and Sustainability)연구사업의 지원을 받아 김상욱, 유승협 교수의 지도하에 박사과정 이주민 학생이 진행했다.
2010.12.07
조회수 18966
<<
첫번째페이지
<
이전 페이지
1
2
>
다음 페이지
>>
마지막 페이지 2