-
박정영, 정유성 교수, 합금 촉매의 화학반응 실시간 관찰 성공
〈 박 정 영, 정 유 성 교수〉
우리 대학 EEWS 대학원 박정영, 정유성 교수 연구팀이 합금 촉매 표면에서 벌어지는 화학 반응 과정을 실시간으로 관찰해 합금 촉매의 반응성 향상과 직결된 반응 원리를 규명했다.
연구팀의 관찰 결과는 차세대 고성능 촉매 설계에 활용할 수 있는 반응성 향상 원리의 기반이 될 것으로 기대된다.
GIST 물리․광과학과 문봉진 교수 연구팀과 공동으로 수행한 이번 연구 결과는 종합 과학 분야 국제 학술지 ‘사이언스 어드밴시스(Science Advances)’ 7월 13일자 온라인 판에 게재됐다. (논문명 : Adsorbate-driven reactive interfacial Pt-NiO1-x nanostructure formation on the Pt3Ni(111) alloy surface, 백금-니켈 합금 표면위의 촉매 활성도가 높은 금속-산화물 경계 나노구조물 형성의 실시간 관찰)
합금 촉매는 단일 금속 또는 금속 산화물 촉매에 비해 뛰어난 성능을 보여 연료전지반응이나 탄소계열 공업화학반응 등에 이용되고 있다. 하지만 합금 촉매 반응의 결과에 대한 근본적인 원리는 자세히 밝혀지지 않아 촉매 연구 과정에서 발생하는 예상치 못한 결과를 설명하기 어려웠다.
연구팀은 문제 해결을 위해 기존의 표면 직접 관찰 기기의 한계점을 크게 개선한 ‘상압 주사 터널링 전자 현미경’과 ‘상압 X-선 광전자분광기’를 활용해 백금-니켈 합금 촉매 표면의 역동적인 변화 과정을 관찰했다.
이를 통해 실제 반응 환경에서 백금-니켈 합금 촉매의 반응성 향상 이유가 금속-산화물 계면 나노구조의 표면 형성으로부터 시작됨을 밝혀냈다.
또한 일산화탄소 산화반응 과정에서 백금 혹은 니켈 산화물 단일 촉매에 비해 금속-산화물 계면 나노구조가 갖는 비교적 낮은 활성화 에너지는 촉매 반응 원리 상 반응성 향상에 보다 유리한 화학 반응 경로를 제시할 수 있음을 확인했다.
이 결과는 밀도범함수 이론을 바탕으로 한 양자역학 모델링 계산 결과를 통해 입증됐다.
박정영 교수는 “초고진공 환경을 기반으로 한 기존의 표면 과학이 풀지 못한 실제 반응 환경에서의 합금 촉매 반응 과정을 직접 관찰한 첫 연구사례이다”며 “합금 촉매의 계면이 촉매 향상도를 높일 수 있고, 현재 진행 중인 촉매전자학 연구와도 밀접한 관계를 가지고 있다. 다양한 종류의 실제 반응 환경에 근접한 촉매 표면 반응을 연구할 계획이다.”고 말했다.
이론적 원리 규명 연구를 주도한 정유성 교수는 “직접 관찰과 양자 계산을 통해 합금 촉매의 주된 활성 자리가 계면임을 규명한 연구로, 다양한 합금 촉매의 설계 및 최적화에 중요한 단서가 될 것이다”고 말했다.
상압 표면 분석을 주도한 GIST 문봉진 교수는“이 연구는 외부의 분자들과 쉴 새 없이 반응하면서 움직이는 마치 살아서 숨쉬고 있는 원자의 움직임과 반응성을 동시에 측정한 완벽한 표면물리연구이다”고 말했다.
이번 연구는 기초과학연구원 및 한국연구재단, GIST 등의 지원을 받아 수행됐다.
□ 그림 설명
그림1. 주사 터널링 전자 현미경을 이용한 실시간 표면 관찰 이미지
그림2. 시간에 따른 표면 직접 관찰 이미지
2018.07.16
조회수 12831
-
양경훈교수팀, 양자효과를 이용한 초고속 IC 세계최초 개발
- 동일 성능 기존 IC 대비 75%의 소비전력 절감 효과 -
KAIST(총장 서남표) 전자전산학과 양경훈(梁景熏, 46) 교수팀은 교육과학기술부 21세기프론티어연구개발사업 중 테라급나노소자개발사업(단장 이조원)의 지원을 받아, 양자 효과 소자인 공명 터널 다이오드(RTD : Resonant Tunneling Diode)를 이용하여, 초고속 통신 시스템의 핵심 부품인 40 Gb/s 급 멀티플렉서 집적회로 개발에 성공했다고 밝혔다.
상온에서 동작하고 기존 소자와 호환이 가능한 공명 터널 다이오드에 2 ㎛ 급 소자 공정기술을 적용해 자체 개발한 이 집적회로는 세계최초로 양자 효과를 이용한 초고속 멀티플렉서로서 나노 전자소자 기술의 실용화 가능성을 제시한 것으로 평가된다.
CMOS, HBT 및 HEMT 등의 전자소자를 이용한 집적회로는 차세대 40 Gb/s 급 이상 통신 시스템의 핵심부품으로 널리 사용되어 왔으나 과도한 전력소모의 문제점으로 인하여 소비전력의 절감이 필수적으로 요구되어 왔다.
연구팀은 디지털 신호를 자체적으로 저장하고 빠른 신호처리가 가능한 공명 터널 다이오드 고유의 부성 미분 저항 특성(NDR : Negative Differential Resistance)을 이용하여, 세계적 반도체 제조기업인 인피니언(Infineon)에서 0.12 ㎛ CMOS 공정 기술을 바탕으로 개발한 40 Gb/s 멀티플렉서(소자 수 42개, 전력소모 100 mW)보다 소자 수는 1/2 이하(19개)로 줄이고 전력소모 또한 1/4(22.5 mW)로 줄이면서 40 Gb/s급 이상에서 동작하는 저전력/초고속 멀티플렉서 집적회로를 개발하였다.
이번 연구에서 개발된 양자 소자를 이용한 회로 설계 기술은 멀티플렉서 이외에, 차세대 초고속 통신 시스템 용의 다양한 디지털 및 아날로그 집적 회로 개발에 응용이 가능한 원천 기술이다. 또한 기존의 HBT, HEMT 등 화합물 반도체 소자 기반 초고속 집적회로의 공정설비를 그대로 이용할 수 있기 때문에 대량생산이 가능하여 향후 차세대 나노/양자 소자 시장을 선도할 수 있는 기술로 기대된다.
이번 연구결과는 5월 26일 프랑스 파리에서 열린 IEEE IPRM 국제학술대회에 발표되었으며 오는 8월 18일, 미국 알링턴에서 열리는 세계적 나노기술 학회인 “IEEE 나노테크놀로지(IEEE International Conference on Nanotechnology)” 학회에서 발표될 예정이다. 이밖에 8월 27일(수) “NANO KOREA 2008”에서도 초청 발표될 예정이다.
2008.06.26
조회수 19194