본문 바로가기
대메뉴 바로가기
KAIST
연구뉴스
유틸열기
홈페이지 통합검색
-
검색
메뉴 열기
%ED%8A%B8%EB%9E%9C%EC%8A%A4%ED%8F%AC%EB%A8%B8
최신순
조회순
숨겨진 효소 쏙쏙 찾아내는 인공지능 개발
대장균은 가장 많이 연구된 생명체 중 하나에 해당되지만 아직 대장균을 구성한 단백질 30%의 기능에 대해 명확하게 밝혀지지 않았다. 이에 대해 인공지능을 활용하여 아직 명확하게 밝혀진 바 없던 단백질에서 464종의 효소를 발견하였으며, 이 중 3종의 단백질의 예측된 기능을 시험관 내 효소 분석 방법을 통해 검증하는데 성공하였다. 우리 대학 생명화학공학과 이상엽 특훈교수와 캘리포니아대학교 샌디에이고(UCSD) 생명공학과 버나드 펄슨(Bernhard Palsson) 교수 공동연구팀이 단백질 서열을 활용, 해당 단백질의 효소 기능을 예측할 수 있는 인공지능, `딥 EC 트랜스포머(DeepECtransformer)'를 개발해 빠르고 정확하게 효소 기능을 파악할 수 있는 예측 시스템을 구축했다고 24일 밝혔다. 효소는 생물학적 반응을 촉매하는 단백질로서, 생명체 내 존재하는 다양한 화학 반응과 이에 따라 결정되는 생명체의 대사 특성을 파악하기 위해서는 각 효소의 기능을 이해하는 것이 필수적이다. EC 번호(효소 고유 번호, Enzyme Commission number)는 국제생화학 및 분자 생물학연맹 (International Union of Biochemistry and Molecular Biology, IUBMB)가 고안한 효소 기능 분류 체계로서, 다양한 유기체의 대사 특성을 이해하기 위해선 게놈 서열에서 존재하는 효소의 종류와 EC 번호를 빠르게 분석할 수 있는 기술 개발이 필요하다. 단백질의 기능 및 효소 기능 예측을 위해 인공지능을 활용하는 다양한 예측 시스템 또한 보고됐지만, 인공지능의 추론 과정을 직접 확인할 수 없는 블랙박스(black box)의 특징을 가졌거나, 효소 서열 내 아미노산 잔기(최소 단위) 수준으로 해석하지 못하는 문제가 있었다. 공동연구팀은 심층학습 기법과 단백질 상동성 분석 모듈을 활용해 주어진 단백질 서열의 효소 기능을 예측하는 인공지능 딥 EC 트랜스포머(DeepECtransformer)를 개발했다. 연구팀은 이번 연구에서 더 다양한 효소 기능을 정확하게 예측할 수 있도록 단백질 서열 전체 문맥에서 효소 기능에 중요한 정보를 추출하였고, 이를 통해 효소의 EC 번호를 정확하게 예측할 수 있었다. 개발된 인공지능은 총 5,360종류의 EC 번호를 예측할 수 있었다. 공동연구팀은 나아가 딥 EC 트랜스포머의 인공신경망 내 정보 흐름을 분석하여 인공지능이 추론 과정에서 효소 기능에 중요한 활성 부위나 보조 인자 결합 부위 정보를 활용하고 있음을 밝혀냈다. 이처럼 인공지능의 블랙박스를 해석함으로써 인공지능이 학습 과정에서 스스로 효소 기능에 중요한 특징을 파악하고 있음을 연구팀은 확인했다. 이번 논문의 제1 저자인 우리 대학 김기배 박사과정생은 “이번에 개발한 예측 시스템을 활용해 아직 밝혀진 적 없던 효소의 기능을 새롭게 예측하고 실험으로 검증할 수 있었다”고 말했다. 그는 또한 “딥 EC 트랜스포머를 활용해 생명체 내 밝혀지지 않았던 효소를 파악함으로써 유용 화합물을 생합성하기 위해 필요한 효소나 플라스틱을 생분해하기 위해 필요한 효소 등 다양한 대사 과정을 새롭게 밝혀낼 수 있을 것”이라고 덧붙였다. 또한 이상엽 특훈교수는 “효소 기능을 빠르고 정확하게 예측하는 딥 EC 트랜스포머는 기능 유전체학의 핵심 기술로서 시스템 수준에서 전체 효소들의 기능들을 분석할 수 있게 한다”며 “이를 활용해 모든 효소 정보를 포함한 대사 네트워크를 기반으로 친환경 미생물 공장 개발을 수행할 수 있을 것”이라고 밝혔다. 생명화학공학과 김기배 박사과정이 참여한 이번 논문은 국제 학술지 네이처(Nature) 誌가 발행하는 `네이처 커뮤니케이션즈(Nature Communications)'에 동료 심사를 거쳐 11월 14일 字 게재됐다. ※ 논문명 : 트랜스포머 레이어와 딥러닝을 사용하여 효소 인코딩 유전자의 기능적 주석 달기 (Functional annotation of enzyme-encoding genes using deep learning with transformer layers) ※ 저자 정보 : 김기배 (한국과학기술원, 제1 저자), 김지연 (한국과학기술원, 제2 저자), 이종언 (한국과학기술원, 제3 저자), Charles J. Norsigian (UCSD, 제4 저자), Bernhard O. Palsson (UCSD, 제5 저자) 및 이상엽(한국과학기술원, 교신저자) 포함 총 6 명 한편, 이번 연구는 과기정통부가 지원하는 ‘석유대체 친환경 화학기술개발사업의 ‘바이오화학산업 선도를 위한 차세대 바이오리파이너리 원천기술 개발’ 과제(과제책임자 KAIST 이상엽 특훈교수)의 지원을 받아 수행됐다.
2023.11.24
조회수 4295
트랜스포머 대체할 차세대 월드모델 기술 세계 최초 개발
우리 대학 전산학부 안성진 교수 연구팀이 미국 럿거스 대학교와 협력하여 트랜스포머 및 재귀신경망 기반의 월드모델을 대체할 차세대 에이전트 월드모델 기술을 세계 최초로 개발했다. 월드모델은 인간의 뇌가 현실 세계의 경험을 바탕으로 환경 모델을 구축하는 과정과 유사하다. 이러한 월드모델을 활용하는 인공지능은 특정 행동의 결과를 미리 시뮬레이션해보고 다양한 가설을 검증할 수 있어, 범용 인공지능의 핵심 구성 요소로 여겨진다. 특히, 로봇이나 자율주행 차량과 같은 인공지능 에이전트는 학습을 위해 여러 가지 행동을 시도해 보아야하는데, 이는 위험성과 고장 가능성을 높인다는 단점을 갖는다. 이에 반해, 월드모델을 갖춘 인공지능은 실세계 상호작용 없이도 상상모델 속에서 학습을 가능케 해 큰 이점을 제공한다. 그러나 월드모델은 자연어처리 등에서 큰 발전을 가능하게 한 트랜스포머와 S4와 같은 새로운 시퀀스 모델링 아키텍처의 적용에 한계가 있었다. 이로 인해, 대부분의 월드모델이 성능과 효율성 면에서 제약이 있는 고전적인 재귀적 신경망에 의존하고 있었고 안성진 교수팀은 작년 세계최초로 트랜스포머 기반의 월드모델을 개발하였으나 추론 계산속도나 메모리능력에서 여전히 개선할 문제를 갖고 있었다. 이러한 문제를 해결하기 위해, 안성진 교수가 이끄는 KAIST와 럿거스 대학교 공동연구팀은 재귀적 신경망과 트랜스포머 기반 월드모델의 단점을 극복한 새로운 월드모델의 개발에 성공했다. 연구팀은 S4 시퀀스 모델에 기반한 S4 World Model (S4WM)을 개발하여, 재귀적 신경망의 최대 단점인 병렬처리가 가능한 시퀀스 학습이 불가능하다는 문제를 해결하였다. 또한, 재귀적 신경망의 장점인 빠른 추론시간을 유지하도록 하여 느린 추론 시간을 제공하는 트랜스포머 기반 월드모델의 단점을 극복했다. 연구를 주도한 안성진 교수는 "병렬 학습과 빠른 추론이 가능한 에이전트 월드모델을 세계 최초로 개발했다ˮ며, 이는 "모델기반 강화학습 능력을 획기적으로 개선해 지능형 로봇, 자율주행 차량, 그리고 자율형 인공지능 에이전트 기술 전반에 비용절감과 성능 향상이 예상된다ˮ고 밝혔다. 이번 연구는 12월 10일부터 16일까지 미국 뉴올리언스에서 열리는 세계 최고 수준의 인공지능 학회인 제37회 신경정보처리학회(NeurIPS)에서 발표될 예정이다. 관련논문: “Facing off World Model Backbones: RNNs, Transformers, and S4”Fei Deng, Junyeong Park, Sungjin Ahn, NeurIPS 23, https://arxiv.org/abs/2307.02064
2023.11.09
조회수 3734
챗GPT에 사용된 트랜스포머로 다공성 소재 예측
다공성 소재는 넓은 공극과 표면 면적을 지니고 있어, 가스 흡착, 분리, 촉매 등 다양한 에너지 및 환경 분야에서 적용된다. 다공성 소재 중 한 종류인 금속 유기 골격체(MOF)는 무한대에 가까운 경우의 수를 갖는 넓은 물질 공간(materials space) 안에 존재하기에, 인공지능을 사용해 최적의 물질을 추출하고 특성을 예측하려는 연구가 활발히 진행되고 있다. 하지만 이러한 모델들은 대부분 특정한 물성 한 종류만 학습할 수 있으며, 모든 재료 특성에 보편적으로 적용할 수 없다는 단점이 존재한다. 우리 대학 생명화학공학과 김지한 교수 연구팀이 세계 최초로 멀티모달 트랜스포머를 적용한 인공지능(AI)을 통해 다공성 소재의 다양한 물성을 예측하는 기술을 개발했다고 5일 밝혔다. 멀티모달 트랜스포머는 비디오 프레임과 오디오 트랙, 웹 이미지와 캡션, 교육용 비디오와 음성 대본과 같이 서로 다른 형태의 정보를 효과적이고 효율적으로 결합하도록 설계된 신경망 모델의 일종이다. 김지한 교수 연구팀은 챗GPT(ChatGPT)에서 사용된 모델인 트랜스포머를 다공성 소재에 도입해 모든 성능을 예측할 수 있는 멀티모달 인공 신경망을 개발했다. 멀티모달은 사진(이미지)과 설명(자연어)같이 서로 다른 형태의 데이터를 함께 학습하며, 이는 인간과 비슷하게 입체적이고 종합적인 사고를 할 수 있도록 도와준다. 연구팀이 개발한 멀티모달 트랜스포머 (MOFTransformer)는 원자 단위의 정보를 그래프로 표현하고, 결정성 단위의 정보를 3차원 그림으로 전환 후 함께 학습하는 방식으로 개발했다. 이는 다공성 소재의 물성 예측의 한계점이었던 다양한 물성에 대한 전이 학습을 극복하고 모든 물성에서 높은 성능으로 물성을 예측할 수 있게 했다. 김지한 교수 연구팀은 다공성 소재를 위한 트랜스포머를 개발해 1백만 개의 다공성 소재로 사전학습을 진행했으며, 다공성 소재의 가스 흡착, 기체 확산, 전기적 특성 등의 다양한 소재의 물성을 기존의 발표된 머신러닝 모델들보다 모두 더 높은 성능으로 (최대 28% 상승) 예측하는 데 성공했고, 또한 논문으로부터 추출된 텍스트 데이터에서도 역시 높은 성능으로 예측하는 데 성공했다. 연구팀이 개발한 기술은 물질의 특성을 계산 및 예측하는 새로운 방법론을 제시했으며, 이를 통해 소재 분야에서 새로운 소재의 설계와 개발에 도움이 될 뿐만 아니라, 기존의 소재에 대한 깊은 이해를 얻을 수 있을 것으로 기대된다. 더불어, 멀티모달 트랜스포머는 다공성 소재뿐만 아니라 다른 종류의 소재에도 확장 가능한 범용적인 모델이므로, 인공지능을 통한 소재 과학의 발전에 크게 이바지할 수 있을 것이다. 생명화학공학과 강영훈, 박현수 박사과정이 공동 제1 저자로 참여한 이번 연구 결과는 국제 학술지 `네이처 머신 인텔리전스(Nature Machine Intelligence)'에 지난 3월 13일에 게재됐다. (논문명: A multi-modal pre-training transformer for universal transfer learning in metal–organic frameworks) 한편 이번 연구는 과학기술정보통신부의 지원으로 국가 소재 연구 데이터 사업단, 그리고 한국연구재단 (NRF) 중견 연구자 지원 사업의 지원을 받아 수행됐다.
2023.04.05
조회수 6740
<<
첫번째페이지
<
이전 페이지
1
>
다음 페이지
>>
마지막 페이지 1