본문 바로가기
대메뉴 바로가기
KAIST
연구뉴스
유틸열기
홈페이지 통합검색
-
검색
메뉴 열기
%ED%8E%B8%ED%96%A5%EC%84%B1
최신순
조회순
개인 맞춤형 정밀 의학 정확도 높일 ‘렌즈’ 개발
평균이 아닌 개인차를 고려하는 정밀 의학 시대가 열렸다. 사람마다 다른 유전적 특징을 알아내는 기술이 비약적으로 발전한 덕분이다. 더 빠르고, 정확하게 전사체를 해독할 수 있는 새로운 도구가 개발됐다. 우리 대학 수리과학과 김재경 교수(IBS 수리 및 계산 과학 연구단 의생명 수학 그룹 CI) 연구팀은 전사체 분석 빅데이터에서 유용한 생물학적 정보만 골라내는 새로운 도구인 ‘scLENS(single-cell Low-dimension Embedding using Effective Noise Subtraction)’를 개발했다. 단일세포 전사체 분석은 최근 생물학, 신약 개발, 임상 연구 등 여러 분야에서 주목받는 도구다. 개별 세포 단위에서 유전적 변화를 확인할 수 있기 때문이다. 가령, 단일세포 전사체 분석을 이용하면 암 조직 내 수십 가지 종류의 세포를 구분하고, 유전적 변이가 발생한 세포만 표적하는 정밀 치료가 가능해진다. 단일세포 전사체 분석 기술이 임상에 광범위하게 이용되려면, 도출되는 빅데이터에서 유용한 생물학적 신호를 찾아내는 효율적인 분석 도구 개발이 선행돼야 한다. 단일세포 전사체 분석은 수백~수천 개에 이르는 개별 세포의 수만 개에 이르는 다양한 유전자 발현량을 측정하기 때문에 데이터 용량이 수~수십 GB에 달한다. 이 방대한 데이터 중 생물학적으로 유용한 신호는 3% 내외에 불과하다. 이 방대하고 노이즈(잡신호)가 많은 데이터에서 유용한 생물학적 신호를 골라내기 위해 지금까지 여러 데이터 처리 도구가 개발됐다. 하지만 기존 도구는 사용자가 생물학적 신호와 노이즈의 ‘경계선’을 직접 설정해야 해서 주관이 개입됐다. 즉, 분석가에 따라 결과가 크게 달라지고, 정확도가 떨어진다는 한계가 있었다. 우선, 연구진은 기존 분석 도구들이 부정확한 근본적인 원인을 규명하고 해결책을 제시했다. 사용자가 노이즈의 임계값을 결정하는 데이터 전처리 방식 자체가 생물학적 신호를 왜곡시킨다는 것을 규명하고, 왜곡 없는 새로운 전처리 방식을 개발했다. 나아가 연구진은 수학적 방법론인 ‘랜덤 행렬 이론’을 이용해 사용자의 주관적 선택 없이 자동으로 단일세포 전사체 분석 데이터에서 신호와 노이즈를 구별하는 프로그램인 ‘scLENS’를 개발했다. 제1 저자인 김현 연구원은 “scLENS는 사용자의 선택 없이 데이터에 내재된 구조만을 이용해 자동으로 신호와 노이즈를 구별하기 때문에 사용자 편향성 문제를 원천 차단할 수 있다”며 “연구자들의 노동집약적인 신호 선택 과정을 없애면서도 분석 정확성은 높였다”고 설명했다. 이어 연구진은 기존 개발된 11가지 데이터 분석 프로그램과 scLENS의 상대적 성능을 비교했다. 이를 통해 scLENS가 다른 모든 프로그램보다 우수한 성능을 보인다는 점을 확인할 수 있었다. 널리 쓰이는 프로그램인 ‘Seurat’과 비교했을 때 scLENS는 세포 그룹화 성능이 약 10% 이상 우수하며, 데이터에 내재된 국소 구조를 43% 더 효과적으로 포착하는 것으로 나타났다. 특히, scLENS는 기존 프로그램보다 많은 계산을 하지만 메모리 사용 최적화를 통해 10만 개의 세포와 2만 개의 유전자로 이뤄진 대규모 데이터를 3시간 만에 분석하는 경쟁력 있는 분석 속도를 보였다. 연구를 이끈 김재경 CI는 “지난 십여 년간 단일세포 전사체를 분석할 수 있는 실험 기술의 비약적인 발전했지만, 데이터 분석 방법의 한계로 인해 큰 비용과 시간을 투자해 얻은 데이터를 최대한 활용하지 못하는 경우가 많았다”며 “기초 수학 이론이 생명과학 연구의 혁신을 견인하고, 감춰졌던 생명의 비밀을 빠르고 정확하게 밝히는 데 쓰일 수 있음을 보여주는 연구”라고 말했다. 연구결과는 4월 27일(한국시간) 국제학술지 ‘네이처 커뮤니케이션즈(Nature Communications, IF 16.6)’ 온라인판에 실렸다.
2024.05.09
조회수 2976
이병주 교수, 영화 속 남녀 캐릭터 묘사 편향성 분석
<이병주 교수> KAIST(총장 신성철) 문화기술대학원 이병주 교수 연구팀이 컴퓨터 비전 기술을 통해 상업 영화에서 남성과 여성 성별 간 캐릭터 묘사의 편향성을 정량적으로 분석하는 데 성공했다. 장지윤, 이상윤 석사과정이 주도한 이번 연구 결과는 소셜 컴퓨팅 분야 최고 권위 학회인 ‘컴퓨터 기반 협업 및 소셜 컴퓨팅 학회(CSCW, Computer-Supported Cooperative Work and Social Computing)’ 11월 11일 자로 발표될 예정이다. (논문명: Quantification of Gender Representation Bias in Commercial Films based on Image Analysis) 최근 영화가 다루는 소재와 연출 방식이 사람들의 성 의식에 어떤 영향을 미치는지에 대한 논의가 활발하게 진행되고 있다. 할리우드 역시 영화의 묘사가 관객에게 미치는 영향에 관한 연구를 진행해 적극적으로 제작에 반영하고 있다. 근래 개봉한 할리우드 영화에서도 다양한 젠더와 인종의 등장을 쉽게 발견할 수 있지만 우리나라는 관련 연구가 부족한 상황이다. 일반적으로 영화에서는 여성 캐릭터의 성별 묘사 편향성을 벡델 테스트(Bechdel Test)를 통해 평가하고 있다. 벡델 테스트는 미국의 여성 만화가 앨리슨 벡델(Alison Bechdel)이 고안한 개념으로 균형적인 성별 묘사를 위한 최소한의 요소가 영화에 반영돼 있는지를 판단하는 지표이다. 벡델 테스트에 통과하기 위해서는 ▲영화에 이름을 가진 여성 캐릭터가 두 명 이상 등장하며 ▲그 여성들이 서로 대화를 나누고 ▲여성 캐릭터들의 대화 주제가 남성 캐릭터와 관련이 없어야 한다는 조건을 갖춰야 한다. 그러나 벡델 테스트는 여성 캐릭터의 대사만으로 판별하기 때문에 캐릭터의 시각적인 묘사를 고려할 수 없으며 여성 캐릭터 혼자 극을 이끄는 영화들에 적용이 어렵다. 또한, 여성 캐릭터만을 평가하기 때문에 상대적으로 남성 캐릭터와 어느 정도 차이가 있는지를 알 수 없으며, 테스트에 통과하거나 하지 못하는 이분법적 잣대만을 제공하기 때문에 성별 묘사가 가질 수 있는 다양한 스펙트럼을 충분히 대변하기 어렵다. 그리고 평가자가 영화를 보고 주관적으로 판단하기 때문에 오류 발생 가능성이 있다. 이병주 교수 연구팀은 영화의 시간적, 시각적 특성을 반영해 성별 묘사 편향성을 측정하기 위해 이미지 분석 시스템을 도입했다. 효과적 분석을 위해 24프레임(fps) 영화를 3프레임으로 다운 샘플링한 뒤, 마이크로소프트(Microsoft)의 얼굴 감지 기술(Face API)로 영화 캐릭터의 젠더, 감정, 나이, 크기, 위치 등을 확인했다. 그리고 사물 감지 기술(YOLO 9000)로 영화 캐릭터와 함께 등장한 사물의 종류와 위치를 확인했다. 연구팀은 2017년과 2018년 개봉한 할리우드 영화와 우리나라 영화 40편을 대상으로 이미지 분석 시스템을 통해 여덟 가지 새로운 지표들을 제시하고 분석해 상업 영화 내에서의 성별 묘사의 편향성을 밝혀냈다. 여기서 여덟 가지 지표란 과거 다양한 매체들을 대상으로 이뤄진 성별 묘사 편향성에 관한 연구 결과에 기반해 영화 내 편향성을 판별할 수 있는 정량적 지표로 ▲감정적 다양성(Emotional Diversity) ▲공간적 역동성(Spatial Staticity) ▲공간적 점유도(Spatial Occupancy) ▲시간적 점유도(Temporal Occupancy) ▲평균 연령(Mean Age) ▲지적 이미지(Intellectual Image) ▲외양 강조도(Emphasis on Appearance) ▲주변 물체의 빈도와 종류(Type and Frequency of Surrounding Objects)를 연구팀은 제시했다. 연구팀은 벡델 테스트(Bechdel Test) 통과 여부를 막론하고 여덟 가지 지표를 통해 영화 대부분이 여성을 편향적으로 묘사하고 있음을 정량적으로 밝혀냈다. 감정적 다양성(Emotional Diversity) 지표에 따르면 여성 캐릭터는 남성 캐릭터에 비해 더 획일화된 감정표현을 보였다. 특히 여성 캐릭터는 슬픔, 공포, 놀람 등의 수동적인 감정을 더 표현하는 반면, 남성 캐릭터는 분노, 싫음 등의 능동적인 감정을 더 표현했다. 주변 물체의 빈도와 종류(Type and Frequency of Surrounding Objects) 지표에 따르면 여성 캐릭터가 자동차와 함께 나오는 비율은 남성 캐릭터 대비 55.7%밖에 되지 않았던 반면, 가구와 함께 나오는 비율은 123.9%를 보였다. 여성 캐릭터의 시간적 점유도(Temporal Occupancy)는 남성 캐릭터 대비 56% 정도로 낮았으며, 평균 연령(Mean Age)은 79.1% 정도로 어리게 나왔다. 특히 앞서 언급한 두 지표는 우리나라 영화에서 두드러지게 관찰됐다. 이병주 교수는 “우리나라에선 1인당 연간 평균 영화관람 횟수가 4.25회에 이를 정도로 많은 사람이 영화를 즐겨보는데, 이는 영화라는 매체가 우리나라 대중들의 잠재의식에 큰 영향력을 행사할 수 있음을 뜻한다”라며 “따라서 영화 내 묘사가 관객들의 생각에 미치는 영향에 관한 연구가 보다 활발하게 진행돼야 하며, 이를 바탕으로 영화는 더욱 신중하게 제작돼야 한다”라고 말했다. 이 연구는 KAIST 인문사회융합과학대학에서 추진한 석박사모험연구과제의 지원을 받아 수행됐다. □ 그림 설명 그림 1. 이미지 분석 시스템 그림 2. 연구진이 분석 영화 40편 그림 3. 캐릭터 성별에 따른 안경 착용률 및 연관 물체의 종류
2019.10.14
조회수 13480
<<
첫번째페이지
<
이전 페이지
1
>
다음 페이지
>>
마지막 페이지 1