-
엑스선 현미경 해상도 한계 극복
엑스선 현미경은 대부분 물질을 투과하는 장점이 있어 흉부 엑스선이나 CT 촬영을 통해 신체 내부 장기와 골격을 비침습적으로 관찰할 수 있다. 최근에는 반도체, 배터리의 내부 구조를 나노스케일에서 정밀하게 관찰하기 위해 엑스선 영상 기술의 해상도를 높이려는 연구들이 활발하게 진행되고 있다.
우리 대학 물리학과 박용근 교수 연구팀이 포항가속기연구소 임준 박사 연구팀과 공동연구를 통해 기존 엑스선 현미경의 해상도 한계를 극복할 수 있는 원천 기술 개발에 성공했다고 12일(수) 밝혔다.
물리학과 이겨레 박사가 제1 저자로 참여한 이번 연구는 광학 및 광자학의 세계적인 학술지인 `라이트: 사이언스 앤 어플리케이션 (Light: Science and Application)' 4월 7일 字에 출판됐다. (논문명: Direct high-resolution X-ray imaging exploiting pseudorandomness).
엑스선 나노 현미경은 굴절 렌즈가 없어 렌즈 대용으로 동심원 회절판(zone plate)이라 불리는 원형 모양의 격자를 사용한다. 동심원 회절판을 사용하여 얻어지는 영상의 해상도는 회절판 나노구조의 제작 품질에 의해 결정된다. 이러한 나노구조를 제작하고 유지하는 것은 여러 가지 어려움이 있으며, 이러한 한계가 엑스선 현미경의 해상도 한계를 결정했다.
연구팀은 이 문제를 극복하기 위해 새로운 엑스선 나노 현미경 기술을 개발했다. 연구팀이 제안한 엑스선 렌즈는 얇은 텅스텐 필름에 수많은 구멍을 뚫은 형태로, 입사되는 엑스선을 회절시켜 무작위적인 회절 패턴을 생성한다. 연구팀은 역설적이게도 이러한 무작위적 회절 패턴 속에 시료의 고해상도 정보가 온전히 들어있음을 수학적으로 규명하였으며, 실제 그 시료 정보를 추출하여 영상화하는데 성공하였다.
이러한 무작위 회절의 수학적 성질을 활용한 영상기법은 지난 2016년 이겨레 박사와 박용근 교수가 세계 최초로 제안하고 가시광 대역에서 구현한 기술로서, 당시 네이처 커뮤니케이션즈紙 Lee, KyeoReh, and YongKeun Park. "Exploiting the speckle-correlation scattering matrix for a compact reference-free holographic image sensor." Nature communications 7.1 (2016): 13359. 에 보고된 바 있다. 이번 연구는 해당 선행연구 결과를 엑스선 영역의 난제를 푸는 데 활용한 것이다.
구성된 시료의 영상의 해상도는 사용한 무작위 렌즈에 식각된 패턴의 크기와 직접적인 상관이 없다. 이러한 아이디어를 바탕으로 연구팀은 300 나노미터(nm) 지름의 원형 패턴으로 제작한 무작위 렌즈를 활용해 14 나노미터(nm) 해상도(대략 코로나 바이러스의 7분의 1 크기)의 영상을 취득하는 데 성공했다.
연구팀이 개발한 영상기술은 기존 동심원 회절판 제작상의 문제에 가로막혀 있던 엑스선 나노 현미경 해상도를 그 이상으로 끌어 올릴 수 있는 핵심 기반 기술이다.
제1 저자이자 공동교신저자인 우리 대학 물리학과 이겨레 박사는 “이번 연구에서는 14 나노미터(nm) 해상도에 그쳤지만, 차세대 엑스선 광원과 고성능 엑스선 검출기를 활용한다면, 기존 엑스선 나노 영상의 해상도를 넘어서 전자현미경의 해상도 수준인 1 나노미터 부근까지 근접할 수 있을 것이라 예상한다”라며“전자현미경과는 달리 엑스선은 시료를 훼손하지 않으면서 내부 구조를 관찰할 수 있으므로, 반도체 검수와 같은 비침습적 나노구조 관찰에 새로운 표준을 제시할 수 있을 것이다”라고 말했다.
공동교신저자인 포항가속기연구소 임준 박사는 “같은 맥락에서, 개발된 영상기술은 충북 오창에 신설되는 4세대 다목적방사광가속기에서 크게 성능이 증대될 수 있을 것으로 기대한다”라고 말했다.
이번 연구는 한국연구재단 리더연구사업과 세종과학펠로우십의 지원을 받아 수행됐다.
2023.04.12
조회수 5193
-
양찬호 교수, 전기적 위상 결함 제어기술 개발
〈 양 찬 호 교수, 김 광 은 박사과정 〉
우리 대학 물리학과 양찬호 교수 연구팀이 강유전체 나노구조에서 전기적인 위상 결함을 만들고 지울 수 있는 기술을 개발했다.
이 기술을 통해 전기적 위상 결함 기반의 저장 매체를 개발한다면 대용량의 정보를 안정적으로 저장할 수 있을 것으로 기대된다.
이번 연구는 포스텍 최시영 교수, 포항 가속기연구소 구태영 박사, 펜실베니아 주립대학 첸(Long-Qing Chen) 교수, 캘리포니아 대학 라메쉬 교수 등과 공동으로 수행됐다. 김광은 박사과정이 1저자로 참여한 이번 연구는 국제 학술지 ‘네이처 커뮤니케이션즈(Nature Communications)’ 1월 26일자에 게재됐다.
위상학은 물체를 변형시켰을 때 물체가 가지는 성질에 대한 연구를 하는 학문으로, 원과 삼각형은 위상학적으로 동일한 물질이라고 할 수 있다.
2016년도 노벨 물리학상 발표 기자회견에서 노벨위원회는 위상학의 개념을 구멍이 한 개 뚫린 베이글 빵, 구멍이 없는 시나몬 빵, 유리컵 등에 비유했다. 시나몬 빵과 유리컵은 다르게 보이지만 구멍이 없다는 점만 따지면 위상학적으로 같은 물질이 된다. 하지만 구멍의 개수가 다른 베이글과 시나몬 빵은 위상학적으로 다른 물질이 되는 식이다.
즉 물질에서 위상학적이라 함은 연속적인 변형으로는 그 특성을 변화시킬 수 없는 절대적인 보존량을 말한다. 이러한 위상학적 특징을 이용해 정보저장 매체를 만들면 외부의 자극으로부터 보존되며 사용자의 의도대로 쓰고 지울 수 있는 이상적인 비휘발성 메모리를 제작할 수 있다.
강유전체와 달리 강자성체(자기적 균형이 깨진 상태, 외부 자기장을 제거해도 자기장이 그대로 남아있음)의 경우는 소용돌이 형태의 위상학적 결함 구조가 이미 구현됐다.
반면 외부 전기장 없이도 스스로 분극을 갖는 강유전체는 자성체에 비해 위상학적 결함 구조를 더 작은 크기로 안정시키고 더 적은 에너지를 이용해 조절할 수 있다는 장점이 있음에도 불구하고 초보적인 연구 단계에 머물러 있었다. 실험적으로 위상학적 결함 구조를 어떻게 안정화시키며 어떠한 방식으로 조절할 것인지에 대한 연구가 부족했기 때문이다.
연구팀은 문제 해결을 위해 강유전체 나노구조에서 비균일한 변형을 줘 위상학적 결함 구조를 안정시키는 데 성공했다. 연구팀은 강유전체 나노접시(ferroelectric nanoplate) 구조를 특정 기판 위에 제작해 접시의 바닥면에는 강한 압축 변형을 주는 동시에 옆면과 윗면은 변형에서 자유로운 구조를 만들었다.
이러한 구조는 방사형으로 압축변형 완화(Compressive strain relaxation)가 일어나 격자의 변형이 오히려 강유전체의 소용돌이 구조를 안정화시키게 된다. 연구팀은 이번 연구가 고밀도, 고효율, 고안정성을 갖춘 위상학적 결함기반 강유전 메모리에 핵심적인 원리를 제시했다고 말했다.
양 교수는 “강유전체는 부도체이지만 위상학적 강유전 준입자가 국소적으로 전자 전도성을 수반할 수 있어 새로운 양자소자 연구로 확대될 수 있을 것이다”고 말했다.
이번 연구는 한국연구재단의 창의연구지원사업, 선도연구센터지원사업, 글로벌프론티어사업 등의 지원을 받아 수행됐다.
□ 그림 설명
그림1. 전기적 위상 결함 개수를 조절하여 만든 5가지의 다른 위상 구조
2018.02.08
조회수 29315
-
이진환 교수, 스핀 전류로 초전도를 제어하는 신기술 개발
〈 이진환 교수, 최석환 박사 〉
우리 대학 물리학과 이진환 교수가 포항공대 및 연세대와의 공동 연구를 통해 스핀 전류를 이용해 물질의 초전도를 제어하는 기술을 최초로 개발했다.
연구팀이 사용한 물질은 철계열 초전도체인 FeAs 원자층과 페로브스카이트 Sr2VO3 원자층이 반복해서 자기조립에 의해 형성된 헤테로 구조 물질이다. 스핀 제어 주사 터널링 현미경의 탐침과 시료 사이에 흐르는 스핀 분극 전류에 의해 FeAs층의 자성이 C2구조와 C4구조 사이에서 변화하고 이로 인해 FeAs층의 초전도가 켜지고 꺼짐을 원자수준에서 명확히 보일 수 있었다.
최석환 박사(현 BK 박사후연구원)가 제1저자로 참여한 이번 연구는 대표 물리 학술지 ‘피지컬 리뷰 레터스(Physical Review Letters, PRL)’에 11월 27일자로 PRL 대표 논문(Editors’ Suggestion)으로 출판됐다.
이 연구는 스핀 분극 전류와 비분극 전류를 활용해 자성 배열을 국소적으로 바꿈으로써, 나노 자성 메모리를 구현하거나 초전도를 제어하는 트랜지스터 소자를 개발하는데 필요한 기본적인 물리 원리를 최초로 밝혔으며 동시에 이를 원자 수준에서 규명한 것으로 평가받고 있다.
이 연구는 상위 3%의 가장 중요한 PRL 논문에 대해 해당 분야의 권위자의 해설이 함께 실리는 Viewpoint in Physics에도 선정됐으며, 미국 국립 연구소들이 주도하는 일반인 대상의 과학 전문 온라인 뉴스 매체인 Phys.org에 매월 가장 중요한 10개 연구만 선정되는 특집(Feature) 기사로 소개되기도 했다.
또 이진환 교수가 독자 설계 제작하여 이 연구에 활용된 장비는 지난 10월호 최고 권위의 과학 장비 저널인 ‘리뷰 오브 사이언티픽 인스트루먼츠(Review of Scientific Instruments, RSI)’지의 표지 논문으로 선정되기도 했다.
이 장비의 측정 정밀도를 향상시키기 위해 개발하였으나 일반적인 모든 센서와 증폭기의 성능을 향상시킬 수 있는 수학적인 모델이 같은 과학 장비 저널 RSI에 수학적인 논문으로는 예외적으로 별도 정규 논문으로 게재됐다.
이진환 교수는 “모두가 그 기본 원리가 잘 알려진 간단한 주사 탐침 현미경 또는 상용 현미경으로 실험할 때, 우리는 반강자성 탐침을 이용한 스핀 제어 기능, 고자기장 구조에서 불가능할 것으로 여겨졌던 넓은 가변온도 기능, 체계적인 스핀제어 실험을 위한 다중 시료 장착 기능 등을 과감히 설계에 반영하였고, 그 결과 자연스럽게 다른 경쟁 그룹들이 수년 내에 따라 할 수 없는 자성과 초전도의 동시 제어 실험을 체계적으로 수행할 수 있었다”면서 “학내에 공용 헬륨 액화기가 없는 등 기초과학 연구 환경상의 약간의 어려움이 있지만, 이 연구의 물리학적인 성취를 실용적인 소자로 구현하기 위한 확장 연구와 함께, 앞으로도 보다 다양한 측정 기술 혁신으로 첨단 과학의 발전을 선도할 수 있기 위해 최선을 다할 것”이라고 말했다.
이번 연구는 한국연구재단이 추진하는 미래융합 파이오니어 사업과 이공학 개인기초연구지원 사업 등의 지원을 받아 수행됐다.
이 연구 논문은 https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.119.227001 에서 확인할 수 있으며, Viewpoint in Physics와 Phys.org 특집 기사는
https://physics.aps.org/articles/v10/127 및 https://phys.org/news/2017-12-scientists-superconductivity-currents.html 에서 찾아볼 수 있다.
□ 그림 설명
그림1. 연구 개념도
2017.12.26
조회수 20428
-
양찬호 교수, 자석 아닌 물질이 자성(磁性) 갖게 하는 기술 개발
우리 대학 물리학과 양찬호 교수 연구팀이 전기장을 통해 자석이 아닌 물질이 자성을 갖게 하거나 그 반대로 자석 내의 자성을 없앨 수 있는 기술을 개발했다.
이 연구를 통해 자성 물질 기반의 저장 매체를 개발한다면 대용량의 정보를 빠른 속도로 이용할 수 있을 것으로 기대된다.
장병권 박사과정이 1저자로 참여한 이번 연구 성과는 물리학 분야 학술지 ‘네이처 피직스(Nature Physics)’ 10월 3일자 온라인 판에 게재됐다.
물질의 내부에는 아주 작은 자석들이 존재한다. 그 작은 자석들이 무질서하게 여러 방향으로 향하고 있으면 비 자성 상태이고, 일정한 방향으로 정렬이 이뤄지면 우리가 흔히 볼 수 있는 자석이 된다.
테라바이트 이상의 외장하드를 쉽게 구할 수 있을 정도로 저장 매체의 용량 기술은 발전했다. 그러나 용량 증가는 필연적으로 저장 매체의 읽고 쓰는 속도를 느리게 만든다. 현재 가장 널리 쓰이는 하드 디스크(HDD)의 느린 데이터 접근 속도로는 다른 기술과 조화되기 어려운 상황이다.
이에 따라 SSD, 플로팅 게이트(Floating gate), 저항 방식(Resistive switching) 방식 등이 대안으로 떠오르고 있으나 기록을 할 때마다 흔적을 남기기 때문에 피로 누적 현상을 피할 수 없다는 한계를 갖는다.
정보를 자성 상태로 기록하면 속도가 빠르고 피로 누적 현상을 없앨 수 있기 때문에 저장 매체의 최소 저장 공간인 셀(Cell)을 자성 물질로 구성하려는 시도가 많았다. 주로 전류의 흐름을 통해 유도된 자기장을 이용하는 방식인데, 자기장은 자폐가 매우 어려워 넓은 범위에 영향을 끼치기 때문에 인접한 셀의 자성도 변화시킨다.
셀 하나하나를 조절할 수 없기 때문에 일정한 방향으로 정렬시킬 수 없어 자성의 상태를 바꾸기가 어려웠다.
연구팀은 문제 해결을 위해 자기전기 상호작용을 통해 자성 상태를 조절했다. 자기전기 상호작용은 자기장이 아닌 전기장을 이용해 전류의 흐름 없이 자성 상태를 조절하는 방식으로 에너지 소모가 적다는 장점을 갖는다.
연구팀은 실험을 통해 전기장 인가만으로 무질서하게 임의의 방향을 향하고 있는 셀들이 일정한 방향을 향하고 있음을 확인했다. 또한 반대로 일정한 방향에서 다시 무질서한 상태로도 변화가 가능함을 증명했다.
기존에 보고된 자기전기 현상은 통상적으로 극저온이나 고온에서 발현이 가능했다. 그러나 이번 기술은 화학적 도핑을 통해 상온에서도 작동이 가능하고, 변환이 가역적이며 비휘발성을 갖기 때문에 차세대 정보 저장 소자 개발의 발판이 될 것으로 기대된다.
양 교수는“이번 전기적 자성상태의 변화는 엔트로피 변화를 동반하고 있을 것으로 예상한다”며“자기전기 소자 응용뿐만 아니라 열전 현상의 새로운 가능성을 열 것으로 기대된다”고 말했다.
이번 연구는 재료연구소 최시영 박사, 포항공대 정윤희 교수, 포항 가속기연구소 구태영 박사, 막스플랑크 연구소 고경태 박사, 미국 스탠포드 가속기연구소 이준식 박사 와 헨드릭(Hendrik Ohldag) 박사, 호주 뉴사우스웨일즈 대학 잔(Jan Seidel) 교수 등과 공동으로 진행됐다.
한국연구재단의 중견연구자지원사업, 글로벌연구네트워크지원사업, 선도연구센터지원사업(응집상 양자 결맞음 연구센터)과 글로벌프론티어사업(하이브리드 인터페이스기반 미래소재 연구단) 등의 지원을 통해 수행됐다.
□ 그림 설명
그림1. 전기장 인가를 통한 자성 방향의 변화를 나타낸 개념도
2016.10.27
조회수 16005
-
바이오부탄올 핵심생산효소 구조 및 특성 규명
이 상 엽 특훈교수
우리 대학 생명화학공학과 이상엽 교수 연구팀이 경북대학교 김경진 교수 연구팀과의 공동연구를 통해 친환경 차세대 에너지인 바이오부탄올의 핵심 생산 효소인 싸이올레이즈(Thiolase)의 구조 및 특성을 규명했다.
연구 결과는 네이처 커뮤니케이션즈(Nature Communications) 9월 22일자 온라인 판에 게재됐다.
바이오부탄올은 바이오연료로 이미 사용되고 있는 바이오에탄올을 능가할 수 있는 친환경 차세대 수송용 바이오연료로 각광받고 있다.
바이오부탄올의 에너지 밀도는 리터당 29.2MJ(메가줄)로 바이오에탄올(19.6MJ)보다 48% 이상 높고 휘발유(32MJ)와 큰 차이가 없다. 또한 폐목재, 볏짚, 잉여 사탕수수, 해조류 등 비식용 바이오매스에서 추출하기 때문에 식량파동 등에서도 자유롭다.
바이오부탄올의 가장 큰 장점은 휘발유와 비교했을 때 공기연료비, 기화열, 옥탄가 등 연료 성능이 비슷해 현재 자동차 등에 사용되고 있는 가솔린 엔진을 그대로 사용할 수 있다는 점이다.
바이오부탄올은 클로스트리듐이라는 미생물로부터 생산이 가능하지만 클로스트리듐의 주요 효소의 구조 및 기작 등에 대한 연구는 체계적으로 이뤄지지 못했다.
이 교수 연구팀은 이 미생물의 성능 향상을 위해 바이오부탄올 생합성에 필요한 주요 효소 중 하나인 싸이올레이즈의 3차원 입체구조를 포항방사광가속기를 이용해 규명했다.
이를 통해 일반적인 미생물의 효소에서는 발견되지 않고 클로스트리듐 내의 싸이올레이즈에서만 관찰되는 산화-환원 스위치 구조를 발견했다.
또한 가상세포모델 등을 활용한 시스템대사공학 기법을 활용해 이 싸이올레이즈가 실제 미생물 내에서 산화-환원의 스위치로 작동한다는 것을 증명했다.
연구팀은 밝혀낸 싸이올레이즈 구조의 원천기술을 활용해 활성이 향상된 돌연변이 효소를 설계했다. 그리고 이를 이용해 바이오부탄올 생산 미생물의 대사회로를 조작해 바이오부탄올 생합성이 향상되는 결과를 얻었다.
이상엽 교수는 “바이오부탄올 생합성 대사회로에서 가장 중요한 효소의 구조와 작용 기작을 세계 최초로 밝혔다”며 “싸이올레이즈 관련 원천기술을 활용해 바이오부탄올을 더욱 경제적으로 생산할 수 있는 대사회로 구축에 응용하겠다”고 말했다.
김상우, 장유신, 하성철 박사가 공동 1저자로 참여한 이번 연구는 미래창조과학부와 한국연구재단의 기후변화대응기술개발사업 및 글로벌프런티어 차세대바이오매스사업단 지원을 받아 수행됐다.
□ 그림 설명
그림 1. 바이오부탄올 생산 효소(thiolase)의 구조 및 산화-환원 스위치 작용기작
그림 2. 바이오부탄올 생산을 위한 포도당 대사회로에서 바이오부탄올 생산 효소(thiolase)의 산화-환원 스위치 작용기작
2015.09.22
조회수 14435