-
친환경 발광 소재로 생생한 화면 즐긴다
현실과 가상이 융합된 메타버스 시대를 생생하고 현실감 있게 표현하기 위해 디스플레이와 광학 기기 기술이 더욱 빠르게 발전하고 있다. 하지만 차세대 발광 물질로 주목받으며 청색광 구현이 가능한 납 기반 페로브스카이트는 납 이온의 유독성으로 인해 산업적 응용이 제한되고 있다. 이에, 우리 연구진이 청색광 구현이 가능한 친환경 대체 소재를 개발해서 화제다.
우리 대학 신소재공학과 조힘찬 교수 연구팀이 납 이온이 없이도 우수한 색 표현력과 높은 발광 효율을 가질 수 있는 친환경 대체 소재를 개발하였다고 13일 밝혔다.
연구팀은 이번 연구에서 유로퓸 이온(Eu2+)*으로 페로브스카이트의 납 이온을 대체함으로써 우수한 색 표현력과 높은 발광 효율을 동시에 가지는 발광 소재를 개발할 수 있음을 보였다.
*유로퓸 이온: 원자 번호 63번인 희토류 금속 유로퓸(Eu)의 이온 형태. 주로 전자를 2개 또는 3개 잃은 양이온(Eu2+ 또는 Eu3+)으로 존재함
개발된 세슘 유로퓸 브로마이드(CsEuBr3) 페로브스카이트 나노결정은 420-450 나노미터(nm) 파장 영역에서의 진청색 발광 특성을 보였으며, 약 40%의 높은 발광 효율과 24 nm의 매우 좁은 발광 스펙트럼 반치폭*을 보였다.
*반치폭: 스펙트럼의 최대값 절반 높이에서의 두 점 사이의 거리로, 발광 색상의 선명도(색순도)를 평가하는 지표
광원의 발광 스펙트럼이 좁을수록 디스플레이에서 선명한 색 표현이 가능하기 때문에, 이는 차세대 디스플레이 소재로서의 높은 가능성을 보여준 결과라고 할 수 있다.
또한, 연구팀은 유로퓸 기반 나노결정의 구조적, 광학적 특성이 합성 과정에서 사용된 유기 리간드(암모늄 계열, 포스핀 계열)*에 따라서 크게 바뀌는 현상을 처음으로 규명하였다.
*유기 리간드: 나노결정의 표면에 붙어 계면활성제 역할을 하는 물질. 암모늄, 포스핀 계열 리간드는 각각 질소, 인 원자를 중심으로 구성됨
구체적으로, 세슘 유로퓸 브로마이드 페로브스카이트 나노결정은 합성 초기에 형성된 세슘 브로마이드(CsBr) 나노결정에 유로퓸 이온이 점진적으로 도입되면서 형성된다. 이 과정에서 사용된 리간드에 따라 결정 형성의 경로가 달라지며, 이 경로 차이에 의해 최종적으로 합성된 세슘 유로퓸 브로마이드 페로브스카이트 나노결정의 발광 효율이 크게 향상될 수 있음을 확인하였다.
신소재공학과 조힘찬 교수는 “이번 연구는 그동안 어려웠던 친환경 비납계 페로브스카이트 소재 연구의 돌파구를 제시하는 결과”라며 “차세대 디스플레이 및 광학 소자 개발의 새로운 지평을 열 수 있을 것으로 기대되며, 향후 연구를 통해 소재의 광학적 특성과 공정성을 더욱 향상시킬 계획”이라고 전했다.
연구팀의 하재영 박사과정, 연성범 석박사통합과정 학생이 공동 제1 저자로 참여한 이번 연구는 국제 학술지 ‘에이씨에스 나노 (ACS Nano)’에 10월 17일 온라인 게재됐으며, 11월 호 부록 표지(Supplementary Cover)로 출판될 예정이다.
(논문명: Revealing the Role of Organic Ligands in Deep-Blue-Emitting Colloidal Europium Bromide Perovskite Nanocrystals).
이번 연구는 한국연구재단의 지원을 받아 수행됐다.
2024.11.13
조회수 753
-
기존보다 26배 효과적인 폐질환 흡입치료 가능
코로나19의 전 세계적 유행 이후, 폐 등 호흡기 질병에 대비하기 위한 mRNA 백신 및 치료제는 차세대 치료제로 주목받고 있다. 하지만 기존 mRNA 백신용 전달체가 가지고 있는 한계점을 극복하고 우리 대학 연구진이 호흡기 바이러스 및 난치성 폐질환의 mRNA 흡입 치료를 가능케 하며 유전자 폐 치료 연구의 근간이 될 연구에 성공했다.
우리 대학 바이오및뇌공학과 박지호 교수 연구팀이 유전자 폐 치료에 최적화된 나노 전달체를 개발했다고 7일 밝혔다.
연구팀은 기존 mRNA 전달을 위해 활용되던 지질나노입자(이하 lipid nanoparticle, LNP)의 에어로졸화 과정에서의 불안정성과 폐 미세환경에서의 낮은 전달 효율을 해결하기 위해 이온화성 지질나노복합체(ionizable lipocomplex, iLPX)를 개발했다.
iLPX는 이온화성 리포좀의 외부에 mRNA를 결합한 형태로, 에어로졸화 과정에서 입자의 구조를 유지하기 때문에 흡입 전달에 용이하다. 또한, 폐 미세환경 내에서 폐계면활성제와의 상호작용을 유도해 호흡 운동을 활용, mRNA를 높은 효율로 폐 세포 내로 전달할 수 있다.
흡입 전달 및 폐 미세환경을 고려한 모방 환경 및 마우스 폐에서의 단백질 발현을 토대로 한 다차원 선별 과정을 통해 iLPX의 구성 요소들을 최적화시킴으로써 흡입용 mRNA 전달체(Inhalation optimized-iLPX, 이하 IH-iLPX)를 완성했다.
연구팀은 에어로졸화 전후의 입자 크기, 균일도, mRNA 탑재율을 비교함으로써 IH-iLPX의 월등한 에어로졸화 안정성을 증명했다. 나아가, IH-iLPX를 전달한 마우스에서 LNP 전달 마우스보다 26배 높은 단백질 발현이 유도됨을 확인했다.
연구팀은 동물 모델에서 흡입 전달된 IH-iLPX가 폐 특이적으로 단백질을 발현시키며, 폐포 상피세포와 기관지 상피세포에서 mRNA를 효과적으로 전달함을 확인했다. 또한 혈액 생화학 분석과 조직 검사를 토대로 IH-iLPX가 폐와 혈액 환경에서 독성이 없음을 확인했기 때문에 효과적인 폐내 mRNA 발현뿐만 아니라 생체 안전성 측면에서 큰 의의를 갖는다고 밝혔다.
박 교수는 “mRNA를 반드시 내부에 탑재해야 한다는 고정 관념을 깨고 새로운 구성의 입자를 제시함으로써 기존에 불가능했던 흡입형 유전자 치료의 길을 열었다”며 “본 연구실에서 개발한 흡입형 유전자 전달체는 치료 단백질을 암호화하는 mRNA를 탑재해 폐질환에 적용되어 유전자 폐 치료의 적용 범위를 넓힐 것으로 기대된다”이라고 말했다.
바이오및뇌공학과 장민철 박사과정이 제1 저자로 참여한 이번 연구 결과는 나노기술 분야 국제학술지 ‘ACS 나노(Nano)’ 9월 3일 자 18권 35호에 게재됐다. (논문명: Inhalable mRNA Nanoparticle with Enhanced Nebulization Stability and Pulmonary Microenvironment Infilration)
이번 연구는 한국연구재단의 중견연구자지원사업의 지원을 받아 수행됐다.
2024.10.10
조회수 1234
-
화학적, 전기적 양방향 소통이 가능한 파이버형 뇌-컴퓨터 인터페이스 개발
뇌 속 뉴런은 화학적, 전기적 신호가 동시에 작동하면서 정교한 시스템을 만들어내지만 현재까지는 이러한 신호를 동시에 주고받으면서 신경의 작동 원리를 확인할 수 있는 장치가 존재하지 않았다. 한국 연구진이 화학적 신호와 전기적 신호를 양 방향적으로 주고받으며 세부적인 신호 전달 체계를 탐사할 수 있는 다기능 신경 인터페이스를 개발하여 앞으로 신경 체계 연구, 질환 연구 및 치료에 획기적인 발전을 가져올 것으로 기대한다.
우리 대학 바이오및뇌공학과 박성준 교수 연구팀이, 초소형 와이어 병합 열 인발공정(Microwire Co-drawing Thermal Drawing Process, MC-TDP)*을 통해 카본, 폴리머, 금속의 다양한 재료를 통합하여 4가지 기능성을 가진 다기능 섬유형 신경 인터페이스를 개발했다고 13일 밝혔다.
☞ 열 인발공정 : 열을 가해 큰 구조체의 복잡한 구조체를 빠른 속도로 당겨 같은 모양 및 기능을 갖춘 섬유를 뽑아내는 일 또는 가공
뇌신경 시스템 조사를 위한 삽입형 인터페이스는 전기적 성능에 중점을 두고 발전해 왔다. 하지만 전기적, 화학적 신호의 시너지 효과를 연구하기 위해서는 전기적 신호뿐만 아니라 화학적 신호의 역학을 기록하고 화학적 자극 또한 할 수 있는 신경 디바이스가 필요했다. 그러나 기존의 제작 방법으로는 다양한 자극과 기록을 수행할 수 있는 다양한 재료를 융합하는 것이 어려웠고, 특히 마이크로미터 스케일로 정교한 다기능성 신경 인터페이스를 만드는 것이 어렵다는 문제가 있었다.
연구팀은 문제 해결을 위해 이번 연구에서 초소형 와이어 병합 열 인발공정을 통해 머리카락 크기의 다기능 섬유를 뽑아내는 동안 초소형 와이어를 병합하고 카본 파이버를 융합하여 뉴런 사이에서 일어나는 대표적인 신호 전달을 동시에 조사할 수 있는 다기능 섬유를 제작했다. 연구팀은 제작된 하나의 섬유가 카본 파이버를 통한 도파민 모니터링, 마이크로 유체관을 통한 약물 주입, 폴리머 광 도파관을 통한 광 유전학적 신경 자극, 그리고 초소형 와이어를 통한 전기신호 측정을 할 수 있음을 확인했다.
해당 뇌-기계 인터페이스를 실제 쥐 모델에서 광유전학적 자극에 따른 화학적 신경전달물질 중 도파민과 전기적 신경 활성 신호를 효과적으로 측정하고 약물에 따른 도파민 방출량의 변화를 확인할 수 있음을 보였다. 또한 연구팀은 개발된 섬유가 자발적인 신경 신호를 측정할 수 있음을 보여주며 신경 인터페이스로써의 범용적 사용성도 확인했다.
이번 연구 결과는 국제 학술지 '에이씨에스 나노(ACS Nano)'에 2024년 5월 온라인 출판됐다. (논문명: A Multifunctional and Flexible Neural Probe with Thermally Drawn Fibers for Bidirectional Synaptic Probing in the Brain)
박성준 교수는 "화학적 신경전달물질 기록 및 화학적 자극, 전기적 신경 활성신호 기록, 그리고 광학적 조절 기능을 갖춘 차세대 초다기능성 신경 인터페이스의 개발 성과ˮ임을 강조하며, "향후 다양한 신경 회로에의 적용을 통해 신경 회로의 작동원리 규명과 뇌 질환의 세부적인 메커니즘 파악에 사용될 수 있을 것ˮ 이라고 말했다.
한편 이번 연구는 한국연구재단 기초연구실, STEAM연구사업 및 범부처재생의료기술사업의 지원을 받아 수행됐다.
2024.05.13
조회수 2806
-
차세대 2차원 반도체 다기능 전자 소자 개발
공급 전압에 의한 2차원 반도체의 극성 전환을 이용해 새로운 전자 소자로의 응용이 보고된 바 있으나, 모두 누설 전류가 크거나 낮은 전류점멸비로 인해 실제 집적 회로(IC)칩에서 사용하기 어려웠다. 우리 대학 연구팀은 다기능 전자 소자를 통해 프로그램 및 기능성 변환이 가능한 회로 구현의 가능성을 제시하고 IC칩에서의 2차원 반도체의 활용성을 확장하는 기술을 개발하였다.
우리 대학 전기및전자공학부 이가영 교수 연구팀이 양극성 반도체 특성을 가진 2차원 나노 반도체 기반의 다기능 전자 소자를 개발했다고 2일 밝혔다. 다기능 전자 소자란 기존 트랜지스터와 달리 전압에 따라 기능을 변환할 수 있는 소자로, 연구팀의 소자는 양극성 트랜지스터, N형 트랜지스터, 다이오드, 항복 다이오드 그리고 광 감지 소자로 변환 가능하여 폭 넓은 사용이 가능하다.
기존 실리콘 반도체보다 성능이 뛰어난 이황화 몰리브덴(MoS2)는 층상 구조의 2차원 반도체 나노 소재로, 전자가 흐르는 N형 반도체 특성을 가지면서 대기에서 안정적이다. 또한, 기존 실리콘 반도체가 미세화될수록 성능 저하에 취약함에 반해, 이황화 몰리브덴은 관련 문제가 적어 차세대 반도체로서 학계뿐만 아니라 삼성, TSMC, 인텔과 같은 산업계에서의 연구도 활발하다.
그러나 상보적 금속산화막 반도체(CMOS) 구현을 위해서는 음(N) 전하를 띄는 전자뿐만 아니라 양(P) 전하를 띄는 정공 유도도 필요한 데, 이황화 몰리브덴에서는 정공 유도가 어려웠다. 이 문제를 해결하기 위해 이황화 몰리브덴에 추가적인 공정을 도입하거나 다른 P형 물질을 사용하는 방법이 시도됐으나, 공정 난이도가 높다. 이러한 문제점은 현재까지도 이황화 몰리브덴을 상용화하기 위해 해결해야 할 중요한 과제로 남아 있다.
이가영 교수 연구팀은 채널 하부에 전극을 배치하고 금속/반도체 접합 특성을 개선해 전자와 정공 모두 선택적으로 흐를 수 있는 양극성 특성을 구현하는 데 성공했다. 이로써 전류의 점멸 비율을 대폭 높일 뿐만 아니라, 양극성 트랜지스터, N형 트랜지스터, 다이오드, 항복 다이오드 그리고 광감지 소자로 다기능 변조 동작이 가능한 이황화 몰리브덴 전자 소자를 개발했다. 또한 이를 기반으로 집적도가 개선된 논리 연산이 가능함도 보였다.
이번 연구를 주도한 송준기, 이수연 학생은 “기존 실리콘 금속산화막 반도체(CMOS) 공정 호환성이 높은 공정 과정을 통해 차세대 2차원 반도체의 다양한 기능을 구현했다”며 “IC칩에서 이황화 몰리브덴의 전자소자로의 활용성 및 실용성을 넓히는 계기가 될 것이다”라고 덧붙였다.
이가영 교수는 “이번에 개발한 전자 소자는 주어진 전압 특성에 따라 다양한 기능을 수행하면서도 각 기능의 성능이 우수하다”며 “서로 다른 기능의 소자들은 대개 구조와 공정 방법들이 달라 함께 집적시 공정 난이도가 높고 회로 도면 변화에 따른 공정 전환이 까다롭다. 반면, 이번에 개발한 신개념 소자는 하나의 소자에서 다기능을 할 수 있어서 현재 수요가 급증하고 있는 맞춤형 반도체의 제작 및 공정 전환을 용이하게 할 것이다. 목적에 따라 회로 자체의 기능성을 변환할 수 있어 단일 칩 시스템의 소형화에도 기여할 것으로 기대한다”라고 말했다.
우리 대학 전기및전자공학부 송준기 석박통합과정 학생과 이수연 석사과정 학생이 공동 제1 저자로 참여한 이번 연구는 나노과학 분야 저명 국제 학술지 `ACS Nano'에 2024년 1월 26일 온라인판에 출판됐다. (논문명 : Drain-induced multifunctional ambipolar electronics based on junctionless MoS2)
한편 이번 연구는 한국연구재단의 기초연구사업 및 BK21, KAIST의 C2 사업, 그리고 LX 세미콘-KAIST 미래기술센터의 지원을 받아 수행됐다.
2024.02.05
조회수 3866
-
KAIST-현대자동차, 0.6초 이내 초고속 수소 누출 감지
최근 친환경 수소 자동차 보급이 증가함에 따라 안전과 직결된 필수 요소인 수소 센서의 중요성이 더욱 높아지고 있다. 특히 빠른 수소 누출 감지를 위한 핵심 성능 지표인 센서 감지 속도의 경우 1초 이내로 감지하는 기술이 도전적인 과제로 남아있다. 이에 세계 최초 미국 에너지청(U.S. Department of Energy) 기준 성능을 충족하는 수소 센서가 개발되어 화제다.
우리 대학 조민승 박사(전기및전자공학부 윤준보 교수팀)가 현대자동차 기초소재연구센터 전자기에너지소재 연구팀, 부산대학교 서민호 교수와의 협업을 통해 모든 성능 지표가 세계적인 공인 기준을 충족하면서 감지 속도 0.6초 이내의 기존보다 빠른 수소 센서를 세계 최초로 개발했다고 10일 밝혔다.
기존 상용화된 수소 센서보다 빠르고 안정적인 수소 감지 기술 확보를 위해 우리 대학은 현대자동차와 함께 2021년부터 차세대 수소 센서 개발에 착수했고, 2년여의 개발 끝에 성공하였다.
기존의 수소 센서 연구들은 수소 센서에 많이 활용되는 팔라듐(palladium, Pd) 소재에 촉매 처리를 하거나 합금을 만드는 등 주로 감지 소재에만 집중하여 연구됐다. 이러한 연구들은 특정 성능 지표에선 매우 뛰어난 성능을 보이지만 모든 성능 지표를 충족하지는 못했으며, 일괄 공정이 어려워 상용화에 한계가 있었다. 이를 극복하기 위해 해당 연구진은 순수한 팔라듐 물질 기반으로 독자적인 마이크로/나노 구조 설계 및 공정 기술을 접목해 모든 성능 지표를 만족하는 센서를 개발했다. 또한 향후 양산을 고려해 합성 소재가 아닌 물질적 제약이 적은 순수 금속 소재들을 활용했으며, 반도체 일괄 공정 기반으로 대량 생산이 가능한 차세대 수소 센서를 개발했다.
개발한 소자는 히터-절연층-감지물질이 수직으로 적층 되어 있는 구조의 기존 가스 센서가 가지는 불균일한 온도 분포를 극복하기 위해 히터와 감지물질이 동일 평면상에 나란히 집적되어 있는 차별적인 공면(Coplanar) 구조가 적용됐다. 감지 물질인 팔라듐 나노 소재는 완전히 공중 부유 된 구조로 하단부까지 공기 중에 노출되어 있으며, 가스와의 반응 면적을 극대화해 빠른 반응 속도를 확보했다. 또한 팔라듐 감지 물질은 전 영역이 균일한 온도로 동작하며, 이를 통해 온도에 민감한 감지 성능들을 정확히 조절해 빠른 동작 속도, 폭넓은 감지 농도, 온도/습도 둔감성을 연구팀은 확보했다.
연구팀은 제작된 소자를 블루투스 모듈과 패키징 하여 무선으로 1초 이내로 수소 누출을 감지하는 통합 모듈을 제작한 후 성능을 검증했으며, 이는 기존 고성능 광학식 수소 센서와 달리 휴대성이 높아 수소 에너지가 보급되는 다양한 곳에 적용될 수 있을 것으로 기대된다.
연구를 주도한 조민승 박사는 “이번 연구 결과는 기존 수소 센서 성능 한계를 뛰어넘어 고속 동작할 뿐만 아니라 실사용에 필요한 신뢰성, 안정성까지 확보했기에 중요한 가치를 가지며, 자동차, 수소 충전소, 가정 등 다양한 곳에 활용될 수 있을 것”이라고 말했다. 또한 “이번 수소 센서 기술의 상용화를 통해 안전한 친환경 수소 에너지 세상을 앞당기는 데 기여하고 싶다” 라며 앞으로의 계획을 밝혔다.
연구팀은 개발된 소자를 현재 현대자동차와 함께 소자를 웨이퍼 스케일로 제작한 후 차량용 모듈에 탑재해 감지 및 내구 성능을 추가로 검증하는 중이다.
조민승 박사가 제1 저자로 수행한 이번 연구는 미국, 한국 등에 3건의 특허가 출원돼 있으며, 저명 국제 학술지 `ACS 나노(Nano)'에 출판됐다. (논문명: Ultrafast (∼0.6 s), Robust, and Highly Linear Hydrogen Detection up to 10% Using Fully Suspended Pure Pd Nanowire). (Impact Factor: 18.087).
(https://pubs.acs.org/doi/10.1021/acsnano.3c06806?fig=fig1&ref=pdf)
한편 이번 연구는 한국연구재단의 나노및소재기술개발사업 지원과 현대자동차 기초소재연구센터의 지원 및 공동 개발을 통해 수행됐다.
2024.01.10
조회수 4519
-
강한 빛에서 0.02초 내에 새로운 촉매를 합성하다
대면적의 빛을 활용하고 대기 중의 환경에서 0.02초 이내에 연료전지 등 차세대 에너지 저장 및 발전에 광범위하게 적용되는 고엔트로피 촉매 및 단일원자 촉매의 합성을 세계 최초로 구현했다.
우리 대학 전기및전자공학부 최성율 교수 연구팀과 신소재공학과 김일두 교수 연구팀이 공동연구를 통해 강한 빛을 다양한 탄소 기반 소재에 조사해, 0.02초 이내에 나노입자 촉매와 단일원자(single atom) 촉매를 진공 시설이 없는 대기 조건에서 합성하고 우수한 촉매 성능을 구현하는데 성공했다고 6일 밝혔다.
연구팀은 2022년 4월 제논 램프 빛을 조사해 금속산화물의 상(phase) 변화와 표면에 촉매 입자가 생성될 수 있음을 최초로 밝혔고 그 후속으로 소재의 광열효과를 유도하는 합성법에 대한 연구를 진행했다. 이에 초고온(1,800~3,000oC)과 빠른 승/하온 속도(105 oC/초)를 통해 기존의 합성법으로는 구현할 수 없는 촉매 입자를 합성하는 데 성공했다.
이번 기술은 대면적의 빛을 활용하고 대기 중의 환경에서 매우 빠른 시간(0.02초 이내)에 고엔트로피 촉매 및 단일원자 촉매의 합성을 세계 최초로 구현한 기술이다. 광열효과가 뛰어난 소재(탄소 나노섬유, 그래핀 산화물, 맥신(Mxene))에 다종 금속 염을 고르게 섞어주고 빛을 가하게 되면 초고온 및 매우 빠른 승/하온 속도를 기반으로 최대 9성분계의 합금 촉매를 합성할 수 있음을 밝혔다. 합금 촉매는 연료전지, 리튬-황전지, 공기 전지, 물 분해 수소 생산 등 저장 및 발전에 광범위하게 적용되며, 비싼 백금의 사용량을 획기적으로 줄이는데 유리하다.
연구팀은 광열효과를 통해 단일원자 촉매의 신규 합성법에도 성공했다. 그래핀 산화물에 멜라민 및 금속염을 동시에 혼합하여 빛을 조사하게 되면 단일원자 촉매가 결합된 질소 도핑 그래핀을 합성할 수 있음을 최초로 밝혔다. 백금, 코발트, 니켈 등의 다양한 단일원자 촉매가 고밀도로 결착되어 다양한 촉매 응용 분야에 활용할 수 있다.
최성율 교수와 김일두 교수는 "강한 빛을 소재에 짧게(0.02초 이내) 조사하는 간편한 합성기법을 통해 단일 원소 촉매부터 다성분계 금속 나노입자 촉매의 초고속, 대면적 합성을 가능하게 하는 새로운 촉매 합성 공정 플랫폼이 될 것으로 기대된다ˮ고 밝혔다. 특히, "매우 빠른 승/하온 속도를 기반으로 기존에 합성하기 어려웠던 고엔트로피 다성분계 촉매 입자를 대기 중 조건에서 균일하게 합성해 고성능 물 분해 촉매로 응용했다는 점에서 매우 의미있는 연구 결과이며, 응용 분야에 따라 촉매 원소의 크기와 조성을 자유롭게 조절해 제작할 수 있는 신개념 광 기반 복합 촉매 소재 합성 플랫폼을 구축했다ˮ고 밝혔다.
고엔트로피 촉매 제조 관련 연구는 공동 제1 저자인 차준회 박사(KAIST 전기및전자공학부, 現 SK하이닉스 미래기술연구원), 조수호 박사(KAIST 신소재, 現 나노펩 선임연구원), 김동하 박사(KAIST 신소재, 현 MIT 박사후 연구원, 한양대학교 ERICA 재료화학공학과 교수 임용)의 주도하에 진행됐으며, 최성율 교수(KAIST 전기및전자공학부), 김일두 교수(KAIST 신소재), 정지원 교수(KAIST 신소재, 現 울산대학교 신소재 교수)가 교신저자로 참여했다.
단일원자 촉매 제조 관련 연구는 공동 제1 저자인 김동하 박사와 차준회 박사의 주도하에 진행됐으며, 김일두 교수, 최성율 교수가 교신저자로 참여했다.
이번 연구 결과는 나노 분야의 권위적인 학술지인 `어드밴스드 매트리얼즈(Advanced Materials)' 11월호에 속표지 논문으로 선정되었으며, `에이씨에스 나노(ACS Nano)' 12월호에 속표지 논문으로 출간 예정이다.
한편 연구는 한국연구재단 중견연구자지원 사업, 과학기술정보통신부와 산업통상자원부 사업, 한국연구재단 미래소재디스커버리 사업의 지원, 과학기술정보통신부 반도체-이차전지 인터페이싱(InterFacing) 플랫폼 기술개발사업을 받아 수행됐다.
2023.12.06
조회수 5869
-
맥신 나노기술로 세탁가능한 투명 플렉시블 OLED 개발
자동차 디스플레이, 바이오 헬스케어, 군사 및 패션 등 다양한 분야에서 많은 각광을 받고 있는 투명 플렉시블 디스플레이는 약간의 변형에도 쉽게 깨지는 성질을 가지고 있다. 이를 해결하고자 탄소 나노튜브, 그래핀, 은나노와이어, 전도성 고분자 등 많은 투명 플렉시블 전도성 소재에 관한 연구가 이뤄지고 있다.
우리 대학 전기및전자공학부 최경철 교수 연구팀이 나노종합기술원 이용희 박사팀과의 공동 연구를 통해 맥신 나노기술을 활용하여 물에 노출돼도 뒷배경을 보이며 빛을 발광하는 방수성 투명 플렉시블(유연) OLED 개발에 성공했다고 28일 밝혔다.
2차원 맥신(MXene) 소재는 높은 전기 전도도와 투과도를 보이고 용액공정을 통한 대규모 생산성 등의 매력적인 특성을 가진 전도성 소재임에도 불구하고 대기 중 수분이나 물에 의해 전기적 특성이 쉽게 열화되기 때문에 고수명의 전자장치로 활용되는데 한계가 있었고, 이로 인해 정보 표시가 가능한 매트릭스 형태로의 시스템화 단계까지 이루어지지 못한 상황이었다.
최경철 교수 연구팀은 수분이나 산소에 의해 산화되는 것을 방지하는 인캡슐레이션(encapsulation) 전략을 통해 환경적으로 견고한 고수명의 맥신 기반 OLED를 개발했다. 연구팀은 수분에 의한 맥신의 전기적 특성 열화 메커니즘을 분석하는 데 주목했고, 다음으로 인캡슐레이션 박막을 설계하는 데 주목했다. 연구팀은 수분을 차단하고 잔류응력 상쇄 기술을 도입하여 유연성을 주게 되어 최종적으로는 이중층 구조로 인캡슐레이션 박막을 설계했다. 더불어, 물속에서도 열화없이 세탁이 가능하도록 최상부에 수십 마이크로(μm) 두께의 얇은 플라스틱 필름을 부착하였다.
해당 연구를 통해, 연구팀은 햇빛 비추는 실외디스플레이 조건인 실외에서도 사람의 눈으로 밝기 인식이 가능한 정도로 1,000 cd/m2 이상의 휘도(밝기)를 내는 적색(R)/녹색(G)/청색(B)의 맥신 기반 OLED를 개발했다. 적색 맥신 기반 OLED의 경우, 2,000시간의 대기보관수명(70% 휘도유지), 1,500시간의 대기 구동수명(60% 휘도유지), 1.5mm 수준의 낮은 곡률 반경에서 1,000회 이상을 견디는 유연성을 확보할 수 있었다. 또한, 6시간 동안 물안에 넣어 놓아도 그 성능이 유지되었다(80% 휘도유지). 더불어, 패터닝(patterning) 기술을 활용해 맥신 기반 OLED를 수동 매트릭스(passive-matrix) 형태로 제작함으로써 글자나 모양 표시가 가능한 투명 디스플레이를 시연했다.
이번 연구를 주도한 최경철 교수 연구팀의 정소영 박사과정은 “맥신 OLED의 신뢰성 향상을 위해 이에 적합한 인캡슐레이션 구조 및 공정 설계에 집중했다”며 “맥신 OLED를 매트릭스 타입으로 제작해 간단한 문자나 모형을 표시함으로써 투명 디스플레이 분야에 맥신이 응용될 수 있는 기반을 마련했다”고 말했다.
최경철 교수는 “이번 연구가 맥신의 다양한 전자소자로의 응용에 가이드라인이 될 뿐 아니라 투명 플렉시블 디스플레이가 요구되는 차량용 디스플레이, 패션, 기능성 의류 등 다양한 응용 분야에 적용이 가능할 것으로 예상되며, 중국의 OLED 기술과의 격차를 벌리기 위해서는 이러한 새로운 OLED 융합 신기술이 계속 개발되어야 한다”고 밝혔다.
최경철 교수 연구팀의 정소영 박사과정이 제1 저자로 주도하고 과학기술정보통신부 한국연구재단의 선도연구센터 사업의 지원을 받아 수행된 이번 연구 결과는 나노 분야의 권위 있는 국제 학술지 `에이씨에스 나노(ACS nano, IF 18.0)'에 지난 4월 5일 字로 온라인 게재됐으며, 전면 표지 논문(Front Cover)으로 6월 13일 字로 게재됐다. (논문명: Highly Air-Stable, Flexible, and Water-Resistive 2D Titanium Carbide MXene-Based RGB Organic Light-Emitting Diode Displays for Transparent Free-Form Electronics)
2023.06.28
조회수 5066
-
나노입자로 염증부터 면역치료까지 가능
최근 서구화된 식습관, 유전 및 여러 환경 요인에 의해 장에서 발생하는 만성 염증을 일으키는 염증성 장 질환 환자가 우리나라에서 지속적으로 늘어나는 추세이지만, 여전히 효과적인 치료제 개발이 미흡한 상황이다.
우리 대학 생명과학과 전상용, 조병관 교수 공동연구팀이 경구투여 시 염증성 장에서 과도하게 활성화된 대식세포를 표적 할 수 있는 키토산-빌리루빈 (Bilirubin) 나노입자를 개발했다고 21일 밝혔다.
빌리루빈은 헤모글로빈이 분해될 때 나오는 물질로 염증에서 발생하는 활성산소에 대해 강력한 환원력(scavenging effect)을 가지며, 이로 인해 항염증성 효과가 탁월해 약물 개발로의 시도가 지속되고 있다. 그러나 빌리루빈 자체의 소수성 특성(hydrophobicity)에 의해 임상 단계에서의 직접적인 활용이 어렵다.
연구팀은 빌리루빈을 체내, 특히 경구투여로 전달할 수 있도록 점막부착성과 수용성 성질을 동시에 지니는 저분자량 수용성 키토산(Low molecular weight water soluble chitosan, LMWC)과 결합해 키토산-빌리루빈 나노입자(LMWC-BRNPs)를 합성하는 데 성공했다.
특히 키토산-빌리루빈 나노입자는 기존 염증성 장 질환 치료제로 사용되고 있는 비스테로이드 계열 항염증(non-steroidal anti-inflammatory agent, NSAID) 약물 중 하나인 아미노살리실리산(5-Aminosalicylic acid, 5-ASA) 대비 탁월한 장 기능 정상화 효과를 보였으며, 경구투여 시 점막층과의 정전기적 인력(Electrostatic interaction)으로 장벽 안으로 흡수됨으로써 기존 경구용 치료제 대비 강력한 점막 부착성을 보였다. 또한 염증성 대식세포에 의해 흡수되어 이들의 활성을 저해시켜 염증성 장 질환의 주요 염증성 사이토카인(Pro-inflammatory cytokine)과 활성 산소종(reactive oxygen species, ROS) 분비를 줄이고, 염증성 조력 Th17 세포 대비 면역 조절 T 세포 (Regulatory T cell) 비율을 조절함으로써 망가진 장내 면역 항상성을 되돌리는 효능을 보였다.
연구팀은 마지막으로 키토산-빌리루빈 나노입자가 장내 흡수 시 염증에 의해 유발되는 장내 미생물 패턴 변화를 막아 염증성 박테리아 중 하나인 ‘튜리시박터(Turicibacter)’의 증식을 억제하며, 세 가지 핵심 유산균인 ‘서터렐라(Sutterella)’, ‘오실로스피라(Oscillospira)’, ‘락토바실러스(Lactobacillus)’의 수를 유지하는 효능을 동물 실험을 통해 밝힘으로써, 본 나노입자가 단순히 염증만 저해하는 기존 치료제를 뛰어넘는 우수한 나노 의약(Nanomedicine)으로 개발될 수 있음을 강조했다.
우리 대학 생명과학과 아피아 박사과정생, 신종오 박사(현 캘리포니아대학교 샌디에이고캠퍼스 박사후 연구원)가 공동 제1 저자로 참여한 이번 연구는 나노-재료공학 분야 저명 학술지인 ‘ACS 나노(Nano)’ (ISSN: 1936-0851 print, 1936-086X online, Impact factor: 18.027) 5월 25일 온라인판에 게재됐다. (https://pubs.acs.org/doi/10.1021/acsnano.3c03252. 논문명: Bilirubin Nanomedicine Rescues Intestinal Barrier Destruction and Restores Mucosal Immunity in Colitis)
전상용 교수는 “ 이번 연구결과로 단순히 염증만 저해하는 기존 치료법을 뛰어넘는, 장내 미생물 환경을 효과적으로 조절 및 무너진 면역반응을 정상화하는 우수한 나노의약으로 개발될 수 있음을 제시하였다. 이로써, 나노입자 기반의 장 질환 치료법에 대한 새로운 가능성을 보여주었다” 고 말했다.
한편, 이번 연구는 한국연구재단의 ‘리더연구사업(종양/염증 미세환경 표적 및 감응형 정밀 바이오-나노메디신 연구단)’ 및 대한민국 ‘바이오 위대한 도전 사업’의 지원을 받아 수행됐다.
2023.06.21
조회수 3816
-
전염병 바이러스 10분 내 현장 진단 가능한 PCR 개발
전염성 높은 바이러스의 빠른 확산을 방지하기 위해서는 의료 현장에서 빠르고 정확하게 바이러스를 검출해 신속하게 진단하는 것이 매우 중요하다. 현재 현장 진단 검사는 신속 항원 검사에 국한되어 진단의 정확성이 낮은 문제점이 있다. 감염병 확진을 위해선 실시간 역전사 중합효소연쇄반응(Real-time reverse-transcription Polymerase Chain reaction, RT-qPCR) 검사가 필요하지만, 기술적인 한계로 인해 현장 진단 검사에는 매우 부적합한 실정이다.
우리 대학 바이오및뇌공학과 정기훈 교수 연구팀이 나노종합기술원과 (주)오상헬스케어와의 공동연구로 개발하여 코로나-19 바이러스 검출 95% 정확도를 가진 현장 진단에 적합한 초고속 초소형 플라즈모닉 핵산 분석 시스템을 개발했다고 11일(화) 밝혔다.
연구팀이 개발한 시스템은 광열 나노소재 기반 초고속 플라즈모닉 열 순환기, 미세 유체 랩온어칩 기반 금속 박막 카트리지, 초박형 마이크로렌즈 어레이 형광 현미경 등 최첨단 마이크로 나노기술을 접목한 현장 진단형 플라즈모닉 핵산분석 시스템을 핸드헬드 크기로 개발했으며 코로나-19 RNA 바이러스를 10분 이내에 성공적으로 검출했다. 또한, 파일럿 제품의 성능평가를 위해 임상적 성능시험을 수행했으며, 임상 현장에서 정상인 시료로부터 코로나-19 환자의 시료를 95% 이상의 높은 정확도로 구분하는 데 성공했다.
`플라즈모닉 열 순환기'는 나노 및 마이크로공정기술을 통해 유리 나노 기둥 위 금나노섬 구조와 백금박막 저항 온도센서를 결합해 대면적으로 제작됐다. 해당 나노 구조는 가시광선 전 영역에서 광 흡수율이 매우 높아 백색광 다이오드(LED)의 빛을 빠르게 열로 치환해 온도 상승 속도를 대폭 향상했으며, 상단에 있는 박막 저항 온도 센서를 통해 실시간으로 표면 온도를 측정함으로써 초고속 열 순환 기능을 구현했다.
또한, 연구팀은 사출 성형된 플라스틱 미세 유체 칩과 알루미늄 박막을 결합해 `금속박막 카트리지'를 개발했으며, 이를 통해 값비싼 나노소재의 재사용률을 높이고 비용 효율을 극대화했다. 해당 금속 박막은 두께가 얇고 열전도율이 높으므로 열 순환기로부터 발생한 광열을 반응 용액에 효율적으로 전달해 온도상승 및 하강 속도를 개선했다. 또한, 금속 박막은 빛 반사율 또한 매우 높아 플라즈모닉 핵산 증폭 기술의 가장 큰 한계점인 광열 여기광원과 형광 검출 사이의 광학적 누화 현상을 완전히 해결했다.
연구팀은 미세 유체칩 내 실시간 정량화를 위해 마이크로공정기술을 활용해 곤충 눈을 모사한 `마이크로렌즈 어레이 형광 현미경'을 개발했다. 해당 기술은 초점거리의 한계를 극복해 10밀리미터(mm)의 초근접 거리에서 미세 유체 채널의 형광 이미지를 촬영할 수 있도록 제작됐고 전체 형광 시스템의 크기를 대폭 축소했다. 또한, 어레이 이미지의 병합 및 재구성을 통해 높은 동적범위 및 고대비 다중 형광 촬영이 가능하므로 플라즈모닉 핵산 증폭 동안 증가하는 유전자를 실시간으로 정량화할 수 있도록 개발했다.
정기훈 교수는 “플라즈모닉 핵산분석 시스템이 속도, 가격, 크기 측면에서 현장 진단에 매우 적합하여 진단 장비의 탈중앙화를 가능하게 할 뿐만 아니라 다중 이용 시설이나 지역 병원 등 방역 현장에서 바이러스 검출 목적으로 활용할 수 있을 것으로 기대된다” 라고 말했다.
우리 대학 바이오및뇌공학과 강병훈 박사과정이 주도한 이번 연구 결과는 국제 학술지 `에이씨에스 나노 (ACS Nano)'에 게재됐다. (논문명: 분자진단의 분산화를 위한 초고속 플라즈모닉 핵산 증폭 및 실시간 정량화, Ultrafast Plasmonic Nucleic Acid Amplification and Real-Time Quantification for Decentralized Molecular Diagnostics)
한편 이번 연구는 KAIST 코로나19대응 과학기술뉴딜사업과 과학기술정보통신부 나노소재기술개발사업으로 수행됐다.
2023.04.11
조회수 6373
-
99% 실시간 가스를 구별하는 초저전력 전자 코 기술 개발
우리 대학 기계공학과 박인규 교수, 윤국진 교수와 물리학과 조용훈 교수 공동 연구팀이 `초저전력, 상온 동작이 가능한 광원 일체형 마이크로 LED 가스 센서 기반의 전자 코 시스템'을 개발하는 데 성공했다고 14일 밝혔다.
공동 연구팀은 마이크로 크기의 초소형 LED가 집적된 광원 일체형 가스 센서를 제작한 이후 합성곱 신경망 (CNN) 알고리즘을 적용해 5가지의 미지의 가스를 실시간으로 가스 종류 판별 정확도 99.3%, 농도 값 예측 오차 13.8%의 높은 정확도로 선택적 판별하는 기술을 개발했다. 특히 마이크로 LED를 활용한 광활성 방식의 가스 감지 기술은 기존의 마이크로 히터 방식 대비 소모 전력을 100분의 1 수준으로 획기적으로 절감한 것이 특징이다.
이번 연구에서 개발된 초저전력 전자 코 기술은 어떠한 장소에서든지 배터리 구동 기반으로 장시간 동작할 수 있는 모바일 가스 센서로 활용될 것으로 기대된다.
타깃 가스의 유무에 따라 금속산화물 가스 감지 소재의 전기전도성이 변화하는 원리를 이용한 반도체식 가스 센서는 높은 민감도, 빠른 응답속도, 대량 생산 가능성 등 많은 장점이 있어 활발히 연구되고 있다. 금속산화물 감지 소재가 높은 민감도와 빠른 응답속도를 보이기 위해서는 외부에서 에너지 공급을 통한 활성화가 필요한데 기존에는 집적된 히터를 이용한 줄 히팅 방식이 많이 사용됐다. 고온 가열 방식의 반도체식 가스 센서는 높은 소모전력과 낮은 선택성 등의 한계점이 있었다.
한편, 이번 연구에서 연구팀은 자외선 파장대의 빛을 방출하는 마이크로 크기의 LED를 제작한 후 바로 위에 산화인듐(In2O3) 금속산화물을 집적함으로써 광활성 방식의 가스 센서를 개발했다. 광원과 감지 소재 사이의 거리를 최소화한 광원 일체형 센서 구조는 광 손실을 줄임으로써 μW(마이크로와트) 수준의 초저전력 가스 감지를 실현할 수 있었다. 또한, 연구진은 광 활성식 가스 센서의 반응성을 극대화하기 위해 금속산화물 표면에 금속 나노입자를 코팅해 국소 표면 플라즈몬 공명(Localized surface plasmon resonsance, LSPR)* 현상을 활용했고 이를 통해 센서의 응답도가 향상되는 것을 확인했다.
* 국소표면 플라즈몬 공명에 의해 생성된 핫 전자들이 금속산화물로 이동(Hot electron transfer)해 타깃 가스와의 산화-환원 반응을 촉진하는 원리
그 후, 공동 연구팀은 앞서 설명한 반도체식 가스 센서의 낮은 선택성 문제를 해결하기 위해서 마이크로 LED 가스 센서에 서로 다른 감지 소재를 집적해 센서 어레이를 제작하고 합성곱 신경망의 딥러닝 알고리즘을 적용하여 각 타깃 가스가 만들어내는 고유한 금속산화물의 응답 패턴(저항 변화)을 포착하고 분석했다. 그 결과, 개발된 전자 코 시스템은 총 소모전력 0.38mW(밀리와트)의 초저전력으로 5가지 가스(일반 공기, 이산화질소, 에탄올, 아세톤, 메탄올)를 실시간으로 선택적 판별할 수 있었다.
연구책임자인 기계공학과 박인규 교수는 "마이크로 LED 기반의 광 활성식 가스 센서는 상온 동작이 가능하고 고온 가열 줄히팅을 하는 기존의 반도체식 가스 센서에 비해 소모전력이 100분의 1 수준으로 초저전력 구동이 가능해 대기오염 모니터링, 음식물 부패 관리 모니터링, 헬스케어 등 다양한 분야에서도 응용될 수 있는 기반 기술이 될 것ˮ이라고 연구의 의미를 설명했다.
우리 대학 기계공학과 이기철 박사과정 학생이 제1 저자로 참여하고 한국연구재단의 지원으로 수행된 이번 연구 결과는 나노 과학 분야의 저명한 국제 학술지 `ACS 나노 (ACS Nano)'에 2023년 1월 10일 字 정식 게재됐다. (논문명: Ultra-Low-Power E-Nose System Based on Multi-Micro-LED-Integrated, Nanostructured Gas Sensors and Deep Learning)
2023.02.14
조회수 6558
-
팔라듐 나노와이어를 이용한 고민감도 고신뢰성 무선 수소 가스센서 개발
우리 대학 전기및전자공학부 윤준보 교수와 부산대학교 의생명융합공학부 서민호 조교수(KAIST 박사 졸업) 연구팀이 넓은 범위의 수소가스 농도를 무선으로 검출하는 고 민감도 센서 기술을 개발했다고 28일 밝혔다. (제1 저자: KAIST 조민승 박사과정)
연구팀은 팔라듐 금속을 3차원 나노구조로 설계함으로써 나타날 수 있는 `팔라듐 상전이(phase-transition)* 억제 효과'를 통해 0~4% 농도의 수소가스를 높은 선형성으로 감지하는 무선 가스 센서 기술을 개발했다.
*상전이(phase transition): 화학, 열역학 및 기타 관련 분야에서 일반적으로 물질의 기본 상태(결정성, 고체, 액체, 기체) 사이의 변화를 뜻한다.
우리 대학 전기및전자공학부 조민승 박사과정이 제1 저자로 참여한 이번 연구 결과는 국제 학술지 ACS 나노(ACS nano) 온라인판에 지난달 27일 게재됐으며, 그 우수성을 인정받아 추가 표지 논문으로 선정됐다. (논문명: Wireless and Linear Hydrogen Detection up to 4% with High Sensitivity through Phase-Transition-Inhibited Pd Nanowires)
(https://pubs.acs.org/doi/10.1021/acsnano.2c01783)
수소가스는 에너지 효율성이 높고 연소 시 물을 생성하는 친환경적인 이점으로 차세대 에너지원으로 주목받고 있다. 하지만, 무색, 무취의 수소가스는 4% 이상의 농도에서 낮은 발화에너지로 폭발하는 위험성이 크기 때문에 주의 깊은 사용과 관리가 필요하다.
다양한 방식의 수소가스 감지 기술 중, 팔라듐(palladium, Pd) 금속 소재 기반의 기술은 수소가 팔라듐 내부 격자 사이에 해리되어 팔라듐 하이드라이드(PdHx)를 형성하면서 저항이 바뀌는 간단한 원리로 동작할 뿐만 아니라, 상온에서도 수소가스를 선택적으로 감지할 수 있고, 반응 시 부산물이 없어 습도 안정성도 매우 우수하다는 장점이 있다.
하지만, 팔라듐은 상온에서 2% 이상의 수소가스에 노출되게 되면, 상 변이가 일어나면서 1) 센서로서의 농도 범위가 제한*되고, 2) 반응 속도가 지연*되며, 3) 내구성이 저해*되는 등 다양한 문제를 발생시켜, 최소 4%까지의 농도를 감지해야 하는 수소가스의 기초 요구 조건을 만족시키지 못하는 실정이다.
*1) 농도 범위 제한: 상 변이와 함께 팔라듐 내부에 수소가 포화되어 저항 변화가 더 이상 일어나지 않고 이로 인해 수소가스 감지 범위 특성이 저해되는 현상
*2) 반응 속도 지연: 상 변이에 의한 시간 소요로 느린 저항 변화를 보임
*3) 내구성 저해: PdHx는 상 변이하면서 10%가 넘는 부피 팽창이 발생하는데, 이때, 기계적인 스트레스로 인해 Pd의 파단이 일어남
이에, 연구팀은 나노미터 두께로 얇고 납작한 3차원 나노구조를 팔라듐에 도입함으로써 4%까지의 수소가스를 정확하게 측정할 수 있는 무선 팔라듐 수소가스 감지 기술을 세계 최초로 개발했다.
팔라듐이 얇고 납작한 3차원 나노구조로 기판에 형성되게 되면, 팔라듐이 수소가스에 노출돼도 쉽게 부피 팽창을 일으킬 수 없게 되고 내부에 높은 응력이 발생하게 된다. 이러한 응력은 팔라듐의 상전이 활성화 에너지를 높이게 되는데, 연구진은 이 현상을 이용해 4% 이상의 높은 수소가스 농도에도 상전이 없이 안정적으로 수소가스를 감지하는 팔라듐 나노구조를 개발할 수 있었다.
실제 연구진은, 15 나노미터 (nm) 두께와 160 나노미터 (nm) 폭으로 팔라듐 나노구조를 설계·제작했고, 이를 기반으로 제작된 센서 소자는 0.1~4%의 수소가스를 98.9%의 선형성(linearity)으로 감지하는 성능을 성공적으로 보였다. 특히, 연구팀은 개발한 소자에 BLE(Bluetooth low energy) 기술과 3D 프린팅 기술, 안드로이드 앱 개발을 통해 무선으로 수소가스를 감지하는 센서 시스템 기술도 시연했는데, 이 기술은 센서와 20 미터(m) 떨어진 상황에서도 스마트폰이나 PC로 수소가스 누출을 안정적으로 감지할 수 있게 한다.
연구팀 관계자는 "이번 결과는 2% 이상 고농도에서 측정이 어려웠던 기존 팔라듐 기반 수소가스 센서의 문제점을 해결할 수 있는 새로운 기술을 개발했다는 점에서 중요한 의미가 있다ˮ고 말했다. 특히, "이번 센서 기술이 향후 수소가스를 이용한 청정에너지 시대에 안전관리를 위해서 활발히 활용될 수 있을 것ˮ이라고 기대했다.
한편 이번 연구는 2022년도 과학기술정보통신부의 재원으로 한국연구재단의 나노및소재기술개발사업, 선도연구센터지원사업과 기본연구지원사업의 지원을 받아 수행됐다.
2022.06.28
조회수 7333
-
급속 충전이 가능한 고에너지 하이브리드 리튬전지 개발
우리 대학 신소재공학과 강정구 교수 연구팀이 우수한 성능의 급속 충전이 가능한 고에너지·고출력 하이브리드 리튬 이온 전지를 개발했다고 21일 밝혔다.
연구팀은 고분자 수지 배향의 변화를 통해 넓은 표면적의 다공성 탄소 중공 구조체를 합성했고, 이를 기반으로 하는 음극 및 양극 소재를 개발해 고성능 하이브리드 리튬 이온 전지를 구현했다.
현재 리튬이온 배터리는 대표적인 상용화 에너지 저장 장치로 스마트 전자기기부터 전기 자동차까지 전반적인 전자 산업에 필수적인 요소로 자리 잡고 있어 `제2의 반도체'로 불린다. 그러나 느린 전기화학적 반응 속도, 전극 재료의 한정 등의 특성에 의한 낮은 출력 밀도, 긴 충전 시간, 음극 및 양극 비대칭성에 따른 큰 부피 등의 근본적인 한계로 인해 고성능 전극 재료 및 차세대 에너지 저장 소자의 개발이 필요하다.
이러한 문제를 해결하기 위해 최근 활발하게 연구 중인 하이브리드 전지는 배터리용 음극과 축전기용 양극을 결합해 높은 저장 용량과 빠른 충·방전 속도의 장점을 모두 가지고 있기에 기존 리튬이온 배터리를 대체할 수 있는 차세대 에너지 저장 장치로 주목받고 있다.
하지만 고에너지 및 고출력 밀도의 하이브리드 전지를 구현하기 위해서 배터리용 음극의 전기 전도성 및 이온 확산 속도 개선, 축전기용 양극의 에너지 저장 용량 증가, 서로 다른 이온 저장 메커니즘에 따른 두 전극의 최적화 과정이 필요하다.
이에 강 교수 연구팀은 고분자 수지의 배향 변화를 통해 넓은 표면적을 가진 다공성 탄소 구조체를 합성할 수 있는 새로운 합성법을 제시했고, 이를 기반으로 음극 및 양극 소재를 개발해 고에너지·고출력의 하이브리드 리튬이온 에너지 저장 장치를 성공적으로 구현했다.
연구팀은 레졸시놀-폼알데하이드(Resorcinol-Formaldehyde) 수지 합성 과정에 멜라민(Melamine)을 첨가해 수지의 배향을 선형에서 꼬인 형태로 변화시켰다. 꼬인 형태의 수지가 탄화(carbonization)될 경우 더 많은 마이크로 기공이 형성됐으며, 기존 선형 구조의 수지로 생성된 탄소 구조체보다 12배 넓은 표면적을 가진 탄소 구조체가 생성됐다. 이 과정을 통해 생성된 탄소 구조체는 축전기용 양극 재료로 사용됐으며, 넓은 표면적으로 많은 이온이 표면에 흡착될 뿐만 아니라 중공 구조 및 메조 기공을 통해 이온이 빠르게 확산할 수 있어 높은 용량과 속도 특성을 보이는 것을 연구팀은 확인했다.
그뿐만 아니라 연구팀은 꼬인 형태의 수지 구조체 내에 높은 에너지 저장 용량을 가진 저마늄(Ge) 전구체를 삽입하는 합성방식을 통해 분자 수준 크기의 저마늄 입자가 삽입된 탄소 중공 구조체를 합성해 이를 배터리용 음극 재료로 사용했다. 다공성 탄소 구조체 내 삽입된 분자 수준 크기의 저마늄 입자의 경우 충·방전시 큰 부피 팽창으로 인한 성능 저하 현상을 억제할 뿐만 아니라 내부까지 빠르게 리튬 이온이 확산할 수 있어 높은 수명 특성 및 속도 특성을 가지는 것을 확인했다.
연구팀은 개발된 음극과 양극을 완전셀로 구성해 고성능 하이브리드 리튬 이온 전지를 구현했다. 이 하이브리드 리튬 이온 전지는 기존 상용화된 리튬이온 배터리에 필적하는 에너지 밀도와 축전기의 출력 밀도 특성을 모두 가지는 것을 확인했으며, 차세대 에너지 저장 장치로 수 초에서 수 분의 급속 충전으로도 활용 가능해 전기 자동차, 드론, 스마트 전자기기 등에 적용 가능할 것으로 예상된다.
우리 대학 신소재공학과 김기환 박사과정이 제1 저자로 참여한 이번 연구 결과는 나노 분야의 국제 저명학술지 `ACS 나노'에 4월 4일 字 게재됐다. (논문명 : Coiled Conformation Hollow Carbon Nanosphere Cathode and Anode for High-Energy Density and Ultrafast Chargeable Hybrid Energy Storage)
강 교수는 "전극기준으로 높은 에너지 밀도 (285 Wh/kg)를 가지며, 고출력 밀도(22,600W/kg)에 의한 급속 충전이 가능한 하이브리드 리튬 이온 전지는 현 에너지 저장 시스템의 한계를 극복할 수 있는 새로운 돌파구가 될 것이다ˮ라며 "전기 자동차를 포함한 모든 전자기기의 활용 범위를 확대해 적용될 수 있을 것이다ˮ고 말했다.
이번 연구는 과학기술정보통신부 글로벌프론티어사업의 하이브리드 인터페이스 기반 미래소재연구단의 지원을 받아 수행됐다.
2022.04.22
조회수 9067