-
독립적으로 더 스마트해진 ‘도커SSD’ 개발
정보를 저장하는 솔리드 스테이트 드라이브(Solid-Sate Drive, SSD)가 컴퓨터 없이도 데이터 처리가 가능한 독립 서버로 운영이 가능해지며 편리성이 극대화되고 데이터의 탄소 배출량도 획기적으로 감소시킬 수 있는 새로운 형태의 스마트 SSD로 개발됐다.
우리 대학 전기및전자공학부 정명수 교수 연구팀(컴퓨터 아키텍처 및 메모리 시스템 연구실)이 물리적 장치의 실행이 아닌 가상으로 데이터 처리와 운영이 되는 `도커(Docker)' 개념을 적용한 새로운 고성능·저전력 메모리 (PIM, Processing-In-Memory) 모델 중 하나인 `도커SSD'를 개발했다고 27일 밝혔다.
스마트 SSD는 여러 가지 데이터를 처리하는 프로그램들을 데이터가 실제 존재하는 스토리지 근처에서 실행할 수 있게 함으로써 데이터 이동에 불필요한 에너지 및 전력 소모를 줄이고 고성능 결과를 얻게 하는 기술로 오랫동안 다양한 곳에 적용을 시도해 왔다. 하지만 기존 데이터 처리 프로그램을 SSD 제조사별로 그리고 장치가 제공하는 환경별로 모두 수정하고 새로 만들어야 하는 문제 때문에 스마트 SSD를 다양한 환경과 데이터 처리 응용에 적용하는 것에 한계가 존재했다. 이러한 한계를 극복하고자 KAIST 연구팀은 스마트 SSD의 제조사나 장치 환경에 관계 없이 현존하는 여러 가지 프로그램들을 그대로 스토리지에 이식하여 실행할 수 있는 도커SSD를 개발하였다.
이를 위해 정명수 교수 연구팀은 사용자들에게 데이터 처리 기술 중 편의성을 제공하는 방법으로 `컨테이너'를 주목했다. 컨테이너는 응용 프로그램과 해당 프로그램 실행에 필요한 라이브러리를 모두 포함한 소프트웨어 패키지로, 외부의 환경에 구애받지 않고, 컨테이너 내부적으로 독립적인 실행 환경을 운용할 수 있게 해준다.
연구팀이 개발한 도커SSD는 가상화 운영체제 환경인 *도커(Docker)를 스토리지 내부에서 실행할 수 있는 특허 기술을 적용해 호스트로부터 요청받은 컨테이너 단위의 작업을 처리한다. 사용자들은 메모리/스토리지 제조사에 영향을 받지 않고 다양한 응용 프로그램을 스토리지 내부에서 실행할 수 있다. 또한, 외부와 독립적인 실행 환경을 제공하는 컨테이너의 특성 덕분에, 사용자들이 기존 응용 프로그램의 소스 코드를 수정할 필요조차 없어져 사용자 편의성이 극대화된다.
☞ 도커(Docker): 리눅스 컨테이너를 만들고 사용할 수 있도록 하는 컨테이너화 기술
연구팀은 일반적으로 SSD 장치에 접근하기 위해 사용되는 스토리지 프로토콜과, 도커 소프트웨어 동작의 기반이 되는 네트워크 관련 프로토콜이 서로 호환되지 않는다는 점을 극복하기 위해 스토리지 프로토콜을 통해 네트워크 관련 메시지를 전송할 수 있는 새로운 인터페이스를 독자 개발했다. 또한, 컨테이너 및 도커를 실행하기 위해서 기존 운영체제를 경량화하여 도커SSD 내부에 통합했다. 마지막으로, 스토리지에 내재된 저사양 프로세서를 활용하여 작업을 처리할 경우 성능이 저하될 수 있다는 점을 착안하여 자체 제작한 저전력 하드웨어 가속 모듈을 활용하여 네트워크 및 입출력 관련 동작을 가속함으로써 문제를 해결했다.
연구팀은 도커SSD에 적용한 운영체제 수준 가상화의 실효성 검증을 통해 현재 학계에서 가장 자주 사용되는 스토리지 기반 모델보다도 데이터를 2배 빠르게 처리하면서 전력 소모 또한 약 2배 감소시킴을 확인했다.
정명수 교수는 "불필요한 데이터 이동을 최소화하여 빠르면서 에너지 절약에 최적화된, 동시에 사용자 입장에서 편리하면서도 우수한 호환성을 가진 메모리 모델을 확보했다ˮ며 "고성능·저전력 메모리 모델인 도커SSD는 빠르게 확장하고 있는 국내·외 데이터센터 운영 기업/기관에 실용화되어 탄소중립에 기여할 수 있을 것ˮ이라 말했다.
이번 연구는 스코틀랜드 에든버러에서 오는 2024년 3월에 열릴 컴퓨터 구조 분야 최우수 학술대회인 `국제 고성능 컴퓨터 구조 학회(IEEE International Symposium on High Performance Computer Architecture, HPCA)'에 관련 논문(논문명: DockerSSD: Containerized In-Storage Processing and Hardware Acceleration for Computational SSDs)으로 발표될 예정이다.
한편 해당 연구는 KAIST 교원창업 회사인 파네시아(https://panmnesia.com)와 정보통신기획평가원등의 연구 지원을 받아 진행됐다.
2023.11.27
조회수 3837
-
서성배 교수, 스트레스 세포(CRF 세포) 변화 초 단위 관찰 성공
〈 서성배 교수 〉
우리 대학 생명과학과 서성배 교수 연구팀이 스트레스에 따른 몸의 반응을 조절하는 일명 부신피질 자극 호르몬 방출인자, 일명 ‘스트레스 세포 (CRF 세포)’의 새로운 역할을 밝혀냈다.
연구팀은 부정적 판단을 유도하는 외부 자극이 발생할 때 CRF 세포가 활성화되고 반대로 긍정적인 외부자극을 줄 때 억제되는 현상을 초 단위로 측정하는 데 성공함으로써 기존보다 확대된 CRF 세포의 역할이 있다는 사실을 밝혔다.
이는 동물의 본능적 감정 판단에 대한 실마리가 될 수 있는 결과로, 우울증이나 불안장애, 외상후 스트레스 장애 등의 치료제 개발에 새로운 단서를 제시할 수 있을 것으로 기대된다.
김진은 박사과정이 1저자로 참여한 이번 연구 결과는 국제 학술지 ‘네이처 뉴로사이언스(Nature Neuroscience)’ 4월호 22권에 게재됐다. (논문명 : Rapid, biphasic CRF neuronal responses encode positive and negative valence)
자연환경에서 동물은 천적을 만나면 빠르게 도망가지만 좋아하는 음식을 발견하면 자연스럽게 다가가는 선천적 행동 양식을 보인다. 도망가거나 이끌리는 본능적 행동은 주어진 특정 자극을 부정적이거나 긍정적으로 판단하는 두뇌에 의해 결정된다.
시상하부-뇌하수체-부신 축(Hypothalamus-Pioituitary-Adrenal Axis, 이하 HPA Axis)은 심리적, 물리적 스트레스에 대한 우리 몸의 생리학적 반응을 조절하는 영역이다. 이 HPA Axis를 조절하는 것이 흔히 스트레스 조절인자로 알려진 ‘부신피질 자극 호르몬 방출인자(Corticotropin Releasing Factor, 이하 CRF)’이다.
시상하부 영역의 부신피질 자극 호르몬 방출인자를 방출하는 세포는 다양한 스트레스에 의해 자극돼 혈액의 코티졸 인자를 증가시키는 연쇄반응을 유도하고 동물의 생리학적 신진대사 상태를 유지하는 신경내분비 조절의 중추로, 흔히 스트레스 세포로 알려져 있다.
이 CRF 세포가 활성화되면 동물의 부정적 감정이 커진다는 가설은 예전부터 있었지만 약 30분 단위로만 측정할 수 있고, 쥐 등의 실험체를 부검해야만 호르몬의 변화를 파악할 수 있다는 한계가 있어 CRF 세포의 활성도가 스트레스성 자극, 특히 좋은 자극에 대해 초 단위로 어떻게 변화하는지 파악이 어려웠다.
연구팀은 뉴욕대와의 공동연구를 통해 생쥐 두뇌의 시상하부 영역의 CRF 세포의 활성도를 실시간으로 측정하는 칼슘이미징 기술 중 파이버포토메트리(fiberphotometry)를 도입했다. 연구팀은 부정적, 긍정적 감정의 판단을 유도하는 다양한 자극에 쥐를 노출해 세포의 반응성을 관찰했다.
그 결과 생쥐를 물에 빠뜨리거나 날아오는 새를 모방한 시각적 자극, 천적의 오줌 냄새 등 위협적 외부 자극에 의해 쥐가 도망할 때 CRF가 빠르게 활성화되는 것을 확인했다. 반대로 맛있는 음식, 암컷 쥐 등 긍정적 판단을 유도하는 자극에 노출했을 때 CRF 활성도가 억제되는 양방향성의 특징을 규명했다.
서성배 교수는 “음식 냄새와 시각적 자극에 의해 쥐들의 행동이 유도되기 전부터 CRF 세포가 감소하는 부분이 흥미롭다”라고 말하며 그 이유를 설명했다. “시상하부의 CRF 세포가 이러한 예측에 의한 기능을 보인다는 것은 그간 알려진 시상하부 영역의 세포들과는 차별성이 있는 역할이고, 쥐들이 좋은 자극에 노출 되면 CRF 세포 활성도가 감소하는 점도 혁신적인 패러다임의 전환이다”라고 말했다.
연구팀은 생명과학과 김대수 교수 연구팀과의 협력으로 빛을 이용해 특정 세포의 활성을 조절할 수 있는 광유전학을 적용했다. 이를 통해 CRF 세포를 자극해 인위적으로 특정 환경을 싫어하거나 좋아하게 만들 수 있음을 확인했다. 이 결과는 CRF 세포의 활성도가 대상에 대한 선호도 판단에 중요한 역할을 할 수 있다는 것을 증명했다.
김진은 연구원은 “시상하부에서 다양한 세포와 복잡하게 얽힌 CRF 세포의 활성도를 측정하기 위해 칼슘이미징이라는 새 기술을 도입함으로써 기존 기술적 한계를 극복했다”라며 “CRF 호르몬의 아미노산 서열이 밝혀진 이래 40여 년 동안 느린 내분비 조절 기능만으로 알고 있던 CRF의 역할에 대한 이해를 새 기술을 통해 넓혔다는 의의가 있다”라고 말했다.
이번 연구 결과는 호르몬 방출을 통해 시상하부-뇌하수체-부신 축(HPA axis)을 조절한다는 CRF의 기존 기능을 넘어, CRF 세포가 다양한 감각적 자극에 대한 긍정 또는 부정적 판단을 통해 적절한 행동 반응을 조절하는 역할을 할 수 있음을 시사한다.
서성배 교수는 “우울증, 불안증, 외상후 스트레스 장애 등의 질환이 스트레스와 관련이 높다는 사실을 밝혔다”라며 “CRF 세포 활성도를 생쥐를 통해 실시간 측정함으로써 우울증 치료제, 약물의 효과를 시험하는 데 적용할 수 있을 것이다”라고 말했다.
이번 연구는 KAIST 신임교원 정착 연구비, KAIST 석박사 모험연구 사업, 포스코 청암재단 포스코 사이언스 펠로우십의 지원을 통해 수행됐다.
□ 그림 설명
그림1. 광유전학을 통한 시상하부 CRF 세포의 활성도 인위적 조절
그림2. 시상하부 CRF 세포의 양방향성의 활성도와 인비보 칼슘이미징모식도 (위) 시각적 위협, 공격성이 있는 쥐로부터의 위협 (나쁜 자극)과 음식, 새끼쥐 (좋은 자극)에 이의한 시상하부 CRF 세포의 활성화 혹은 억제에 대한 예시. (아래)
2019.04.18
조회수 13706
-
박인규 교수, 전기제어와 온도차를 이용한‘나노분자 제어기술’개발
- ▲나노센서 개발 ▲분자조작 ▲세포자극 등 공학기술 전반에 활용 가능 -- 나노 레터스(Nano letters) 10월 호 게재 -
우리 학교 기계공학과 박인규 교수 연구팀이 최근 나노미터(10억분의 1미터) 크기 공간에서 전기제어와 온도차를 이용해 나노분자를 제어하는 원천기술 개발에 성공했다고 19일 밝혔다.
박 교수가 이번에 개발한 기술은 ▲고밀도 전자회로 패터닝 ▲고성능 다중물질 나노센서 개발 ▲단백질·유전자 조작 ▲ 세포조작 및 자극 등 다양한 분야에 응용될 것으로 기대된다.
기술적 한계로 나노미터 크기의 섬세한 분자제어가 어려워 개발이 더뎠던 초소형‧휴대형 센서 개발에도 커다란 변화를 가져올 것으로 예상된다.
연구팀은 나노패터닝 공정으로 고밀도·고정렬 나노와이어를 만들어 각각의 와이어에 전기를 제어하고 빠르게 온도를 조절해 화학반응 제어를 실현했으며 이를 통해 나노분자를 정밀하고 신속하게 조절가능하다는 것을 실험으로 입증했다.
박인규 교수는 “이 기술은 나노공간에서 선택적이고 개별적인 온도조절로 바이오 분자조작, 선택적 회로집적 등에 응용돼 화학센서의 성능향상, 초소형 센서 개발 등 IT/ET 융합기술 발전에 크게 기여할 수 있을 것”이라고 말했다.
이번 연구는 교육과학기술부의 일반연구자사업 및 HP 오픈 혁신 연구 프로그램(HP Open Innovation Research Program)을 통해 수행됐으며, 연구결과는 세계적 권위의 나노기술 학술지인 ‘나노 레터스(Nano Letters)’ 10월 3일자 온라인 판에 게재됐다.
한편 , 이번 연구에는 KAIST 박 교수를 비롯해 김춘연 기계공학과 박사과정 학생, 한국표준연구원 이광철 박사, HP의 지용 리(Zhiyong Li), 스탠 윌리암스(Stan Williams) 박사가 참여했다.
o 그림 1 : 나노와이어를 선택적 온도조절한 후 반응 이미지를 촬영한 모습
o 그림 2 : 나노크기 공간에서 선택적 온도조절을 통한 화학물질 반응/조작 예시, 예1) 고분자 경화, 예2) 나노물질 합성
2011.10.19
조회수 15557