-
이건재 교수, 유창동 교수, 유연 압전 화자인식 음성센서 개발
〈 이 건 재 교수 〉
우리 대학 신소재공학과 이건재 교수와 전기및전자공학부 유창동 교수 공동 연구팀이 인공지능 기반의 화자(話者) 인식용 유연 압전 음성센서를 개발했다.
이번 연구를 통해 개인별 음성 서비스를 스마트 홈 가전이나 인공지능 비서, 생체 인증 분야 등 차세대 기술에 활용 가능할 것으로 기대된다.
이번 연구 결과는 국제 학술지 ‘나노 에너지(Nano Energy)’ 9월호에 ‘민감도’와 ‘화자인식’ 논문 두 편으로 동시 게재됐고 현재 관련 기술은 실용화 단계에 있다. (민감도 논문 : Basilar Membrane-Inspired Self-Powered Acoustic Sensor Enabled by Highly Sensitive Multi Tunable Frequency Band, 화자인식 논문 : Machine Learning-based Self-powered Acoustic Sensor for Speaker Recognition)
음성 센서는 인간과 기계 사이의 자유로운 소통을 가능하게 만드는 가장 직관적인 수단으로 4차 산업혁명의 핵심 기술로 주목받고 있다. 음성센서 시장은 2021년 대략 160억 달러 규모로 커질 것으로 예상된다.
그러나 현재 산업계에서는 음성 신호 수신 시 정전용량을 측정하는 콘덴서 형식을 사용하기 때문에 민감도가 낮고 인식 거리가 짧아 화자 인식률에 한계가 있다.
이번 연구에서 이 교수 연구팀은 인간의 달팽이관을 모사해 주파수에 따라 다른 영역이 진동하는 사다리꼴의 얇은 막을 제작했다. 음성신호에 따른 공진형 진동을 유연 압전 물질을 통해 감지하는 자가발전 고민감 음성 센서를 개발했다.
연구팀의 음성 센서는 기존 기술 대비 2배 이상 높은 민감도를 가져 미세한 음성 신호를 원거리에서도 감지할 수 있다. 또한 다채널로 신호를 받아들여 하나의 언어에 대해 복수 개의 데이터를 얻을 수 있다.
이 기술을 기반으로 누가 이야기하는지 찾아내는 화자인식 시스템에 적용해 97.5%의 화자인식 성공률을 무향실에서 달성했고 기존 기술 대비 오류를 75% 이상 줄였다.
화자인식 서비스는 음성 분야에 세상을 바꿀 next big thing으로 기대를 받고 있다. 기존 기술은 소프트웨어 업그레이드를 통한 접근으로 인식률에 한계가 있었지만 연구팀의 기술은 하드웨어 센서를 개발함으로써 능력을 크게 향상시켰다. 추후 첨단 소프트웨어를 접목한다면 다양한 환경에서도 화자 및 음성 인식률을 높일 수 있을 것으로 예상된다.
이건재 교수는 “이번에 개발한 머신 러닝 기반 고민감 유연 압전 음성센서는 화자를 정확하게 구별할 수 있기 때문에 개인별 음성 서비스를 스마트 가전이나 인공지능 비서에 접목할 수 있을 것이며 생체 인증 및 핀테크와 같은 보안 분야에서도 큰 역할을 할 수 있을 것이다”고 말했다.
이번 연구는 스마트 IT 융합시스템 연구단의 지원을 받아 수행됐다.
<관련 영상>
https://www.youtube.com/watch?v=QGEVJxCFVpc&feature=youtu.be
□ 그림 설명
그림1. 인간의 달팽이관을 모사한 유연 압전 음성 센서 구조
그림2. 인공지능을 통한 화자 인식 개략도
2018.10.04
조회수 11853
-
이건재 교수, 유연 수직형 마이크로 LED 개발
〈 이 건 재 교수 〉
우리 대학 신소재공학과 이건재 교수팀과 생명과학과 김대수 교수팀이 유연한 수직형 마이크로 LED 기술을 개발했으며, 이를 동물의 뇌에 삽입하여 빛으로 행동을 제어하는 데 성공하였다고 밝혔다.
마이크로 LED는 기존 LED 칩 크기를 크게 축소시켜 적, 녹, 청색의 발광소재로 사용하는 기술로서, 저전력과 빠른 응답속도, 뛰어난 유연성을 가져 차세대 디스플레이로 각광받고 있다.
현재 산업계에서는 200마이크로미터(μm) 이상의 크기를 갖는 두꺼운 미니 LED 칩을 소형화해 개별 전사하는 방식을 채택하고 있어 대량 생산이 어렵고 생산단가가 높으며, 소요 시간이 오래 걸리는 등의 한계를 갖고 있다.
이번 연구에서 이 교수 연구팀은 수직 LED용 양산 장비를 자체적으로 설계하여 5마이크로미터의 두께, 80마이크로미터 이하의 크기를 갖는 2500여 개의 박막 LED를 이방성 도전 필름을 활용하여 한 번에 플라스틱 기판으로 전사함과 동시에 상호 연결된 유연한 수직형 마이크로 LED를 구현하였다.
이러한 수직형 마이크로 LED는 기존 수평형 마이크로 LED와 비교해 3배 이상 향상된 광 효율을 갖으며, 박막 LED의 발열로 인한 수명, 낮은 해상도 및 신뢰성 문제를 해결할 수 있다.
이 교수는 2009년부터 마이크로 LED 연구를 진행해 왔으며, 20여 개의 국내외 원천 특허를 등록하였을 뿐만 아니라, 지난 4년 간 교신저자로서 총 임팩트 팩터 600에 달하는 40여 편의 논문을 발표하였다.
한편, 뇌과학 분야에서는 빛을 이용한 인간 뇌의 신경회로를 밝히는 광유전학이 주목받고 있다. 이번에 개발한 기술은 뇌의 모든 신경세포를 자극하는 전기자극과 달리 흥분 및 억제 신경세포만을 선택적으로 자극할 수 있기 때문에 정밀한 뇌 분석, 고해상도의 뇌 지도 제작 및 신경세포 제어가 가능하다.
이번 연구에서는 30 밀리와트/제곱밀리미터(mW/mm2) 이상의 강한 빛을 내는 유연 마이크로 LED를 쥐의 뇌에 삽입하여 대뇌 표면으로부터 깊은 곳에 위치한 운동 신경세포를 활성화시켜 쥐의 행동을 제어하였을 뿐만 아니라, 발열이 적어 뇌조직의 손상 없는 생체 삽입형 유연 전자 시스템을 구현하였다.
이건재 교수는 “이번에 개발된 수직 마이크로 LED 및 전사 패키징 기술은 저전력을 필요로 하는 스마트워치, 모바일 디스플레이, 웨어러블 조명 등에 바로 활용될 수 있을 것이며, 인간이 아직 풀지 못한 뇌과학 및 광치료, 바이오센서 분야에서도 큰 기여를 할 수 있을 것이다”라고 이번 연구의 의의를 밝혔다.
이번 연구는 스마트 IT융합시스템 연구단의 지원을 받아 수행되었으며, 세계적 과학 학술지인 ‘나노 에너지(Nano Energy)’에 2월 1일자로 게재되었다.
□ 관련 영상
□ 그림 설명
그림1. 이번 기술을 이용해 제작한 마이크로 LED
그림2. 유연한 수직형 마이크로 LED의 구조
그림3. 유연한 수직형 마이크로 LED를 활용한 광유전학적 쥐의 행동 제어 실험 개략도
그림4. 이방성 도전 필름을 활용한 전사 및 패키징 기술 개략도
2018.01.29
조회수 17220
-
우운택 교수, 증강현실 속 캐릭터 실시간 조작기술 개발
〈 우 운 택 교수 〉
우리 대학 KI IT융합연구소 증강현실 연구센터의 우운택 교수(문화기술대학원) 연구팀이 증강현실 안경을 통해 현실공간에 존재하는 가상 객체의 이동경로를 간편하고 자유롭게 설정할 수 있는 기술을 개발했다.
이 기술은 홀로렌즈와 같은 투과형 증강현실 안경을 착용한 사용자가 스마트폰을 이용해 현실공간에서 직관적으로 동물, 식물 등의 가상 객체를 조작하면서 이동경로를 실시간으로 설정 및 변경할 수 있다.
유정민 연구교수가 1저자로 참여한 이번 연구 결과는 한국 인간-컴퓨터 상호작용 학회(HCI)에서 지난 8일에 시연됐고, 관련 논문은 2017년도 국제 인간-컴퓨터 상호작용 학회(HCI International 2017)에서 발표될 예정이다.
기존의 증강현실을 저작하는 과정은 피시(PC) 환경에 특화된 저작 프로그램을 이용하거나 전문적인 프로그래밍 언어로 가상의 객체를 선택하고 조작해야 한다. 따라서 과정이 복잡하고 비용이 상대적으로 많이 소요되는 한계가 있었다.
연구팀은 특수한 입력장치를 사용하는 대신 자체 개발한 앱을 스마트폰에서 구동시켜 홀로렌즈가 부착된 안경형 디스플레이 장치와 연동했다.
이를 통해 3차원 마우스와 같은 입력장치로 사용할 수 있고 증강현실 속 가상 객체를 컴퓨터의 아이콘 옮기듯 쉽게 조정하고 이동할 수 있게 된다.
이 기술은 사용자가 스마트폰의 입력 정보와 내장된 3축 기울기 센서로부터 획득한 스마트폰의 자세 정보를 이용해 가상 객체를 선택 혹은 취소하거나 크기를 조절할 수 있다. 또한 가상 객체의 이동경로를 현실 공간에 바로 설정하거나 수정할 수 있다.
이러한 기능은 현실 공간에서 가상 객체의 이동을 직관적으로 설정할 수 있기 때문에 다양한 동적인 증강현실 환경을 현장에서 즉각적으로 구성할 수 있다.
누구나 쉽게 사용할 수 있는 저작도구는 다양한 증강현실 콘텐츠의 즉각적인 생산과 체험을 가능하게 하고 새로운 증강체험 관련 산업의 형성 및 생태계 구축에 기여할 수 있을 것으로 기대된다.
우 교수는 “이 기술은 스마트 폰만 있으면 누구나 콘텐츠를 현장에서 직관적으로 저작할 수 있다”며 “추가 개발될 증강현실 저작도구를 통해 누구나 포켓몬go 같이 가상 캐릭터와 현실공간이 상호작용하는 환경을 만들 수 있을 것으로 기대한다”고 말했다.
□ 그림 설명
그림1. 증강현실 체험 위한 안경형 디스플레이기반 이동경로 저작 기술의 개념도
그림2. 기술을 활용하여 증강현실 환경을 구성하는 실제 화면
2017.02.16
조회수 12759
-
최양규 교수, 실리콘 반도체보다 5배 빠르고 저렴한 탄소나노튜브 반도체 개발
우리 대학 전기및전자공학부 최양규 교수 연구팀이 국민대학교 최성진 교수와의 공동 연구를 통해 탄소나노튜브를 위로 쌓는 3차원 핀(Fin) 게이트 구조를 이용해 대면적의 탄소나노튜브 반도체를 개발했다.
이동일 연구원이 제 1저자로 참여한 이번 연구는 나노 분야 학술지 ‘에이씨에스 나노(ACS Nano)’ 12월 27일자에 게재됐다. (논문명: Three-Dimensional Fin-Structured Semiconducting Carbon Nanotube Network Transistor)
탄소나노튜브로 제작된 반도체는 실리콘 반도체보다 빠르게 동작하고 저전력이기 때문에 성능이 훨씬 뛰어나다.
그러나 대부분의 전자기기는 실리콘 재질로 만들어진 반도체를 이용한다. 높은 순도와 높은 밀도를 갖는 탄소나노튜브 반도체의 정제가 어렵기 때문이다.
탄소나노튜브의 밀도가 높지 않아 성능에 한계가 있었고 순도가 낮아 넓은 면적의 웨이퍼(판)에 일정한 수율을 갖는 제품을 제작할 수 없었다. 이러한 특성들은 대량 생산을 어렵게 해 상용화를 막는 걸림돌이었다.
연구팀은 문제 해결을 위해 3차원 핀 게이트를 이용해 탄소나노튜브를 위로 증착하는 방식을 사용했다. 이를 통해 50나노미터 이하의 폭에서도 높은 전류 밀도를 갖는 반도체를 개발했다.
3차원 핀 구조는 1마이크로미터 당 600개의 탄소나노튜브 증착이 가능해 약 30개 정도만을 증착할 수 있는 2차원 구조에 비해 20배 이상의 탄소나노튜브를 쌓을 수 있다.
그리고 연구팀은 이전 연구를 통해 개발된 99.9% 이상의 높은 순도를 갖는 반도체성 탄소나노튜브를 이용해 고수율의 반도체를 확보했다.
연구팀의 반도체는 50나노미터 이하의 폭에서도 높은 전류밀도를 갖는다. 실리콘 기반의 반도체보다 5배 이상 빠르면서 5배 낮은 소비 전력으로 동작 가능할 것으로 예상된다.
또한 기존의 실리콘 기반 반도체에 쓰이는 공정 장비로도 제작 및 호환이 가능해 별도의 비용이 발생하지 않는다.
제 1저자인 이동일 연구원은 “차세대 반도체로서 탄소나노튜브 반도체의 성능 개선과 더불어 실효성 또한 높아질 것이다”며 “실리콘 기반 반도체를 10년 내로 대체하길 기대한다”고 말했다.
이번 연구는 미래창조과학부 글로벌프론티어사업 스마트IT융합시스템 연구단과 미래유망융합파이오니아 사업의 씨모스 THz 기술 융합 연구단의 지원을 받아 수행됐다.
□ 그림 설명
그림1. 3차원 구조의 탄소나노튜브 전자소자의 모식도 및 실제 SEM 이미지
그림2. 개발된 8인치 기반의 대면적 3차원 탄소나노튜브 트랜지스터 전자 소자의 사진 및 단면을 관찰한 투과 전자 현미경 사진
2017.01.04
조회수 15086
-
최양규 교수, 5단 나노선 통한 D램-플래시 융‧복합메모리 개발
우리 대학 전기 및 전자공학부 최양규 교수와 이병현 박사과정이 나노선의 5단 수직 적층 기술을 통해 D램과 플래시 메모리 동작이 동시에 가능한 융합메모리 반도체 소자를 개발했다.
이번 연구 결과는 나노 분야 학술지 ‘나노 레터스(Nano Letters)’ 8월 31일자 온라인 판에 게재됐다.
메모리 반도체는 정보화 기술 사회의 핵심 기기로서 국내 반도체 산업의 주력 제품이다. 메모리 반도체 분야는 크게 D램과 플래시 메모리로 양분되는데 이는 각 메모리가 가진 고유 특성 때문이다.
D램은 빠른 동작속도를 자랑하지만 휘발성 메모리이기 때문에 안정적 정보 저장을 위해 전력이 많이 소모된다. 반면 플래시 메모리는 D램에 비해 느린 동작속도가 문제점으로 지적된다.
연구팀은 D램과 플래시 메모리 기능이 하나의 트랜지스터 안에서 동시에 동작하는 전면-게이트 실리콘 나노선 구조 기반의 융합 메모리 소자를 제안했다.
그러나 이 구조는 트랜지스터의 소형화에 따른 나노선 면적 감소로 인해 동작 전류도 같이 감소됐고 이는 메모리 소자 성능의 저하로 이어졌다.
문제 해결을 위해 연구팀은 전면-게이트 실리콘 나노선을 수직으로 5단까지 쌓았다. 이러한 5단 수직 집적 실리콘 나노선 채널을 보유한 융합 메모리소자는 단일 나노선 기반의 메모리 소자와 대비해 5배의 향상된 성능을 보였다.
이 연구를 통해 시스템 레벨에서 칩 사이즈의 소형화 및 전력 효율의 개선, 패키징 공정 단순화를 통한 제작비용 절감 등이 가능하다. 시스템 안에서 칩 간의 간섭효과를 줄여줌으로써 시스템 전체 속도 향상에도 기여가 가능해 융합 메모리의 실효성이 높아질 것으로 기대된다.
또한 수직 집적 나노선 구조는 말 그대로 위쪽으로 채널이 쌓여있기 때문에 단일 구조와 달리 면적이 증가되지 않아 집적도 향상에도 기여할 수 있다.
이러한 수직 집적은 지난 해 최양규 교수 연구팀에서 개발된 일괄 플라즈마 건식 식각 공정을 통해 이뤄졌다. 이병현 연구원은 이 기술을 통해 작년 비 메모리 반도체 소자 개발에 성공했고, 이번 연구를 통해 고성능 융합 메모리 소자를 개발했다.
최양규 교수는 “이번 연구를 통한 메모리 반도체의 제작 공정과 성능의 개선 및 높은 실효성이 기대된다”며 “궁극적으로는 메모리 반도체의 소형화를 계속 이어나갈 것으로 예상한다”고 말했다.
이병현 연구원은 “나노종합기술원의 강민호 박사를 포함한 관련 엔지니어들의 적극적 기술 지원이 큰 도움이 됐다”고 말했다.
이번 연구는 미래창조과학부 글로벌프론티어사업 스마트IT융합시스템 연구단과 미래유망융합파이오니아 사업의 씨모스(CMOS) THz 기술 융합 연구단의 지원을 받아 수행됐다.
□ 그림 설명
그림1. 전자 현미경 사진 및 투과 전자 현미경 사진
그림2. 고성능 융합메모리에 대한 요약 모식도
2016.09.21
조회수 11494
-
5단 수직 적층 반도체 트랜지스터 개발
우리 대학 전기 및 전자공학부 이병현 연구원(지도교수 최양규)과 나노종합기술원(원장 이재영) 강민호 박사가 실리콘 기반의 5단 수직 적층 반도체 트랜지스터를 개발했다.
그리고 반도체 트랜지스터를 이용한 비휘발성 메모리 개발에 성공했다.
이번 연구는 나노 분야 학술지 ‘나노 레터스(Nano letters)’ 11월 6일자 온라인판에 게재됐다.
반도체 트랜지스터 분야는 모든 전자기기의 핵심 구성요소로 국내 산업과 경제 발전에 큰 영향을 끼쳤다.
세계적 추세에 따라 치열한 소형화를 통해 생산성과 성능의 향상을 거듭했으나 최근 10나노미터 시대에 접어들며 제작 공정의 한계 및 누설전류로 인한 전력소모 문제가 커지고 있다.
학계 및 산업계는 문제 해결을 위해 전면-게이트 실리콘 나노선 구조를 개발했다. 이는 누설전류 제어에 가장 효과적인 구조로 저전력 트랜지스터 개발에 이용됐다. 그러나 이 역시 소형화에 따른 나노선 면적 감소로 성능 저하의 한계가 있었다.
연구팀은 전면-게이트 실리콘 나노선을 수직으로 5단으로 쌓아 문제를 해결했다. 이 5단 적층 실리콘 나노선 채널을 보유한 반도체 트랜지스터는 단일 나노선 기반의 트랜지스터보다 5배의 향상된 성능을 보였다.
또한 수직 적층 나노선 구조는 말 그대로 위로 쌓기 때문에 단일 구조와 달리 면적이 증가되지 않아 집적도 향상에도 기여할 수 있다.
나노선 수직 적층은 개발된 ‘일괄 플라즈마 건식 식각 공정’ 방식을 통해 이뤄졌다. 이 공정은 고분자 중합체를 이용해 패턴이 형성될 영역에 미리 보호막을 친 뒤 등방성 건식 식각을 통해 나노선 구조를 형성하는 기술이다. 수직 적층 나노선 구조는 이 기술의 연속 작용을 통해 확보한 결과물이다.
이 기술은 지속적 소형화로 인해 기술적 한계에 부딪힌 반도체 트랜지스터 분야에 새로운 돌파구를 제시할 것으로 기대된다.
관련 연구가 이전부터 진행됐지만 더 간단한 공정기술을 이용해 가장 많은 나노선 채널의 적층에 성공했기 때문에 비용절감 및 제작 시간 단축, 반도체 트랜지스터의 성능 향상으로 인한 상용화 등에 크게 기여할 것으로 예상된다.
연구팀은 건식 식각 공정 기술이 기존 방법보다 간단하고 안정적으로 수직 적층 실리콘나노선 구조 제작을 가능하게 함으로써 고성능 트랜지스터 개발에 응용 가능할 것이라고 밝혔다.
이병현 연구원과 강민호 박사는 “이번 기술 개발은 미래창조 국가 나노기술 인프라 기관 나노종합기술원의 훌륭한 반도체 연구 기반과 김진수 부장 포함 관련 연구진들의 우수한 공정 능력이 뒷받침돼 가능했다”고 소감을 말했다.
이번 연구는 글로벌프론티어사업 스마트IT융합시스템 연구단의 지원을 받아 수행됐다.
연구를 주도한 이병현 연구원은 우리 대학 최양규 교수 지도하에 박사과정을 수행 중이며, 삼성전자 메모리 사업부의 책임 연구원으로 재직 중이다.
□ 그림 설명
그림1. 일괄 플라즈마 건식 식각 공정 과정의 모식도.
그림2. 서로 다른 방향에서 단면을 관찰한 주사 전자 현미경 사진 및 투과 전자 현미경 사진
2015.11.24
조회수 12768
-
종이책보다 읽기 더 편한 전자책 나온다!
- 인간 친화적인 이북 인터페이스 구현해 내 -
스마트폰과 태블릿 PC가 전 세계적으로 빠른 속도로 보급돼 전자책 어플의 활용 빈도가 높아지면서 보다 자연스럽고 편리한 독서기능을 제공하기 위해 점점 진화하고 있다.
우리 학교 IT융합연구소(소장 최준균) 이호원 교수 연구팀이 터치스크린의 간편한 조작을 통해 전자책의 페이지를 손쉽게 넘길 수 있는 ‘스마트 이북 시스템’을 개발했다.
이 기술은 전자책을 이용해 독서를 할 때에도 종이책을 읽는 것과 같은 자연스러운 독서기능을 제공하기 위해 개발됐다.
이번에 KAIST 연구팀이 개발한 핵심기술은 비센서 영역인 베젤(디바이스의 테두리 부분)을 이용한 인식기술이다. 기존 터치스크린 방식은 터치영역 내에서만 인식 할 수 있는 반면, 이 시스템은 터치영역과 베젤영역에서의 이동을 인식할 수 있다.
이 기술을 이용하면 터치스크린의 간편한 조작을 통해 여러 페이지를 넘길 수 있는 페이지 플립핑(Page Flipping), 여러 페이지간의 손쉬운 이동을 돕는 핑거 북마킹(Finger Bookmarking) 등의 명령을 손쉽게 사용할 수 있다.
이와 함께 ▲터치한 손가락 개수 ▲드래그 속도 ▲터치하고 있는 시간 ▲숫자모양의 제스처를 이용해 여러 페이지를 넘길 수 있는 방법을 개발해 이용자의 편리성을 도모한 것이 또 다른 특징이다. 최준균 IT융합연구소장은 “최근 급성장하고 있는 모바일 용 소프트웨어 기술에 대한 핵심 원천기술을 개발해 국가경쟁력이 높아질 것으로 기대한다”고 말했다.
한편, 이호원 교수가 IT융합연구소 지식융합팀 김재정, 김상태 연구원과 함께 개발한 이 기술은 총 11개의 국내 및 해외특허 출원을 진행 중이며 사용자 인터페이스 원천기술에 대한 기술사업화도 곧 진행할 계획이다.유튜브 동영상
http://www.youtube.com/watch?v=PF5BWm_w57I
2012.01.03
조회수 14264
-
융합연구로 무전원 무선 키보드 개발
- 개발한 무전원 무선키보드의 상용화를 위한 기술이전-
- 학문 분야를 초월한 융합연구로 탄생 -
우리학교 IT융합연구소 미래디바이스팀이 융합연구를 통해 무전원 무선 키보드를 최근 개발했다.
무전원 무선 키보드 기술은 지난 2007년 우리학교 구성원들을 대상으로 KAIST 연구원(KAIST INSTITUTE, KI)이 개최한 ‘미래단말 아이디어 공모전’ 수상작이다. 원내 구성원들의 참여를 이끌어낸 점에서 더욱 의미가 크다.
공모전 수상작 아이디어를 구체화한 이번 연구는 KI의 IT융합연구소 미래디바이스팀(팀장 정성관)과 여러 학문분야의 우리대학 교수들로 구성된 ‘미래단말 TFT’를 만들어 학문 분야를 초월한 융합연구로 진행됐다.
이 키보드는 900MHz 수동형 RFID 태그(Passive RFID tag) 기술을 이용해 별도의 전원 공급 장치를 탑재하지 않은 키보드의 키 누름을 무선으로 인식할 수 있는 기술로 만들어졌다. 키보드 키 구조에 맞는 소형 RFID 태그 스위치 구조 및 필름PCB와 유연한 구조를 가진 물질을 이용해 얇고 유연한 형태의 휴대성이 높다.
이러한 무전원 무선 키보드는 전기및전자공학과 조동호 교수의 수동형 RFID(passive RFID) 방식의 키 인식 기술, 물리학과 윤춘섭 교수의 유연한 구조를 갖는 물질을 개발 기술과 IT융합연구소의 태그 구조 및 인식 소프트웨어 기술의 융합으로 만들어진 결과이다.
새로 개발한 키보드는 기존의 키보드 제품과 달리 건전지를 넣지 않고도 사용이 가능하며 선이 연결되지 않아도 된다. 작고 가벼워 휴대 및 사용이 편리해 제품화에 성공하면 관련 시장에서 크게 각광받을 것으로 기대되고 있다.
위 기술을 통해서 유비쿼터스 컴퓨팅 및 통신 환경을 실현하고 접는 키보드의 새로운 시장을 개척할 뿐 아니라, 세계시장에서 모바일 디바이스 산업 경쟁력을 확보하는데 한걸음 다가갈 수 있을 것으로 기대된다.
김상수 연구원장은 “아이디어 공모전 개최와 TFT 운영과 같은 적극적인 활동 덕분에 무전원 무선 키보드와 같은 창의적이고 훌륭한 기술이 개발될 수 있었다”며 “창의적인 아이디어와 연구아이템 발굴을 위해 앞으로도 꾸준히 아이디어 공모전을 개최하고 융합연구를 통한 신기술 개발에 노력 하겠다”고 말했다.
우리학교는 이 무전원 무선 키보드의 상용화를 위해 (주)한양세미텍에 최근 기술 이전한 바 있다.
KI는 융합연구 분야의 세계적 연구개발 성과를 통해 대학의 인지도를 높이고, 국가 경쟁력 향상에 기여할 목적으로 서남표 총장이 추진해온 역점 전략사업 중 하나다.
현재 바이오, IT융합, 시스템설계, 엔터테인먼트공학, 나노, 청정에너지, 미래도시, 광기술 등 8개 연구소에서 25개 학과 230여명의 교수가 참여해 활발한 융합연구를 수행하고 있다.
<용어설명>
○ Passive RFID : RFID(Radio Frequency IDentification)는 기존의 바코드 형태의 광학식 ID 식별기술의 한계(가시성, 정보량, 인식속도 등)을 극복하기 위해 개발된 무선 ID 식별 기술로써, 기본적으로 식별정보(ID)를 갖고 있는 RFID tag와 이 tag를 인식하고 tag에 저장되어 있는 정보를 무선으로 읽어올 수 있는 RFID reader로 구성 된다.이때 RFID tag의 특성에 따라서 tag가 베터리 등의 전원 공급 장치를 갖고 있는 active RFID 방식과 별도의 전원 공급 장치를 갖고 있지 않은 passive RFID방식으로 구별된다.
(Active RFID 방식은 온도, 습도 등의 정보를 지속적으로 모니터링할 필요가 있는 분야나 긴 인식거리가 필요한 분야에서 주로 쓰이며, 본 무전원 무선 키보드의 동작 특성을 만족하기에 적합하지 않은(내장 전원 요구) 특성을 갖고 있으므로 별도의 전원을 요구하지 않는 Passive RFID 기술을 사용하여 무전원 무선 키보드를 개발하였다.)
○ RFID tag : RFID 시스템에서 식별하고자 하는 대상체를 구별하기 위한 식별자(ID) 정보를 갖고 있는 장치로서 무선 전파를 수신 및 응답하기 위한 안테나 부분과 수신된 전파로부터 전력을 획득하고 정보 처리 및 응답 동작을 수행하는 tag chip부분으로 구성되어 있다.
○ 필름 PCB 구조의 substrate : 전자 소자들을 연결하여 적절한 전자회로를 구성하기 위해서는 각 소자들을 연결해 주는 "회로"(연결선)를 만들어야 하는데, 동작 특성 만족, 소형화 및 대량 생산 등을 위해 인쇄기판(PCB: Printed Circuit Board) 기술을 이용한다. 일반적인 PCB들은 FR4 등의 단단한 특성을 갖는 재질로 만들기 때문에 형태 변형 등에 강한 특성을 갖는다. 이에 반해 얇은 필름형태의 폴리이미드(Polyimide)를 사용하여 제작되는 PCB(f-PCB: flexible-PCB, Film-PCB)는 폴리이미드의 유연한 특성으로 인해 FR4 등의 단단한 PCB들 사이의 연결회로로서 많이 사용되고 있다.
본 무전원 무선 키보드는 높은 휴대성을 지원하기 위해 얇고 쉽게 접을 수 있는 형태로 제작되었으며 이를 위해 단단한 형태의 FR4가 아닌 유연한 특성을 갖는 폴리이미드 기반의 필름 PCB로 제작되었다.
또한, 필름 PCB를 이용한 유연한 형태의 특성을 키보드 완성품에서도 유지하기 위해서, 회로부분을 지탱하고 전체 키보드 외형을 구성하는 물질(substrate)로 변형에 대한 내구성이 높고 수분/산소 등에 대한 투과도가 낮은 재질(윤춘섭 교수)을 이용하여 전체 키보드 외형을 제작하였다.
2010.07.28
조회수 16924