-
헤라클레스 인공근육, 2023년 10대 기술 선정
우리 대학 신소재공학과 김상욱 교수 연구팀이 2022년 개발한 헤라클레스 인공근육 기술이 세계 최대 화학/소재분야 학술기관인 국제화학연합(IUPAC, International Union of Pure and Applied Chemistry)에서 ‘2023년 10대 유망기술’로 선정되었다고 5일 밝혔다. (그림 1)
IUPAC은 전 세계 화학/소재 관련 연구자들의 국제적인 협력과 정보교환을 위해 1919년에 설립된 세계 최대 조직기구로서, 2019년부터 매년 인류가 직면하고 있는 다원적 위기에 대한 해결책을 제시하는 10대 유망기술을 선정해 오고 있다. 인공 근육 기술이 이번에 10대 유망기술로 선정된 것은 사회의 지속가능성을 위한 과학기술적 중요성을 인정받은 것이다.
헤라클레스 인공 근육은 국내에서도 그 중요성을 인정받아 과학기술정보통신부와 나노기술연구협의회가 수여하는 2023년 10대 나노기술에도 선정됐다. (기술명: 그래핀 나노 복합소재를 통해 인간 근육보다 17배 강한 헤라클레스 인공근육 개발 기술, 그림 4) 또한 과학기술정보통신부의 2023년 기계·소재 부문 국가연구개발 우수성과 100선에도 선정된 바 있다. (기술명: 그래핀-액정탄성체 복합소재 개발로 인간 근육보다 17배 강한 헤라클레스 인공 근육 세계 최초 구현)
인공 근육에 대한 개념은 17세기 영국 과학자 로버트 훅(Robert Hooke)의 실험에서 최초로 시작됐으나 현실적으로 의미 있는 높은 수축률과 기계적 강도의 실현이 쉽지 않아 그 실용적인 가능성은 최근 30년 전에야 제시되기 시작했다. 또한 합성소재인 인공 근육을 생명체의 생체조직과 어떻게 서로 조화시킬 것인가에 대한 문제 역시 풀리지 않는 난제로 남아있었다.
김상욱 교수 연구팀은 인간 근육을 모방한 구조를 가지면서도 높은 기계적 물성과 구동 성능을 가지는 인공 근육 기술을 개발하는 데 성공했다. 그래핀 소재와 액정섬유를 결합한 복합소재를 통해 가역적인 근육운동이 가능하면서도 근육운동의 다양한 물성값들이 인간 근육을 크게 능가하는 인공 근육을 세계 최초로 개발한 것이다. 이 섬유 형태의 인공 근육은 인간의 근육과 매우 유사한 거동을 해 노약자/장애인을 위한 웨어러블 신체 보조장치나 우주, 심해, 재난환경 등 극한 환경에서도 운동능력을 유지할 수 있는 생체 모방로봇 등에 응용이 가능하다. (그림 2) 이 연구 결과는 세계적인 과학기술 학술지인 ‘네이처 나노테크놀로지(Nature Nanotechnology, IF: 40.5)’에 표지 논문으로 발표된 바 있다. (그림 3)
연구를 주도한 김상욱 교수는 “우리 인공근육 기술이 전 세계의 과학자들이 주목하는 IUPAC 10대 유망기술 및 국내 10대 나노 기술로 선정된 것은 인공 근육 기술의 중요성과 그 의미를 대외적으로 인정받은 것”이라며 “4차 산업 혁명과 같이 향후 미래 사회에 대두될 과학기술 분야에서도 큰 역할을 할 것으로 기대된다”라고 말했다.
한편, 2023년 IUPAC 10대 유망기술에는 김 교수팀의 인공 근육 기술 외에 생물학적 재활용 PET 플라스틱, 바닷물 CO2 제거, 고분자 분해 반응, 화학을 위한 GPT 모델, 광촉매 수소, 웨어러블 센서, 저당도 백신, 박테리아 치료제, 합성 전기화학 등이 선정됐다.
2024.01.05
조회수 8226
-
인간 근육보다 17배 강한 헤라클래스 인공 근육 개발
우리 대학 신소재공학과 김상욱 교수 연구팀이 부산대 안석균 교수 연구팀과 공동 연구를 통해 그래핀-액정 복합섬유를 이용한 새로운 인공 근육을 개발하는 데 성공했다고 5일 밝혔다. 이 인공 근육은 현재까지 과학계에 보고된 것 중에서 인간 근육과 가장 유사하면서도 최대 17배 강한 힘을 보이는 것으로 밝혀졌다.
동물의 근육은 신경 자극에 의해 그 형태가 변하면서 기계적인 운동을 일으키는 것으로 알려져 있다. 로봇이나 인공장기 등 다양한 분야에서 동물근육과 유사한 운동을 일으키기 위한 기술들이 개발돼왔으나, 지금까지는 주로 기계장치에 의존한 것들이 대부분이다.
최근에는 유연성을 가지는 신소재를 이용해 생명체의 근육같이 유연하면서도 기계적 운동을 일으킬 수 있는 인공 근육들이 연구되고 있다. 그러나 이들 대부분이 일으키는 운동의 범위가 동물 근육보다 제한되고 강한 운동을 일으키기 위해서는 마치 시계태엽을 감듯이 부가적인 에너지 저장과정을 거쳐야만 하는 문제점이 있다.
김교수 연구팀이 개발한 신소재는 온도변화에 따라 동물 근육과 같이 크게 수축을 일으키는 액정물질에 고품질의 그래핀을 적용함으로써 레이저를 이용한 원격제어가 가능하며 인간 근육의 작업 수행능력(17배)과 출력밀도(6배)를 크게 능가하는 운동능력을 구현했다. 연구팀은 실제로 인공 근육을 이용해 1 킬로그램(kg) 짜리 아령을 들어올리는 데 성공하기도 했으며, 이를 이용한 인공 자벌레는 살아있는 자벌레보다 3배나 빠른 속도로 움직이는 기록을 달성하기도 했다.
연구를 주도한 신소재 분야 석학인 KAIST 김상욱 교수는 "최근 세계적으로 활발히 개발되고 있는 인공 근육들은 비록 한두 가지 물성이 매우 뛰어난 경우는 있으나 실용적인 인공 근육으로 작동하는 데 필요한 다양한 물성들을 골고루 갖춘 경우는 없었다ˮ며 "이번 연구를 시발점으로 실용성 있는 인공 근육 소재가 로봇 산업 및 다양한 웨어러블 장치에 활용할 수 있으며 4차 산업 혁명에 따른 비대면 과학기술에서도 크게 이바지할 수 있을 것이다ˮ라고 말했다.
신소재공학과 김인호 박사가 제1 저자로 참여한 이번 연구는 이러한 성과를 인정받아 저명한 영국의 과학 학술지 네이처 나노테크놀로지(Nature Nanotechnology)에 지난 10월 27일자로 출간됐었으며, 해당 학술지의 표지 논문으로 선정됐다. 또한 관련 기술에 대한 특허를 국내외에 출원하여 KAIST 교원창업 기업인 ㈜소재창조를 통해 상용화를 진행할 계획이다.
신소재공학과 강지형 교수, 기계공학과 유승화 교수, 부산대학교 고분자공학과 안석균 교수가 공동 연구로 참여한 이번 연구는 한국연구재단의 리더연구자지원사업인 다차원 나노조립제어 창의연구단과 기초연구 사업의 지원을 받아 수행됐다.
2022.12.05
조회수 9430
-
고성능 스트레처블 고분자 반도체를 위한 신개념 계면공학법 개발
우리 대학 신소재공학과 강지형 교수, 미국 버클리 대학교 문재완 박사와 미국 스탠퍼드 대학교 제난 바오(Zhenan Bao) 교수 공동연구팀이 고분자 반도체와 회로기판의 경계면을 개선하는 새로운 계면 개질법을 개발하고, 이를 이용해 고성능 스트레처블(늘어나고 유연한) 고분자 반도체를 구현했다고 24일 밝혔다.
고분자 반도체는 기존의 실리콘 기반의 반도체와는 다르게 탄소를 기반으로 구성돼 있으며, 상대적으로 낮은 가격과 대면적 공정이 가능하다는 장점으로 인해 추후 유연 소자, 태양전지, OLED 등의 산업에 응용될 수 있는 차세대 반도체 재료다.
하지만 전기적 성능이 좋은 고분자 반도체는 작은 응력에도 쉽게 깨지는 문제점이 있었다. 일반적으로 고분자 반도체는 결정구조를 많이 가질수록 전기적 성능이 좋아지지만, 이러한 결정구조는 고분자 반도체가 응력에 취약해지게 만들기 때문이다.
이러한 문제점을 해결하기 위해, 기존에는 분자구조의 변화, 첨가제 등을 이용해 고분자 반도체 자체의 기계적 물성을 변화시키는 데 주로 초점을 맞춰왔다.
그러나 기존의 방법들은 기계적 물성이 향상되는 대신 전기적 성질이 악화되고, 각각의 고분자 반도체에 맞는 분자구조를 찾는데 많은 시간이 소요돼 고성능 스트레처블 고분자 반도체 구현에 적합하지 않았다.
우리 대학 강지형 교수와 스탠퍼드 대학교 제난 바오 교수 공동연구팀은 이번 연구에서 고분자 자체의 성질을 변화시키는 것이 아닌 기판과 고분자 반도체 사이의 계면을 개질하는 새로운 방법을 제시했다. 이러한 계면 공학법을 통해 고분자 반도체는 전기적 성질을 잃지 않으면서 기계적 물성이 크게 개선됐다.
공동연구팀은 이번 연구에서 응력에 의해 고분자 반도체가 손상을 받는 것은 고분자 박막과 기판 사이 계면에서의 박리 현상과 그로 인한 응력의 편재화(localization)에 의해 상당 부분 기인함을 발견했다.
공동연구팀은 이러한 문제점을 극복하기 위해 고분자 반도체 박막과 기판 사이의 계면에 새로운 고분자 층을 도입했다. 이 고분자 층은 반도체 박막과 기판 모두와 강하게 결합해 두 층의 박리현상과 응력의 편재화를 효과적으로 막아줬으며, 동역학적 결합(dynamic bond)을 할 수 있는 구조를 가져 추가적인 응력 분산 효과를 보였다.
이러한 계면 개질이 이뤄진 고성능 고분자 반도체는 최대 110%의 변형률까지 눈에 띄는 균열이 발견되지 않았으며, 이는 기존의 같은 반도체가 30% 변형률에서 상당한 균열을 보인 것에 비하면 획기적인 발전이다. 또한 이러한 접근법은 특정 고분자 반도체에 국한되지 않고, 다양한 고분자 반도체, 고분자 전도체, 금속 전도체에 모두 적용 가능하다는 장점이 있다.
신소재공학과 강지형 교수와 스탠퍼드 대학교 문재완 박사가 공동 제1 저자로 참여한 이번 연구 결과는 나노 재료 분야 저명 국제 학술지 `네이처 나노테크놀로지 (Nature Nanotechnology)' 11월 10일 字 온라인판에 게재됐다. (논문명 : Tough interface-enabled stretchable electronics using non-stretchable polymer semiconductors and conductors).
강지형 교수는 "이번 연구는 스트레처블 고분자 반도체 구현을 위한 설계 방향을 새롭게 제시했다는 점에서 의미가 있다ˮ고 하면서, "이번에 개발된 계면 공학법은 급속도로 성장하고 있는 유연소자 시장에 게임 체인저가 될 것으로 기대된다ˮ고 말했다.
한편 이번 연구는 한국연구재단의 우수신진연구사업, 나노소재기술개발사업 미래기술연구실, 삼성종기원 과제의 지원을 받아 수행됐다.
2022.11.25
조회수 6202
-
이성주, 신진우 교수팀, 스스로 새로운 환경 적응하는 인공지능 기술 개발
우리 대학 전기및전자공학부 이성주 교수와 AI대학원 신진우 교수 연구팀이 공동연구를 통해 스스로 환경변화에 적응하는 테스트타임 적응 인공지능 기술을 개발했다고 밝혔다.
해당 연구는 “NOTE: Robust Continual Test-time Adaptation Against Temporal Correlation”라는 제목으로 인공지능 분야 최고권위 국제학술대회 ‘신경정보처리시스템학회(NeurIPS) 2022'에서12월 발표될 예정이다.
이성주 교수와 신진우 교수 공동 연구팀이 스스로 새로운 환경에 적응하는 “테스트타임 적응 (Test-Time Adaptation)” 인공지능 기술을 개발하였다. 연구팀이 제안한 알고리즘은 기존의 최고 성능 알고리즘보다 평균 11% 향상된 정확도를 보였다.
기계학습 모델들의 한계점은 학습했던 데이터와 다른 분포의 데이터에 적용되면 성능이 급격히 하락한다는 것이다. 이를 푸는 여러 방법 중에서 데이터를 미리 수집할 필요없이 모델이 스스로 테스트 데이터를 분석하여 변하는 환경에 적응하고 성능을 향상시키는 기술인 테스트타임 도메인 적응 (Test-Time Adaptation) 방법이 최근 산학계에서 크게 각광을 받고 있었다.
연구팀은 기존의 테스트타임 도메인 적응 기술들이 모두 데이터가 이상적인 균일분포를 따른다는 가정을 한다는 문제점에 착안했다. 실제 데이터는 환경 변화나 시간 변화에 따라 데이터 분포가 변하거나 비균일분포의 데이터에 대해서는 기존 기술을 동작하지 않는다. 하지만 연구팀이 제시한 “NOTE” 기술은 비균일분포의 데이터에서도 기존 최대 성능 알고리즘 보다 평균 11%만큼 향상된 정확도를 보였다.
이성주 교수 연구팀과 신진우 교수 연구팀의 공동연구로, 공태식 박사과정이 제1저자로 연구를 이끌었고, 정종헌 박사과정, 김태원 학사과정, 김예원 석사과정이 공동 저자로 기여하였다.
이성주 교수와 신진우 교수는 ”테스트타임 도메인 적응은 인공지능이 스스로 환경 변화에 적응하여 성능을 향상시키는 기술로, 활용도가 무궁무진하다. 이번에 발표될 NOTE 기술은 실제 데이터 분포에서 성능향상을 보인 최초의 기술이고 자율주행, 인공지능 의료, 모바일 헬스케어 등 다양한 분야에 적용이 가능할 것으로 기대된다.” 라고 밝혔다.
이 연구는 정부(과학기술정보통신부)의 재원으로 한국연구재단의 지원 (No. NRF-2020R1A2C1004062)과 방위사업청과 국방과학연구소의 지원(UD190031RD)으로 한국과학기술원 미래 국방 인공지능 특화연구센터에서 수행된 연구이다.
2022.10.21
조회수 7309
-
기존 대비 10배 이상 빠른 마그논 전송현상 발견
우리 대학 물리학과 이경진, 김세권 교수 연구팀이 고려대학교 이동규 대학원생, 싱가포르국립대 양현수 교수, 이규섭 박사와 공동연구를 통해 *반강자성체에서 초고속 *마그논 전송을 실험적으로 관측하고 그 원리를 이론적으로 규명했다고 4일 밝혔다.
☞ 반강자성체(antiferromagnetic substance): 인접한 원자의 자기 모멘트들이 서로 반대방향으로 향하기 때문에 전체로서는 자력이 나타나지 않는 물질. 어떤 온도를 넘어서면 상자성체와 같은 자성을 나타낸다.
☞ 마그논(magnon): 자기 양자(Magnetic quantum)의 줄여진 신조어로 양자화된 스핀 파동을 뜻한다. 즉, 스핀파를 양자화한 준입자를 가리킨다.
양현수 교수 연구팀은 반강자성 절연체인 산화니켈(NiO)에서 마그논 전송속도가 그동안 알려져 있던 최대 속도보다 10배 이상 빠름을 실험적으로 관측했다. 그리고 이경진 교수 연구팀은 이러한 초고속 마그논 전송이 마찰력에서 기인함을 이론적으로 규명했다.
이 공동연구 결과는 반강자성 마그논을 이용한 정보처리 소자의 고속화 가능성을 열었다는 측면과 마찰력은 소자 특성을 나쁘게 한다는 기존 상식과 달리 짧은 거리에서 마그논 속도를 오히려 증가시킨다는 사실을 규명했다는 측면에서, 스핀트로닉스 분야 응용과 기초과학 모두에서 향후 관련분야 발전에 기여할 것으로 기대된다.
이규섭 박사와 이동규 학생이 공동 제1 저자로 참여한 이번 연구는 국제 학술지 `네이처 나노테크놀로지(Nature Nanotechnology)'에 온라인 출판됐다. (논문명 : Superluminal-like magnon propagation in antiferromagnetic NiO at nanoscale distances).
산화니켈(NiO)은 반강자성 특성으로 인해 효율적인 마그논 전송이 가능하고, 전기적 절연특성으로 인해 스핀 정보 전송 시 열 손실이 없어 차세대 마그논 기반 스핀트로닉스 소자용 소재로 주목받고 있다.
양현수, 이경진 교수 공동연구팀은 2019년 산화니켈(NiO)을 통한 마그논 전류가 매우 큰 스핀 각운동량을 전달하며 그 결과 효율적으로 자화를 반전시킬 수 있음을 보고한 바 있다. [Science 366, 1125-1128 (2019)] 2019년 연구는 마그논이 운반하는 스핀의 크기에 집중한 반면, 이번 연구는 그 속도에 집중했다. 마그논 기반 스핀트로닉스 소자의 저전력 구동을 위해서는 마그논이 전달하는 스핀 정보의 크기와 속도 모두 중요하다.
기존 연구에서는 산화니켈(NiO)의 마그논 속도를 밀리미터 크기의 샘플에 대해 비탄성 중성자 산란을 이용해 간접 측정한 반면, 이번 연구에서는 나노미터 크기의 샘플에 대해 테라헤르츠 분광 장비(THz emission spectroscopy)를 활용해 마그논 속도를 직접 측정했다. 그 결과 기존 간접 측정에서 보고되었던 40km/s에 비해 10배 이상 큰 650 km/s의 빠른 마그논 전송을 관측했다.
이론 연구를 통해 이러한 초고속 마그논 전송이 산화니켈(NiO) 내에서 마그논이 경험하는 마찰력 때문임을 밝혔다. 이러한 초고속 전송 현상은 광학 분야에서 `빛보다 빠른 전송(Superluminal propagation)'으로 불리는 현상과 유사하다. 아인슈타인의 특수상대성 이론에 의하면 빛보다 빠른 전송은 불가능하지만, 손실이 있는 매체에 빛이 지나가는 경우 비정상적 분산관계로 인해 마치 빛보다 빠른 전송이 일어나는 것처럼 보이며 이는 인과율을 위배하지 않는다.
이번 연구에서 연구팀은 빛의 경우와 마찬가지로 마찰력을 갖는 반강자성 물질에서 마그논이 전송되는 경우 비정상적 마그논 분산관계로 인해 유사한 현상이 발생함을 밝혔다. 실제 마그논 소자의 구동 시간은 이러한 비정상적 초고속 마그논 전송에 의해 결정되므로 응용 소자 측면에서 파급력이 있을 것으로 기대된다. 또한 마찰력은 모든 물질에 존재하기 때문에, 이 연구에서 밝힌 초고속 마그논 전송은 매우 일반적 물리현상이라는 측면에서 기초 학문적 가치도 클 것으로 기대된다.
제1 저자인 이규섭 박사는 "자성체 기반의 이중 층에서의 `스핀 전류의 발생현상'을 시분해 테라헤르츠 분광 장비를 통해 비접촉 방식으로 검출하는 연구가 활발히 진행되고 있으며, 이번 연구를 통해 `스핀 전류의 발생에 이은 수송현상에 대한 동역학' 또한 분석됨을 보였다ˮ라며, "나노미터 두께의 정보 소자의 정보전달속도를 초고속 시분해능(~10 펨토초)로 분석하는 데 활발히 사용될 것으로 기대한다ˮ라고 말했다.
이번 연구는 한국연구재단 중견연구과제, SRC센터과제, 싱가포르 정부과제의 지원을 받아 수행됐다.
2021.11.05
조회수 8216
-
저전력·고속 터널 전계효과 트랜지스터 개발
물리학과 조성재 교수 연구팀이 기존의 금속 산화물 반도체 전계효과 트랜지스터(metal-oxide-semiconductor field-effect transistor, MOSFET) 대비 작동전력 소모량이 10배 이상, 대기전력 소모량이 1만 배 가까이 적은 저전력, 고속 트랜지스터를 개발했다.
조 교수 연구팀은 2차원 물질인 흑린(black phosphorus)의 두께에 따라 밴드갭이 변하는 독특한 성질을 이용해 두 물질의 접합이 아닌 단일 물질의 두께 차이에 의한 이종접합 터널을 제작하는 데 성공했다. 이러한 단일 물질의 이종접합을 터널 트랜지스터에 활용하면 서로 다른 물질로 제작한 이종접합 트랜지스터에서 발생했던 격자 불균형, 결함, 계면 산화 등의 문제를 해결할 수 있어 고성능 터널 트랜지스터의 개발이 가능하다.
김성호 연구원이 1 저자로 참여한 이번 연구는 국제 학술지 ‘네이처 나노테크놀로지 (Nature Nanotechnology)’ 1월 27일 자 온라인판에 게재됐다. (논문명 : Thickness-controlled black phosphorus tunnel field-effect transistor fro low-power switches).
무어 법칙에 따른 트랜지스터 소형화 및 집적도 증가는 현대의 정보화 기술을 가능하게 했지만 최근 트랜지스터의 소형화가 양자역학적 한계에 다다르면서 전력 소모가 급격히 증가해 이제는 무어 법칙에 따라 트랜지스터 소형화가 진행되지 못하는 상황이다. 최근에는 자율주행차, 사물인터넷 등의 등장으로 많은 양의 데이터를 저전력, 고속으로 처리할 수 있는 비메모리 반도체의 기술 발달이 시급히 요구되고 있다.
트랜지스터의 전력 소모는 크게 작동 전력 소모와 대기 전력 소모로 나뉜다. 작동 전력과 대기 전력을 같이 낮추기 위해서는 트랜지스터의 작동 전압과 대기 상태 전류를 동시에 낮추는 것이 필수적이다. 이를 위해서는 전류를 10배 증가시키는데 필요한 전압으로 정의되는 SS 값(subthreshold swing, 단위: mV/decade = mV/dec)의 감소가 필요한데, 금속 산화물 반도체 전계효과 트랜지스터에서는 SS 값이 상온에서 60 mV/dec 이하로 낮아질 수 없다. 이를 해결하기 위해서는 상온에서 SS 값을 60 mV/dec 이하로 낮출 수 있는 새로운 트랜지스터의 개발이 필요하다. 이전에 개발되었던 낮은 SS를 가지는 저전력 터널 트랜지스터의 경우 트랜지스터 채널을 구성하는 두 물질의 이종접합 계면에서 산화막 등의 문제가 발생하여 작동 상태에서 낮은 전류를 가지는 문제가 있었다. 작동 상태 전류는 트랜지스터 작동속도에 비례하기 때문에, 낮은 작동 상태 전류는 저전력 트랜지스터의 경쟁력을 떨어뜨린다.
조 교수 연구팀이 적은 전력소모를 위한 낮은 SS 값과 고속 작동을 위한 높은 작동 상태 전류를 단일 트랜지스터에서 동시에 달성한 것은 유례없는 일로 2차원 물질 기반의 저전력 트랜지스터가 기존의 금속 산화물 반도체 전계효과 트랜지스터의 전력 소모 문제를 해결하고, 궁극적으로 기존 트랜지스터를 대체하고 미래의 저전력 대체 트랜지스터가 될 수 있음을 의미한다. 조성재 교수는 “이번 연구는 기존의 어떤 트랜지스터보다 저전력, 고속으로 작동해 실리콘 기반의 CMOS 트랜지스터를 대체할 수 있는 저전력 소자의 필요충분조건을 최초로 만족시킨 개발이다”라며 “대한민국 비메모리 산업뿐 아니라 세계적으로 기초 반도체 물리학 및 산업 응용에 큰 의의를 지닌다”라고 말했다.
이번 연구는 한국연구재단 미래반도체신소자원천기술개발사업의 지원을 받아 수행됐다.
2020.02.20
조회수 16287
-
정우철, 김상욱 교수, 수소 연료전지 성능 높일 수 있는 나노촉매기술 개발
〈 정우철, 김현유(충남대), 김상욱 교수 연구팀 〉
우리 대학 신소재공학과 정우철, 김상욱 교수와 충남대학교 김현유 교수 공동 연구팀이 금속 나노 소재를 이용해 수소에너지 기술의 핵심인 연료전지의 성능을 대폭 높일 수 있는 새 나노촉매기술을 개발했다.
이 기술을 통해 연료전지 외에도 물 분해 수소생산 등 다양한 환경친화적 에너지기술에 폭넓게 적용할 수 있을 것으로 기대된다.
최윤석, 차승근 박사, 그리고 충남대 하현우 박사과정 학생이 1 저자로 참여한 이번 연구는 국제 학술지 ‘네이처 나노테크놀로지 (Nature Nanotechnology)’ 2월 18일 자 온라인판에 게재됐고, 3월호 표지로 선정됐다. (논문명: Unravelling inherent electrocatalysis of mixed-conducting oxide activated by metal nanoparticle for fuel cell electrodes).
10나노미터 이하 크기의 금속 나노입자는 극도로 적은 양으로 높은 촉매 활성을 보일 수 있다는 가능성 때문에 최근 에너지 및 환경기술 분야에서 큰 관심을 받고 있다.
그러나 이러한 신소재들은 가격이 매우 비싸고 높은 온도에서 입자들끼리 뭉치면서 촉매 활성이 저하되는 고질적인 문제점이 남아 있었다. 600도 이상의 높은 온도를 활용해 초고효율 발전 방식으로 주목받는 고체산화물 연료전지도 활용성 측면은 회의적인 시각이 존재했다. 또한 각 금속 입자의 촉매 효율 향상 수치에 대한 정확한 연구결과가 없어 해당 분야 발전에 한계가 있었다.
연구팀은 문제 해결을 위해 세계적으로 인정받는 블록공중합체 자기조립을 이용한 금속 나노패턴기술을 통해 산화물 연료전지 전극 표면에 10나노미터 크기의 균일한 금속 나노입자들을 균일하게 합성하는 데 성공했고, 이를 통해 하나의 입자가 갖는 촉매 특성을 고온에서 정확히 분석해 연료전지의 성능을 극대화하는 기술을 개발했다.
연구팀은 대표적 귀금속 촉매인 백금의 경우 300나노그램(약 0.015원 가치)의 적은 양으로도 연료전지의 성능을 21배까지 높일 수 있음을 확인했다.
나아가 백금 외에 많이 활용되는 촉매인 팔라듐, 금, 코발트 등의 금속 촉매 특성을 정량적으로 파악 및 비교했고 이론적 규명을 통해 촉매 성능이 향상되는 정확한 원리를 밝혔다.
정우철 교수는 “단순히 값비싼 촉매의 양을 늘리는 비효율적인 방법을 사용하던 기존 틀을 깨고 매우 적은 양의 나노입자를 이용해 고성능 연료전지를 개발할 수 있다는 명확한 아이디어를 제시한 의미 있는 결과이다”고 말했다.
또한 “해당 기술은 금속촉매가 사용되는 다양한 산업 분야에 적용할 수 있는 높은 유연성을 가지고 있어 추후 연료전지, 물 분해 수소생산 장치 등 친환경 에너지기술 상용화에 크게 기여할 것으로 기대한다”라고 말했다.
이번 연구는 한국연구재단 나노소재원천기술사업의 지원을 받아 수행됐다.
□ 그림 설명
그림1. 금속나노입자의 고온 전기화학적 촉매 특성 정밀 평가를 위한 전극 구조의 모식도
그림2. 10 nm 크기의 여러 금속나노입자 (백금, 팔라듐, 코발트, 금)의 고온 전기화학적 촉매 특성 정밀 비교 평가 결과
2019.02.25
조회수 14919
-
홍원희교수팀, 다양한 나노구조유도 기술개발
생명화학공학과 홍원희교수팀, 이온성액체를 이용한 다양한 나노구조 유도 기술 개발
-무기산화물, 탄소나노튜브, 그래펜, 유무기 하이브리드 등 다양한 재료의 나노구조를 유도--상용 산화철보다 10배 이상의 흡착 및 광촉매 효율 높여-
공과대학 생명화학공학과 홍원희 교수팀(62)은 이온성액체를 이용한 자기조립기술을 이용해 탄소나노튜브, 그래펜, 무기산화물, 유무기 복합체에 이르기까지 다양한 재료의 나노구조를 유도할 수 있는 기술을 최근 개발했다.
이 연구결과는 ‘광촉매 응용을 위한 이온성액체를 이용한 무기산화물 하이브리드의 에너지 전달(Energy Transfer in Ionic-Liquid-Functionalized Inorganic Nanorods for Highly Efficient Photocatalytic Applications)’이라는 제목으로 나노분야의 저명 학술지인 스몰(Small)지에 지난 11월 게재됐다.
이 기술은 이온성 액체의 구조 유도와 용매 기능을 이용한 무기산화물 하이브리드 나노재료를 제조할 수 있는 ‘청정 한 반응기 이온열 합성법(Green One-Pot Ionothermal Synthesis)’이다. 대기압하의 열린반응기내에서 제조된 무기산화물 나노재료는 쉽게 물이나 다양한 유기 용매에서 분산된다.
홍교수팀은 이 합성법을 산화철 계열의 무기산화물 나노재료에까지 적용해 0차원에서 1차원에 이르기까지 구조를 제어했고, 계면에서의 에너지 전이현상을 통해 상용 산화철보다 10배 이상의 흡착 및 광촉매 효율을 높였다.
이 기술을 바탕으로 제조된 나노재료는 유기물 산화 및 분해기능이 뛰어나 태양광만으로 폐수처리가 가능하다. 이로써 페수처리 과정에서 에너지 소비와 이산화탄소의 배출량을 줄일 수 있고, 광촉매가 가지는 우수한 항균 및 탈취기능은 건축재료 분야에 응용될 것으로 기대된다. 또한, 태양광을 이용한 물의 광분해로 수소 에너지원 생산도 가능하다.
홍교수는 “이번 연구는 이온성 액체의 청정용매로써의 기능을 이용해 나노기술이 가지는 인간과 환경에 대한 악영향을 감소시키고, 동시에 디자인된 나노재료에 새로운 기능을 부여해 기존 기술의 한계를 극복할 수 있는 새로운 대안을 마련했다”는데 의미가 있다고 말했다.
현재 홍교수팀은 친환경 합성법으로 제조된 무기산화물, 탄소나노튜브, 그래펜, 유.무기 하이브리등의 나노재료를 환경 및 에너지 분야에 적용하는 연구를 진행하고 있다.
※ 보충자료나노 스케일에서의 재료나 현상을 연구하고 구조나 구성 요소를 제어해서 새로운 소재‧소자‧시스템을 개발하는 나노 기술 역시, 환경 유해성이나 인체 독성에 대한 연구 결과가 발표되면서 친환경 기술에 대한 관심이 급증하고 있다.
이온성 액체는 소금과 같이 양이온과 음이온의 이온결합으로 이루어진 이온성 염 화합물로써 상온에서부터 넓은 온도에 걸쳐 액체로 존재할 수 있는 ‘청정용매(Green Solvent)’라고 불리면서 각광을 받고 있다. 특히, 이론적으로 1018가지 정도의 조합에 의해서 비휘발성, 비가연성, 열적 안정성, 높은 이온전도도, 전기화학적 안정성, 높은 끓는점 등의 물리화학적 특성을 쉽게 변화시킬 수 있어서 다기능성(multifunctional) ‘디자이너용매(Designer Solvent)’로 사용가능하다.
세계적으로 아직 초기단계이긴 하지만, 미국 국방관련 연구소 (US Air Force, US Naval Research Laboratory) 및 국가 연구소 (Argonne 연구소, Oak Ridge 연구소, Brookhaven 연구소), 독일의 Max Planck 연구소, 스위스 EPFL의 Gratzel 그룹, 일본의 도쿄대, G24i & BASF 등이 최근 이온성 액체를 이용한 나노기술 응용 분야에 주목하면서 집중 투자와 연구를 진행하고 있는 반면, 국내에서는 아직 시작 단계에 불과할 정도로 뒤쳐져 있다.
홍 교수 팀의 연구결과는 기존 산업뿐만 아니라, 전 세계적으로 주목 받고 있는 ‘녹색 성장기술’과 21세기를 선도할 ‘첨단 나노기술’을 융합한 ‘청정 나노기술(Green Nanotechnolgy)’의 원천기술로써 활용될 수 있으며 이 분야의 국제경쟁에서 우위를 확보할 수 있을 것으로 전망된다.
현재까지 이온성액체는 유기합성, 전기화학, 화학공학, 생물공학 및 분리공정 등을 포함하는 여러 분야에서 유기 용매를 대체하기 위한 ‘지속가능기술(sustainable technology)’로써 향후 산업 전 분야에 걸쳐서 엄청난 파급효과가 있을 것으로 기대되고 있다.
※ 용어설명 ○ 열린반응기 : 고압,저압의 용기가 아닌 대기압하의 일반용기 즉, 비이커 등.
<그림1> 대표적인 이미다졸륨계 이온성액체의 분자 구조
<그림2> Green One-Pot Ionothermal Synthesis에 의한 물에 분산되는 산화철 나노 막대기의 합성 과정 모식도.
2009.12.14
조회수 25436