-
유독물질 뺀 초고해상도 QLED 신기술 개발
디스플레이 패널에 쓰이는 차세대 발광소재로 양자점(Quantum dot)이 각광을 받고 있다. 특히, 카드뮴이나 납과 같은 유독성 물질을 포함하지 않는 친환경 인듐 포스파이드(InP) 양자점이 주목을 받고 있으나 현재 기술로는 초고해상도 구현이 어려워 양자점 LED(QLED) 디스플레이 및 안경형 증강현실/가상현실 기기 적용에 있어 한계를 지닌다.
우리 대학 신소재공학과 조힘찬 교수 연구팀이 친환경 InP 양자점의 우수한 광학적 특성을 유지하며 초고해상도 패턴을 제작하는 신기술을 개발했다고 26일 밝혔다.
현재, 국제 유해물질 제한지침 (RoHS, Restriction of Hazardous Substances) 규정을 만족하지 못하는 제품은 많은 나라에서 판매가 금지되므로, 최근 많은 디스플레이 기업은 환경친화적인 특성을 갖춘 InP 양자점을 디스플레이에서의 빛 방출 소재로 채택하여 TV 등 중대형 디스플레이에 적용하기 시작하였다.
그러나 InP 양자점은 외부 환경에 매우 민감한 성질을 가지고 있어 픽셀을 만드는 패터닝 공정 적용시 소재의 광학적 특성이 크게 저하되는 단점이 있어 우수한 광학적 및 전기적 특성이 동시에 요구되는 QLED 디스플레이나, 기존 TV 대비 수십배의 초고해상도를 필요로 하는 안경형 증강현실/가상현실 기기 적용에 어려움이 있었다.
조 교수 연구팀은 자외선을 받으면 산을 발생시키는 광산 발생기(photoacid generator)의 원리를 활용하여 초미세 양자점 패턴을 제작하였다. 양자점이 자외선을 받은 경우, 생성된 산에 의해 양자점 표면이 변화하면서 자외선을 받지 않은 부분 대비 용해도 차이가 생겨 패턴 형성이 가능해지는 원리이다.
연구팀은 패터닝시 손상된 InP 양자점의 발광 효율을 획기적으로 높일 수 있는 양자점 표면 치료법을 개발하였다. 양자점에는 양자점을 둘러싸고 있는 표면 리간드(ligand)들이 있는데, 이 리간드들에 의해 양자점의 발광 효율이 큰 영향을 받는다. 연구팀은 친환경 InP 양자점의 표면 리간드를 개질할 수 있는 맞춤형 후처리 공정을 개발하였고, 이를 통해 최종적으로 높은 발광 효율을 가지는 1 마이크로미터(μm)급 초미세 양자점 패턴을 구현할 수 있었다. 이는 기존의 디스플레이 (TV, 스마트폰, 모니터 등)에서 일반적으로 요구되는 픽셀 너비와 비교했을 때 수십 배 작은 패턴으로 증강현실/가상현실 기기 적용 가능성을 크게 높였다고 할 수 있다.
또한 연구팀은 정밀한 분석을 통해 개발된 광산 발생기 기반의 패터닝 기술의 반응 원리를 규명했고, 개발된 기술이 양자점 LED나 대면적 공정에 쉽게 적용될 수 있음을 증명하였다.
조힘찬 교수는 “이번에 개발한 친환경 InP 양자점 패터닝 기술은 높은 발광 효율과 초고해상도 패턴 제작을 동시에 가능하게 하여 차세대 양자점 LED 기반 디스플레이, 증강현실 기기, 이미지 센서 등 다양한 산업에 실제로 적용될 수 있을 것으로 기대하고 있다”라고 언급했다.
KAIST 신소재공학과 이재환 석사과정 학생이 제1 저자로, 미국 시카고 대학교의 Dmitri V. Talapin 교수가 공동교신저자로, KAIST 생명화학공학과 이도창 교수 연구팀이 공동저자로 참여한 이번 연구는 국제 학술지 `에이씨에스 에너지 레터스 (ACS Energy Letters)' 에 출판됐다. (논문명 : Direct Optical Lithography of Colloidal InP-Based Quantum Dots with Ligand Pair Treatment)
한편 이번 연구는 한국연구재단 및 삼성전자, 중소벤처기업부 그리고 KAIST의 지원을 받아 수행됐다.
2023.09.26
조회수 4591
-
디스플레이용 퀀텀닷 패턴 형태에 상관없이 커피링을 완벽 제어하는 기술 개발
우리 대학 기계공학과 김형수 교수팀이 디스플레이 소자의 핵심 물질인 퀀텀닷의 마름 자국을 패턴의 형태에 상관없이 원형부터 다각형까지 완벽하게 균일 패터닝 할 수 있는 기술을 구현했다고 2일 밝혔다.
기계공학과 편정수 박사과정이 제1 저자로 참여한 이번 연구는 국제 학술지 `어드밴스드 사이언스(Advanced Science)'에 지난 2월 7일 字 온라인 출판됐다. (논문명: Self-Induced Solutal Marangoni Flows Realize Coffee-Ring-Less Quantum Dot Microarrays with Extensive Geometric Tunability and Scalability, https://doi.org/10.1002/advs.202104519)
최근 퀀텀닷은 차세대 핵심 디스플레이용 소재로 각광받고 있다. 이를 잉크젯 프린팅 기술을 이용해 패터닝(형태화)하려는 노력을 크게 하고 있지만, 양산성이나 해상도의 제한적 문제 그리고 공정 과정 중에 발생하는 커피링 현상으로 효율이 크게 떨어지는 이슈가 큰 문제로 지적되고 있다.
커피링 자국은 용매 방울이 고체 표면 위에서 마르면서 물방울 표면의 상대적 불균일 증발률 때문에 발생하게 된다. 김 교수는 커피링을 제어하는 연구를 수년간 해오면서 얻은 노하우를 바탕으로 최근 획기적으로 커피링을 소멸시키는 기술을 발표한 바 있다. (DOI: https://doi.org/10.1039/D0SM01872D)
커피링 자국 이외에도 디스플레이의 해상도를 높이기 위해 다양한 모양의 패턴들이 제안되고 있으나, 일반적으로 다각형의 경우 커피링의 정도가 원형의 경우보다 더욱 심해지는 경향을 띤다. 이번 연구에서는 퀀텀닷 패턴의 기하학적 형태에 무관하게 커피링을 완전히 소멸시킬 수 있는 기술을 소개하고 있다. 연구팀은 퀀텀닷이 녹아 있는 용매의 성분을 적절히 조율하고 이 액적을 복잡한 물리-화학적 공정 없이 단순 증발 과정을 거쳐 100 마이크로미터(㎛) (1만 분의 1m) 수준의 커피링이 전혀 없는 균일 패턴을 구현하는 데 성공했다.
연구팀 관계자는 "QLED용 퀀텀닷 패턴은 주변의 공정 요인에 민감하게 변화할 수 있는데, 잉크젯 기반의 토출식 프린팅 기술에 집단 액적의 증발을 통한 자발적으로 발생하는 상호 마랑고니 작용 효과들을 이용해 소재의 손상을 방지하고 패턴의 균일도를 확보했다ˮ고 밝혔다. 실험적 기술 개발뿐 아니라 이론 모델을 바탕으로 마랑고니 발생 원리와 마랑고니 혼합 유동의 세기 조절에 대한 근본적 설명과 제어 변수들을 제공하고 있다.
김형수 교수는 "이번 연구 결과를 실제 디스플레이 양산을 위한 잉크젯 프린팅 공정에 활용하면 적녹청 퀀텀닷 패턴을 물리-화학적 복잡한 공정 없이 높은 효율의 차세대 QLED 디스플레이 구현에 적용 가능할 것ˮ이라고 말했다. 한편 이번 커피링을 없애는 기술을 이용해 "인쇄전자에 사용되는 값비싼 소재들로 확대하면 효과적으로 대면적 프린팅할 수 있고 패터닝 공정도 간소화돼 경제성을 높이는 데 기여할 것이다ˮ고 말했다.
한편 이번 연구는 한국연구재단의 지원을 받아 개인 기초 중견연구(NRF-2021R1A2C2007835)의 지원을 받아 수행됐고, 우리 대학 신소재공학과 정연식 교수 연구팀과의 협업을 통해 수행됐다.
2022.03.02
조회수 8239
-
페로브스카이트 LED 소재의 발광 효율 극대화 메커니즘 규명
우리 대학 화학과 김형준 교수 연구팀이 한밭대학교 홍기하 교수 연구팀과 공동 연구를 통해 페로브스카이트 LED 나노 소재에서 일어나는 발광 효율의 향상 원인을 이론적으로 규명하는 데 성공했다고 12일 밝혔다.
할로겐 페로브스카이트 화합물은 태양 빛을 이용해 높은 효율로 전기를 생산할 수 있어 차세대 태양전지에 사용 가능한 소재로 주목받고 있는 물질이다. 한편, LED는 태양전지와는 반대로 전기를 이용해서 빛을 방출하는 장치로서 디스플레이에 널리 사용되고 있다. 놀랍게도 페로브스카이트는 빛을 전기로 변환시키는 효율뿐 아니라 전기를 빛으로 변환시키는 발광 효율 또한 높은 것으로 알려져 차세대 LED 소재로서도 각광받고 있다.
본래 `페로브스카이트'는 러시아 과학자 페로브스키의 이름을 딴 광물 결정 구조의 이름이다. 연구팀은 이러한 페로브스카이트 결정 구조가 내부의 뒤틀림 정도에 따라 다양한 상(phase)을 가질 수 있음에 주목했다. LED 소재로 널리 사용되는 CsPbBr3라는 페로브스카이트 소재는 결정 구조 내부에 뒤틀림이 존재하는데, 이를 작은 나노 구조로 만들게 되면 이러한 뒤틀림이 최소화된 상이 형성된다. 연구팀은 비단열 양자 동역학 시뮬레이션을 이용해 이러한 결정 구조의 뒤틀림 제어가 발광 효율을 높이기 위한 주요 소재 성질 제어 전략임을 밝혔다.
연구진은 "이번 연구를 통해 페로브스카이트의 소재 결정 구조적 특성과 빛을 발생하는 광 동역학적 특성 사이의 복잡한 상관관계를 규명할 수 있었다ˮ고 말했으며 "추후 이러한 이론 기초 연구를 더욱 확장해 페로브스카이트 결정상 제어를 통한 발광 효율 극대화 전략을 도출해내어 페로브스카이트 기반의 고효율 LED 개발에 기여할 수 있을 것ˮ이라고 말했다.
우리 대학 하윤후 박사과정 학생이 제1 저자로 참여한 이번 연구 결과는 국제 학술지 `미국화학회지 (Journal of the American Chemical Society)' 에 지난해 12월 27일 字 온라인 게재됐다. (논문명: Enhanced Light Emission through Symmetry Engineering of Halide Perovskites).
한편 이번 연구는 한국연구재단(NRF)의 중견연구사업과 선도연구센터 지원 사업, 나노소재기술개발사업으로 진행됐다.
2022.01.12
조회수 9119
-
100배 이상 해상도 높인 차세대 퀀텀닷 프린팅 기술 개발
우리 대학 신소재공학과 정연식 교수 · 전덕영 명예교수 공동 연구팀이 차세대 퀀텀닷 LED(QLED) 기반 디스플레이 실현에 핵심적인 기술인 풀 컬러(적·녹·청) 퀀텀닷 패터닝 프린팅 기술 개발에 성공했다고 6일 밝혔다.
퀀텀닷이란 별도의 장치가 없어도 크기와 전압에 따라 스스로 다양한 빛을 내는 수 나노미터(1 나노미터는 100만분의 1 밀리미터) 크기의 반도체 입자다.
연구팀은 풀 컬러 퀀텀닷 배열의 해상도를 최대 14,000ppi(인치당 픽셀 수) 까지 구현하는데 성공했다. 이 해상도는 현재 8K 디스플레이의 해상도인 117ppi 보다 약 100배 이상에 달한다. 연구팀은 또 기존 퀀텀닷 나노 패턴 구현 방법과는 원리가 다른 초 저압 전사 프린팅 방법을 세계 최초로 개발해, 패턴의 해상도와 프린팅 수율 및 퀀텀닷 발광소자 성능을 극대화하는 데도 성공했다.
우리 대학 신소재공학과 남태원 박사과정이 제1 저자로, 김무현 박사과정이 제2 저자로 참여한 이번 연구는 국제학술지 `네이처 커뮤니케이션스 (Nature Communications)' 6월 16일 字 온라인판에 게재됐다. (논문명: Thermodynamic-driven polychromatic quantum dot patterning for light-emitting diodes beyond eye-limiting resolution)
작년 10월 삼성디스플레이가 퀀텀닷 중심의 차세대 디스플레이 양산라인 구축 및 기술개발에 2025년까지 약 13조 원 규모의 투자계획을 발표하는 등 이제 퀀텀닷 소재는 디스플레이용 핵심 소재로 부상하고 있다. 하지만 퀀텀닷 소재는 OLED 발광 소재와는 달리 용매에 녹아 분산돼 있는 형태로 존재하기 때문에 기존 디스플레이 패터닝 기술을 적용하기 어려웠다. 이를 해결하기 위해 잉크젯 프린팅이나 리소그래피와 같은 공정을 적용하고 있지만, 양산성 및 해상도 측면에서 제한적이거나 공정 과정 중에 퀀텀닷의 효율이 크게 떨어지는 문제가 발생한다.
연구팀은 이런 문제해결을 위해 퀀텀닷의 용매 성분을 미세하게 조절해 수 나노미터에서 수천 나노미터급 주형에 선택적으로 스스로 조립하는 원리에 착안해 적용했다. 또한 조립된 퀀텀닷 미세 패턴을 분리한 후, 초 저압 방식으로 프린팅하는 기술을 개발해 풀 컬러 나노미터급 패턴을 100%에 달하는 수율로 구현했다. 특히 QLED용 퀀텀닷 패턴은 극도로 얇아서 외부 압력에 매우 민감하기 때문에 초 저압 전사 프린팅 기술을 활용해 패턴의 손상을 방지했는데 그 결과 QLED 소자의 성능이 기존 전사 프린팅 방식 대비 약 7배나 증가하는 결과를 확인했다.
연구팀 관계자는 "이번 연구 결과를 활용할 경우 적·녹·청 퀀텀닷 픽셀이 개별적으로 발광할 수 있는 초고해상도를 지닌 차세대 능동형 퀀텀닷 LED (Active Matrix QLED) 디스플레이 구현도 가능할 것ˮ이라고 내다봤다. 정연식 교수는 특히 "단일 퀀텀닷 크기를 갖는 극한 해상도 수준의 패턴도 구현이 가능해서 차세대 디스플레이 분야만 아니라 높은 민감도를 갖는 센서나 광학 소자로의 응용까지 기대된다ˮ라고 말했다.
한편, 이번 연구는 과학기술정보통신부 한국연구재단이 추진하는 미래 소재 디스커버리 사업(단장 최성율)의 지원을 받아 수행됐다.
2020.07.06
조회수 19914