-
해상도 높인 곤충 눈 구조 초박형 카메라 개발
바이오및뇌공학과 정기훈 교수 연구팀이 고해상도 이미징을 위한 곤충 눈 구조의 초박형 카메라를 개발했다. 이 카메라는 독특한 시각 구조를 가진 제노스 페키(Xenos peckii)라는 곤충의 눈을 모사해 개발돼, 상용 카메라보다 더 얇은 렌즈 두께와 넓은 광시야각을 갖는다. 이러한 특징을 이용해 모바일, 감시 및 정찰 장비, 의료영상 기기 등 다양한 소형 카메라가 필요한 분야에 적용 가능할 것으로 기대된다.
김기수 박사과정이 주도한 이번 연구결과는 국제 학술지 ‘빛 : 과학과 응용 (Light : Science & Applications)’ 2월 27일 자 온라인판에 게재됐다. (논문명: 고대비 고해상도 이미징을 위한 생체모사 초박형 카메라, Biologically Inspired Ultrathin Arrayed Camera for High Contrast and High Resolution Imaging)
최근 초소형 및 초박형 스마트 기기의 개발로 소형화된 이미징 시스템의 수요가 커지고 있다. 그러나 기존의 카메라는 물체의 상이 일그러지거나 흐려지는 현상인 수차를 줄이기 위해 다층 렌즈 구조를 활용하기 때문에 렌즈 두께를 감소하는 데 한계가 있다. 또한, 기존의 곤충 눈을 모사한 미세렌즈 배열(Microlens arrays)은 렌즈 사이의 광학 크로스토크(Optical crosstalk)로 인해 해상도가 저해되는 단점이 있다.
연구팀은 문제 해결을 위해 제노스 페키 곤충의 시각 구조를 모사한 렌즈를 제작했고 이를 이미지 센서와 결합해 초박형 카메라를 개발했다. 곤충의 눈은 렌즈와 렌즈 사이의 빛을 차단하는 색소 세포(pigment cells)가 존재해 각 렌즈에서 결상(어떤 물체에서 나온 광선 등이 반사 굴절한 다음 다시 모여 그 물체와 닮은꼴의 상을 만드는 현상)되는 영상들 간의 간섭을 막는다. 이러한 구조는 렌즈들 사이의 광학 크로스토크를 막아 고 대비 및 고해상도 영상을 획득하는 데 도움을 준다.
연구팀은 이러한 광 차단 구조를 포토리소그래피(Photolithography) 공정으로 매우 얇게 제작해 렌즈들 사이의 광학 크로스토크를 효율적으로 차단했다. 렌즈의 두께를 최소화하기 위해 렌즈의 방향을 이미지 센서 방향인 역방향으로 배치했으며, 이를 통해 최종 개발된 카메라 렌즈의 두께는 0.74mm로 이는 10원짜리 동전 절반 정도의 두께이다. 연구팀은 카메라의 원거리에 있는 물체를 모든 렌즈에서 같은 시야각을 통해 동일한 영상을 획득하고, 이 배열 영상들은 해상도를 하나의 이미지로 합성했다. 합성된 영상은 합성 전 단일 채널 영상보다 향상된 해상도를 가짐을 확인했다.
정기훈 교수는 “실질적으로 상용화 가능한 초박형 카메라를 제작하는 방법을 개발했다”라며 “이 카메라는 영상획득이 필요한 장치에 통합돼 장치 소형화에 크게 기여할 것으로 확신한다”라고 말했다.
2020.03.23
조회수 17151
-
정기훈 교수, 반딧불이 구조 적용한 유기발광다이오드(OLED) 개발
〈 정 기 훈 교수 〉
우리 대학 바이오 및 뇌공학과 정기훈 교수 연구팀이 반딧불이 발광기관 구조의 광학적 역할을 밝혀내고 이를 공학적으로 모사하는데 성공했다.
이를 통해 기존 유기발광다이오드(Organic Light-Emitting Diode: OLED) 보다 발광효율을 향상시킨 반딧불이 모사 유기발광다이오드를 개발했다.
김재준 박사가 주도한 이번 연구는 나노분야의 국제 학술지 ‘나노 레터스(Nano Letters)’ 5일자 온라인 판에 게재됐다.
반딧불이는 스스로 빛을 내는 대표적인 자연발광체이며 자연계 내에서 가장 높은 발광효율을 가져 예전부터 반딧불이에 대한 연구가 이뤄졌다.
이전 연구는 주로 발광 원리를 밝혀내는 과정에 집중됐고 상대적으로 반딧불이 발광기관의 광학적 구조에 대한 연구는 활발하지 않았다.
반딧불이의 발광기관은 외피층, 발광세포층, 반사층으로 구성된다. 발광세포층은 빛을 발생시키는 역할, 반사층은 외피층으로 향하지 않는 빛을 반사시키는 역할을 하고 최종적으로 발생된 빛은 외피층을 통해 밖으로 빠져나간다.
이 중 빛을 발생시키는 발광세포층에 대한 연구는 많이 이뤄졌지만 반사층 및 외피층이 어떤 광학 구조를 갖고 어떤 역할을 수행하는지는 명확하지 않았다.
연구팀은 반딧불이의 발광기관 외피에 마이크로 및 나노구조가 결합된 계층적 구조가 있음을 발견했다. 그리고 광학수치해석과 실험을 통해 이 계층적 구조의 역할은 발광세포층에서 발생되는 빛을 효과적으로 추출하면서 넓은 광 분포를 구현하는 것임을 밝혀냈다.
연구팀은 이러한 반딧불이의 광학구조를 OLED에 적용해 기존 OLED가 갖는 문제점을 해결하고자 했다.
OLED는 발생된 빛이 내부에 갇혀 약 20%의 빛만 외부로 추출되는 문제를 갖는다. 연구팀은 반도체공정 및 미세몰딩공정을 이용해 반딧불이의 광학구조를 모사하는데 성공했고, 이를 OLED에 적용해 광 추출 효율을 최대 61%까지 향상시켰다. 또한 계층적 구조를 이용해 기존 OLED보다 넓은 광 분포도를 구현했다.
향후에는 광학구조의 설계 변경을 통한 다양한 광 분포 조절로 OLED 기반 조명 및 디스플레이에 적용이 가능하고 이를 통해 OLED의 발광 효율을 효과적으로 향상시킬 수 있을 것으로 기대된다.
연구팀은 “반딧불이 발광기관에서 발견된 계층적 광학구조를 성공적으로 모사했고 이를 통해 OLED의 발광효율을 효과적으로 향상시켰다”며 “이 연구를 기점으로 생물발광기관 모사 연구가 활발히 진행될 것으로 기대된다”고 말했다.
정 교수는 “이번 연구는 자연의 신비를 밝힘과 동시에 OLED의 광추출 효율을 높이는 새로운 방법을 제시했다”며 “이 연구가 생물발광체 관련 생체모사연구에 대한 연구자들의 관심을 불러일으킬 것이다”고 말했다.
□ 그림 설명
그림1. 기존 OLED(좌)와 반딧불이 모사 OLED의 발광 사진(우)
그림2. 반딧불이 사진
그림3. 반딧불이 발광기관에서 발견된 계층적 구조의 전자현미경 사진(비대칭 마이크로구조 위에 나노구조가 형성되어 있음)
그림4. 반딧불이 모사 OLED의 구조
2016.04.26
조회수 13667
-
은(銀)으로 덮은 종이 크로마토그래피 개발
〈 정 기 훈 교수 〉
우리 대학 바이오및뇌공학과 정기훈 교수 연구팀이 종이에 금속나노입자를 증착시켜 저렴하면서도 정교한 결과를 내는 크로마토그래피용 종이를 개발했다.
이번 연구는 광학분야의 국제 학술지 ‘빛: 과학과 응용(Light: Science and Applications)’지 1월 15일자 온라인 판에 게재됐다.
크로마토그래피는 특정 용매를 이용해 혼합물을 분리하는 기술이다. 가장 전통적인 종이 크로마토그래피를 비롯해 박막, 가스 등 다양한 방법을 이용한 크로마토그래피가 존재한다.
그 중 종이 크로마토그래피는 종이를 용매에 살짝 담근 후 종이 내 혼합 물질의 성분과 종이의 인력 차이에 의해 물질이 나아가는 정도가 달라지는 것을 이용한 혼합물 분리 방법이다.
종이 크로마토그래피는 저렴하고 다수의 성분을 동시에 검출할 수 있어 광합성 산물 및 다양한 생체 혼합물의 분리, 검출에 응용된다.
크로마티그래피 기술로 혼합물을 분리하고 나면 다음 단계로 물질의 성분을 파악하기 위해 물질에 빛을 조사한다.
분자는 각자 다른 성질을 갖고 있어 빛을 받은 후 분출하는 파장이 모두 다르다. 파장의 차이를 분석하면 혼합물에 어떤 분자가 포함됐는지 파악이 가능하다. 사람의 지문과 같은 역할을 하는 것이다.
그러나 이 과정에서 문제가 발생한다. 현존하는 종이 크로마토그래피 기술은 가격이 저렴한 대신 혼합물 분리의 정교성이 떨어지고, 혼합물 내 분자의 농도가 낮을 경우 빛을 조사해도 성분 검출이 잘 되지 않는 등의 한계가 있다.
분자를 검출하기 위해 형광 표지(label)을 붙여 빛을 조사하는 방법도 있지만 형광 표지로 인해 분자의 본래 특성이 변하게 되는 문제가 발생한다.
연구팀은 문제 해결을 위해 나노플라즈모닉스 특성을 갖는 은 나노섬을 종이 표면에 균일하게 증착했다. 나노플라즈모닉스 기술은 금속 나노구조 표면에 빛을 집광시키는 기술로 신경전달물질, 유전물질, 생체 물질 검출 등 다양하게 응용 가능하다.
은과 같은 금속은 빛을 조사했을 때 기존보다 강한 빛을 받아들이는 특성을 가져, 연구팀은 종이의 특성을 유지하면서 기판 표면에서의 빛 집광도를 최고 수준으로 끌어올릴 수 있었다.
연구팀은 개발한 종이에 표면증강 라만 분광법(Surface-enhanced Raman spectroscopy)을 접목해 별도의 표지 없이 혼합물을 분리하고 피코몰(10-12M) 수준의 극 저농도 물질도 측정하는 데 성공했다.
이 기술은 검출가능한계를 최고 수준으로 향상시켜 진단의학, 약물 검사 등 특정 성분의 분리 검출이 요구되는 다양한 분야에 응용 가능할 것으로 예상된다.
연구팀은 “진공증착, 저온 열처리 등 일반적인 반도체공정을 이용해 정밀하고 대면적 양산이 가능한 금속나노구조를 제작했다”며 “기존 기술의 단점인 비싼 가격, 셀룰로스의 특성 변화 등의 문제를 해결할 수 있을 것이다”고 밝혔다.
정 교수는 “이번 결과를 바탕으로 향후 저비용 무표지 초고감도 생체 분자 혼합물의 분리 및 분석이 가능해질 것이다”며 “또한 신약 개발용 약물 스크리닝, 환경 지표 검사, 생리학적 기능 연구 등에 크게 기여할 것이다”고 말했다.
□ 그림 설명
그림1. 크로마토그래피용 금속나노입자를 갖는 종이의 단면 주사전자현미경 사진
그림2. 크로마토그래피용 금속나노입자를 갖는 종이의 주사전자현미경 사진
그림3. 각종 크로마토그래피용 종이 광학사진
그림4. 비타민 혼합물의 분리 및 무표지 검출
2016.02.02
조회수 12270
-
신기루 현상 착안해 테라헤르츠파 광학렌즈 개발
무더운 여름, 아스팔트 도로에 물웅덩이가 보이다가 가까이 다가가면 사라지고 좀 가다보면 또 물웅덩이가 나타난다. ‘신기루’라고 불리는 이 현상은 지표면 가까운 공기층의 큰 온도차로 인한 공기밀도 변화로 빛이 굴절되기 때문이다.
우리 학교 바이오및뇌공학과 정기훈 교수는 물리학과 안재욱 교수와 신기루 현상에서 착안한 물리적 효과를 이용해 테라헤르츠파 굴절률 분포형 렌즈를 세계 최초로 개발했다.
실리콘 소재를 곡면으로 가공해 만드는 카메라렌즈에 사용되는 기존방식과는 달리 이번에 개발된 렌즈는 평평한 실리콘 웨이퍼를 소재로 반도체 양산공정으로 제작해 비용을 최대 1/100 수준으로 낮출 수 있으며 제작시간도 훨씬 단축시킬 수 있다. 광원 추출효율은 4배 이상 향상시켰다.
테라헤르츠파는 0.1THz~30THz(테라헤르츠, 1조헤르츠) 대역의 전자기파로 가시광선이나 적외선보다 파장이 길어 X선처럼 물체의 내부를 높은 해상도로 정확히 식별할 수 있어 보안검색, 의료영상기술 등 비파괴 검사 도구나 의료용 진단기구의 성능을 획기적으로 향상시킬 수 있을 것으로 전망된다.
그러나 넓은 대역의 주파수 특성으로 인해 손실되는 전자기파의 비율이 높아 테라헤르츠파를 높은 효율로 집중시킬 수 있는 광학소자 개발이 요구됐다.
정 교수 연구팀은 평평한 실리콘에 테라헤르츠파 파장(약 300㎛) 보다 작은 80~120㎛ 크기의 구멍을 반도체 양산방법인 광식각공정으로 만들었다. 렌즈 가장자리로 갈수록 홀 사이즈는 크게 만들었다.
테라헤르츠파를 쪼이자 공기와 실리콘 중 공기 비율이 높은 가장자리는 굴절률이 낮았으며, 상대적으로 공기의 비율이 낮은 가운데는 굴절률이 높았다. 평평한 소재를 광학특성을 공학적으로 설계해 빛을 모으는 볼록렌즈와 같은 기능을 한 것으로 신기루 현상과 같은 물리적 효과와 같다.
이번 연구를 주도한 정기훈 교수는 “자연현상에서 착안해 자연계에 존재하지 않는 다양한 광학특성을 띄는 메타물질을 인공적으로 만든 것”이라며 “물질적 제약으로 인해 다양한 광학소자개발이 더딘 테라헤르츠파 기술 진보에 상당한 도움이 될 것”이라고 연구의의를 밝혔다.
미래창조과학부가 지원하는 한국연구재단의 도약연구자지원사업, 그린나노기술개발사업, 글로벌프론티어사업의 일환으로 수행된 이번 연구는 미국물리협회에서 발간하는 귄위 있는 국제학술지인 ‘어플라이드 피직스 레터(Applied Physics Letter)’에 9월자 특집논문 및 표지논문(제1저자 박상길 박사과정)으로 게재됐다.
그림1. 유전체 메타물질을 이용한 실리콘 굴절률 분포형 렌즈. 머리카락 굵기(80~120µm) 수준의 구멍이 실리콘 기판에 서로 다른 크기로 형성돼 있다.
그림2. 굴절률 분포형 렌즈 원리
그림3. 신기루 현상신기루는 아스팔트 도로 위에서 흔하게 나타나는 대기 굴절 현상이다. 이 현상은 도로면이 물체를 반사하는 것처럼 보이게 하는데 이 때문에 도로면에 물웅덩이가 있는 것처럼 착각하게 된다. 아래 사진에는 멀리서 다가오는 차의 상이 도로면을 통해 보인다. <사진 : 경기북과학고등학교 조영우 선생님 제공>
그림4. 논문표지
2014.09.24
조회수 20126
-
실시간 조직검사 하는 초소형 현미경 개발
지난해 대장내시경 검사를 받은 34살 직장인 문 모씨는 5mm 크기의 용종이 발견돼 제거수술을 받았다. 대장암 가족병력이 있어 일주일 후 조직검사 결과가 나온다는 말에 초초한 마음으로 밤잠을 설쳤다.
우리 학교 바이오및뇌공학과 정기훈 교수 연구팀은 내시경에 장착해 실시간 조직검사를 할 수 있는 초소형 현미경을 개발, 광학분야 세계적 학술지인 옵틱스 익스프레스(Optics Express) 3월 5일자 온라인판에 게재됐다.
지름이 3.2mm에 불과한 이 현미경은 20f/s(초당 프레임 수)의 속도로 3mm 깊이까지 3차원으로 스캔할 수 있다. 분해능(최소 식별 거리)은 머리카락 두께(100μm)의 약 1/6인 17μm(마이크로미터, 100만분의 1미터)로 암세포, 정상세포, 염증세포 등을 정확하게 구별해 낼 수 있다.
이 기술 개발로 △보통 2~3일 걸리던 조직검사를 실시간으로 수행할 수 있고 △불필요한 조직검사 횟수를 줄일 수 있으며 △점막절제술 시 정확한 위치에 대한 시술이 가능해져 합병증을 감소시킬 수 있을 것으로 기대된다.
이와 함께 현재 전 세계 의료용 내시경장비는 일본 업체들이 독점하고 있어 진입장벽이 매우 높지만 정 교수 연구팀의 초소형 현미경 개발로 우리 기술이 새로운 의료기기 시장에 진입할 수 있을 것으로 기대된다.
기존 내시경 조직검사는 의심되는 병변부위를 절제한 후 현미경으로 조직검사를 수행하기 때문에 실시간 진단이 불가능하다. 또 조직검사 과정에서 세포 염색 등을 위한 시간이 오래 걸려 정확도가 떨어진다.
이러한 문제점을 극복하기 위해 물리적인 절개 없이 실시간으로 조직을 진단하는 광간섭단층촬영술(OCT, Optical Cohrence Tomography) 등 차세대 영상기법을 내시경에 접목하는 연구가 최근 활발히 진행 중이다.
소화기 내시경(지름 약 11mm)에 최신 영상기술을 접목하기 위해서는 직경 3.5mm이내의 한정된 공간에 초소형 현미경을 구현하는 것이 핵심이다. 최근에는 압전소자와 광섬유를 이용해 직접 스캐닝하는 방식이 주로 사용됐다.
그러나 기존 광섬유 스캐너는 광섬유의 대칭적 구조로 인해 발생하는 물리적 간섭현상에 매우 취약해 임상용 의료내시경 개발에 한계가 있었다.
연구팀은 미세전자기계기술(MEMS, Micro Electro Mechanical Systems)을 이용해 문제점을 해결했다.
연구팀은 광식각공정 및 심도반응성 이온기술을 이용해 미세 실리콘 보조 구조물을 제작했다. 이를 광섬유와 결합해 구동특성을 변조함으로써 간섭현상을 해결하고 광섬유 스캐너의 안정성을 크게 향상시켰다. 또 스캔 패턴을 변화시켜 시간에 따라 연속적으로 해상도를 높일 수 있는 이미지 복원방법을 구현했다.
그 결과 관찰한 부분의 3차원 구조를 최소 0.5초 내에 측정할 수 있었다. 스캔 시간이 늘어남에 따라 연구팀은 좀 더 정밀한 이미지를 얻을 수 있었다.
정기훈 교수는 “국내 내시경 업체 및 병원과 긴밀한 협력을 통해 시제품 제품 개발에 박차를 가하고 있다”며 “동물실험 및 임상실험을 거쳐 수년 내 상용화 될 것”이라고 제품 출시에 대한 기대감을 내비쳤다.
그림1. (A)광섬유 스캐너의 구동특성 변조를 위한 미세 실리콘 구조물의 제작공정 모식도 (B),(C)제작된 미세 실리콘 구조물 이미지 (D)미세 실리콘 구조물이 결합된 광섬유 스캐너
그림2. 현미내시경이 장착된 의료용 내시경
그림3. (A)내시현미경의 광간섭단층촬영 이미지 (B),(C),(D)개략적인 전체 구조의 파악 후 시간에 따라 정밀한 이미지를 얻을 수 있음. (E),(F)제작된 내시현미경을 통해 0.5초간 측정한 동물조직의 3차원 단층 이미징
그림4. 기존 광섬유(좌측)와 개발된 광섬유 스캐너의 1·2차원 구동 패턴(우측). 물리적 간섭현상으로 인해 깨끗한 라인스캐닝이 어려우며 나선형 스캐닝만 가능했으나 미세 실리콘 보조구조물을 이용해 간섭현상을 해결하고 스캔 패턴을 변형시킴.
2014.03.27
조회수 16964
-
곤충 눈을 모사한 무반사 미세렌즈 개발
정기훈 교수
- KAIST 정기훈 교수 연구팀, 세계적 물리학회지에 표지논문으로 게재돼, 국내외 특허출원 중 -
- 반도체 양산공정 그대로 활용할 수 있어 상용화 기대 커 -- 빛 반사율 1%이하로 낮춰 값비싼 무반사 코팅 대체 가능 -
국내 연구진이 곤충의 눈을 모사해 빛의 반사를 최소화한 무반사 미세렌즈를 개발하는데 성공했다. 이 렌즈는 특히 휴대폰, 디지털카메라 등에 적용된 이미지센서에 활용할 수 있는 데다, 기존 반도체 양산 공정을 그대로 활용할 수 있다는 점에서 상용화에 대한 기대가 크다.
우리 학교 바이오및뇌공학과 정기훈 교수 연구팀이 곤충의 눈 표면에 형성된 나노구조를 모사해 저렴하면서도 빛 반사율을 1%이하로 낮춘 무반사 미세렌즈 양산기술을 개발하는 데 성공했다.
KAIST는 정 교수 연구팀이 개발한 이번 기술을 카메라 이미지센서용 미세렌즈에 적용할 경우 집광효율이 높기 때문에 대조 효과와 밝기에 대한 특성이 우수한 고감도 카메라를 만들 수 있다는 점에서 국내외로부터 많은 관심을 받을 것으로 예상된다고 설명했다.
특히 정 교수팀이 개발한 공정은 이미 상용화 중에 있는 기존의 반도체공정을 그대로 활용할 수 있다. 따라서 렌즈 표면에 굴절률이 낮은 막을 여러 번 입히는 기존의 무반사 코팅보다 제품 제작비용이 훨씬 줄어들 것으로 기대된다고 강조했다.
나비, 잠자리 등 곤충의 눈은 대부분 겹눈 2개로 구성돼 있다. 이들 곤충은 겹눈을 형성하는 벌집모양의 낱눈을 약 1만~3만 개를 가지고 있는데, 낱눈에는 수많은 나노 돌기가 빛의 투과를 돕는 역할을 한다.
연구팀은 이 같은 특성을 갖는 곤충의 눈이 오랜 진화를 통해 최적의 조건을 만들어 온 것으로 판단해, 컴퓨터 시뮬레이션을 거쳐 빛이 가장 잘 투과되는 나노 구조라는 것을 알아냈다.
이후 이 구조를 모사해 수십 마이크로미터(㎛) 크기의 카메라 미세렌즈에 적용한 결과 반사율이 기존 10%에서 1%이하로 현격히 감소하는 특성을 확인했다.
정 교수 연구팀은 곤충에서 착안한 무반사 구조를 만들기 위해 기존 반도체 생산에 쓰이는 식각공정을 활용했다.
미세렌즈에 은 박막 코팅을 한 후 저온열처리를 통해 은나노 입자를 미세렌즈 표면에 형성시켰다. 이를 마스크로 삼아 렌즈표면을 건식 식각해 무반사 특성을 갖는 나노구조를 렌즈 곡면에 구현하는 데 성공했다.
정기훈 교수는 “곡면 구조의 카메라 미세렌즈 표면에서 빛의 반사가 심해 집광효율이 감소하는 문제가 있었는데, 몰포나비의 눈에 형성된 나노 구조에 착안해 기술개발에 성공했다”며 “기존 반도체공정을 그대로 이용할 수 있기 때문에 고가의 무 반사 코팅보다 훨씬 저렴한 단가로 카메라 이미지센서용 무반사 미세렌즈에 즉시 적용할 수 있다”고 말했다.
한편, 정기훈 교수가 주도하고 정혁진 박사과정 학생이 참여한 이번 연구는 세계적인 물리학회지 ‘어플라이드 피직스 레터스(Applied Physics Letters)’ 최신호(11월 12일자)에 표지논문으로 게재됐으며 현재 국내외 특허 출원중이다.
그림1. 곤충 겹눈(좌), 곤충의 낱눈(우)을 확대한 현미경 사진
그림2. 곤충 겹눈의 나노돌기 구조를 모사한 고효율 미세렌즈 배열. 무반사 렌즈는 일반 렌즈에 비해 표면 반사를 현격히 감소시켜 무반사 렌즈를 통해 맺힌 이미지의 선명도를 증가시킨다.
그림3. 카메라 이미지센서용 미세렌즈 개발 공정
1) 고분자 미세렌즈 배열 전면에 은 박막을 코팅
2) 가열을 통해 은 박막을 은 나노입자로 변형
3) 은 나노입자를 마스크로 삼아 렌즈 식각
4) 은 나노입자 제거하여 무반사 미세렌즈 배열 완성
그림4. 논문표지
2012.11.21
조회수 14810
-
반딧불이 모방한 고효율 LED 기술 개발
정기훈 교수
- 반딧불이 모방한 자연모사 연구로 반사 최소화 한 고효율 LED 개발 -- 미국 국립과학원회보지(PNAS) 10월 29일자 온라인 판 게재 -
자기 스스로 빛을 내는 반딧불이를 모방한 고효율 LED 원천기술이 개발됐다.
우리 학교 바이오및뇌공학과 정기훈 교수 연구팀이 반딧불이 발광기관 외피에 있는 나노구조를 세계 최초로 모방해 발광효율이 높은 LED 렌즈를 개발했다.
이번에 개발된 기술은 기존에 렌즈의 반사를 방지하기 위해 값비싼 반사방지 코팅을 추가로 처리한 것과는 달리, 렌즈 제작 시 생체모사 나노구조를 주형에서 한 번에 만들어 보다 저렴한 LED를 만들 수 있을 것으로 기대된다.
이와 함께 무반사효과(antireflection)를 내기 위해 모방한 나노구조를 최적화해 발광효율 향상이 기존 반사방지 코팅에 상응하게 만들어, 앞으로 스마트폰, TV, 자동차, 의료기기, 실내외 조명 등에 널리 적용될 것으로 전망된다.
무반사구조(antireflective structures)는 빛의 효율을 향상시키기 위한 대표적인 방법으로 많은 분야에 활용돼 왔다. 그러나 이 구조는 평판에만 국한돼 있어 LED 렌즈와 같은 곡면에 만드는 것은 많은 어려움이 있었다.
정 교수 연구팀은 3차원 미세몰딩 공정을 활용해 이를 해결했다.
연구팀은 실리콘 산화막 위에 나노입자를 단일 층으로 형성하고 식각공정을 통해 나노구조를 형성했다.이후 나노구조를 PDMS(폴리다이메틸실록세인, polydimethylsiloxane) 막에 전사시키고, 이 막에 음압을 가해 곡률을 형성한 다음 자외선경화 고분자를 부은 후 굳혀 반딧불이와 유사한 구조의 렌즈를 만들어 내는 데 성공했다.
이번 기술은 세계 최초로 무반사구조가 형성된 반구형 고효율 LED 렌즈를 개발한 것으로, 이 렌즈는 기존에 사용되는 무반사코팅(antireflection coating)에 상응하는 효과를 나타냈다.
정기훈 교수는 “이 기술은 세계 최초로 생물발광기관을 생체 모사한 기술이라는 것에 의의가 있다”며 “생체모사 기술을 활용한 고효율 LED 렌즈 기술을 통해 기존의 값비싼 무반사코팅을 대신해 저렴하면서도 효율을 극대화할 수 있을 것”이라고 말했다.
한편, 바이오및뇌공학과 정기훈 교수(제1저자 김재준 박사과정 학생)가 주도한 이번 연구는 미국 국립과학원회보지(PNAS) 10월 29일자 온라인 판에 게재됐다.
그림 1 : (A) 반딧불이 사진. (B) 반디불이의 전자현미경 사진 (N)은 비발광기관, (L)은 발광기관. (C) 비발광기관의 미세패턴, 무작위한 패턴을 형성. (D) 발광기관의 나노구조, 잘 정렬된 나노구조를 형성. (E, F) 반딧불이의 발광기관과 고효율 LED 패키징이 대응되는 구조를 형성하고 있음. 본 연구팀은 반딧불이 발광기관 외피층에 형성된 나노구조층을 LED 렌즈 위에 형성시켜 발광효율을 증가시킴. (E) 반딧불이 발광기관의 모식도. 나노구조의 크기는 약 주기가 250 nm, 너비가 150 nm, 높이가 110 nm 정도임. (F) 고효율 LED 패키징의 모식도.
그림2 : 일반 렌즈(좌)와 고효율 LED 렌즈(우) 사진. 연구팀은 3차원 미세몰딩 기술을 이용해 고효율 LED 렌즈를 제작.
그림 3 : (A) 고효율 LED 렌즈의 제작 과정. (step Ⅰ) 나노입자와 식각공정을 이용하여 나노구조 형성. (step Ⅱ) PDMS 막에 나노구조 전사. (step Ⅲ) PDMS 막에 음압을 가하여 곡률 형성. (step Ⅳ) 자외선 경화 고분자를 부은 후 경화. (step Ⅴ) 완성된 고효율 LED 렌즈. (B) 고효율 LED 렌즈의 전자현미경 사진. (C) 곡면 위에 잘 정렬되어 형성되어 있는 나노구조.
2012.10.30
조회수 16035
-
나노 바이오칩 질병진단 시대 본격 개막
정기훈 교수
- 1초이내 극미량의 용액 내 DNA 염기 검출 가능해 -
- 반도체 양산공정 활용해 상용화 성큼 -- 글로벌 신약개발 및 각종 질환 조기진단기술로서의 활용 기대 -
혈액 몇 방울로 집에서 암을 포함해 모든 질환을 진단할 수 있다는 연구 성과가 최근 쏟아져 나오고 있다. 첨단기술이 집약된 ‘바이오칩’ 덕분인데 KAIST 연구진이 이 칩을 상용화 할 수 있는 연구에 성공했다.
향후 실시간 초고감도 DNA 분석은 물론, 신약개발용 약물 스크리닝 등 다양한 질환의 조기진단기술에 크게 기여할 수 있을 것으로 기대된다.
우리 학교 바이오및뇌공학과 정기훈 교수 연구팀이 3차원 나노플라즈모닉스 구조를 이용해 검출가능 한계를 수십배 이상 향상시킨 초고감도 바이오칩 양산기술 개발에 성공했다.
이번 연구 성과는 재료 및 나노분야 세계적 학술지인 ‘어드밴드스 머터리얼스(Advanced Materials)’ 5월호(2일자) 표지논문으로 선정됐다.
나노플라즈모닉스는 금속나노구조표면에 빛을 집광시켜 특정파장의 세기를 크게 향상 시킬 수 있는 나노광학 분야다. 최근 DNA, 단백질, 항체 또는 세포 등을 감지하는 위한 바이오칩 개발에 필수적인 기술로 학계에서 커다란 관심을 받고 있다.
그러나 사람머리카락의 1/1000의 크기를 갖는 금속나노구조를 넓은 면적의 유리기판에 균일하게 제작하기가 어려워 상용화에 커다란 걸림돌이었다.
정기훈 교수 연구팀은 반도체 양산공정을 활용해 이를 해결했다.
연구팀은 유리기판 위에 은나노 필름을 입히고 열을 가해 은나노섬을 만들었다. 이후 반도체에 적용되는 식각공정을 이용해 3차원 금속나노구조를 유리기판에 균일하게 형성하고 나서 은나노 입자를 증착시켰다.
이 구조는 나노플라즈모닉 현상을 유발하는 다수의 나노갭을 갖고 있어 입사되는 빛의 세기를 수십배 향상시킬 수 있다. 또한, 상용화중인 반도체 증착공정을 그대로 사용 가능하기 때문에 즉시 양산기술에 적용할 수 있는 장점을 갖고 있다.
정기훈 교수는 “이 기술은 유리기판위에 표면강화라만분광기술을 접목해 별도의 형광물질 없이 나노몰 수준의 DNA 염기 4종류를 1초 안에 구분했다”며 “각종 질환을 조기에 진단할 수 있는 바이오칩을 일반 반도체공정을 이용해 넓은 면적의 기판 위에 3차원 나노구조를 저렴하고도 정밀하게 제작할 수 있는 양산기술을 확보하게 됐다”고 말했다.
한편, KAIST 바이오및뇌공학과 정기훈 교수(제1저자 오영재 박사과정 학생)이 수행한 이번 연구는 교육과학기술부가 지원하는 한국연구재단의 도약연구자지원사업 등의 일환으로 실시됐다.
그림1. 유리기판에 넓은 면적으로 제작된 나노플라즈모닉 기판의 사진.
그림2. 나노플라즈모닉 기판의 전자현미경 사진(단면도) 및 전자기장 시뮬레이션. 전자현미경 사진은 3차원적인 금속나노구조가 형성된 것을 보여주고 있으며 이를 통해 나노미터 수준의 갭(gap)을 가진 구조를 설계해 국소 전자기장 극대화를 통해 라만분광 신호 증가를 유도하였음. 시뮬레이션은 나노갭에서 강화된 전자기장을 나타냄.
그림3. 초고감도 나노플라즈모닉 기판의 대면적(직경4인치) 나노공정 순서도.
a) 은나노섬을 증착해 식각과정의 마스크로 사용. b) 식각과정을 통한 유리 나노필라어레이(glass nanopillar arrays) 형성. c) 증착을 통한 다수의 나노갭을 가지는 나노플라즈모닉 구조 형성.
그림4. 좌측 : 정기훈 교수, 우측 : 오영재 박사과정(제1저자)
그림5. 논문표지
2012.05.02
조회수 15547
-
‘테라헤르츠파’를 아시나요?
정기훈 교수
- 광학나노안테나 접목해 테라헤르츠파 출력 최대 3배 향상시켜 -- 내시경 등 초소형 바이오 진단시스템 등 다양한 분야 응용 기대 -
광학계의 블루오션이라 불리는 ‘테라헤르츠파’의 출력이 KAIST 연구진에 의해 크게 향상됐다. 앞으로 휴대용 투시카메라나 소형 바이오 진단시스템 등 다양한 분야에 응용될 수 있을 것으로 전망된다.
우리 학교 바이오및뇌공학과 정기훈 교수 연구팀이 광학나노안테나 기술을 접목해 테라헤르츠파의 출력을 기존보다 최대 3배 증폭시키는 데 성공했다.
테라헤르츠파는 100GHz에서 30THz 범위의 주파수를 갖는 전자기파로, 가시광선이나 적외선보다 파장이 길어 X선처럼 투과력이 강할 뿐 아니라 X선보다 에너지가 낮아 인체에 해를 입히지 않는다.
이러한 특성으로 X-ray처럼 물체의 내부를 투과해 볼 수 있으며, 주파수 내에서 특정 영역을 흡수하기 때문에 X선으로는 탐지하지 못하는 우편물 등에 숨겨진 폭발물이나 마약을 찾아낼 수 있다. 심지어 가짜약도 판별해낼 수 있다.
또한, 분광정보를 통해 물질의 고유한 성질을 특별한 화학적 처리 없이 분석할 수 있어 인체에 손상이나 고통을 주지 않고도 상피암 등 피부 표면에 발생하는 질병을 효과적으로 즉시 확인할 수 있다.
테라헤르츠파는 펨토초(10-15초) 펄스레이저를 광전도 안테나가 형성된 반도체기판에 쪼여주면 피코초(10-12초) 펄스 광전류가 흐르면서 발생된다. 그러나 출력이 부족해 바이오센서 등 다양한 분야의 상용화에 어려움이 있어 그동안 과학자들이 출력을 증폭시키기 위한 많은 노력들이 이어졌다.
정 교수 연구팀은 광전도안테나 사이에 금 나노막대로 구성된 광학나노안테나를 추가하고 구조를 최적화했다. 그 결과 광전도기판에 나노플라즈모닉 공명현상이 발생되면서 광전류 펄스가 집적도가 높아져 출력이 최대 3배까지 증폭됐다.
이에 따라 물체의 내부를 더욱 선명하게 볼 수 있을 뿐만 아니라 생검을 하지 않고도 좋은 영상과 함께 성분 분석이 가능해졌다.
정기훈 교수는 “이번에 개발한 원천기술을 테라헤르츠파 소자 소형화 기술과 결합해 내시경에 응용하면 상피암을 조기에 감지할 수 있다”며 “앞으로 이 같은 바이오센서 시스템을 구축해 상용화하는 데 주력할 것”이라고 말했다.
바이오 및 뇌 공학과 박상길 박사과정, 진경환 박사과정, 예종철 교수, 이민우 박사과정, 물리학과 안재욱 교수가 공동으로 수행한 이번 연구는 나노분야 세계적 학술지 ‘ACS Nano" 3월호(27일자)에 실렸다.
한편, 이번 연구는 지식경제부 및 한국산업기술평가원의 산업융합기술/산업원천기술개발사업 및 교육과학기술부가 지원하는 한국연구재단의 도약연구자지원사업 등의 일환으로 수행됐다.
그림1. 나노안테나를갖는THz 발생기 전자현미경사진: 광학나노안테나가 집적된 테라헤르츠 생성소자의 전자현미경 이미지.
그림2. NP-PCA 개념도: 광학나노안테나가 집적된 테라헤르츠 생성 소자의 개념도. 테라헤르츠 광전도 안테나 사이의 집적된 광학나노안테나에 의해, 광전류 펄스를 생성하는 펨토초 광펄스의 세기가 기판 표면에서 증가한다. 이를 통해 기존 테라헤르츠 생성소자의 테라헤르츠 출력 파워를 증가 시킬 수 있다.
그림3.나노안테나를갖는THz 발생기모식도 : 광학나노안테나에 의한 증가되는 테라헤르츠 파 출력의 가상도.
2012.04.23
조회수 21075