본문 바로가기
대메뉴 바로가기
KAIST
연구뉴스
유틸열기
홈페이지 통합검색
-
검색
메뉴 열기
%EA%B9%80%EB%B2%94%EC%A4%80
최신순
조회순
쭉쭉 늘어나는 최고 성능의 태양전지 개발
웨어러블 전자소자의 시장 규모가 급격히 커지며 에너지 공급원으로서 잡아당겨 늘려도 작동할 수 있는 스트레쳐블 태양전지가 각광 받고 있다. 이러한 태양전지를 구현하기 위해서는 빛을 전기로 전환하는 광활성층의 높은 전기적 성능과 기계적 신축성 확보가 필수적인데, 이 두 가지 특성은 서로 상충관계를 가지고 있어서 스트레쳐블 태양전지의 구현은 매우 어려운 문제였다. 우리 대학 생명화학공학과 김범준 교수 연구팀이 높은 전기적 성능과 신축성을 동시에 갖는 새로운 형태의 전도성 고분자 물질을 개발해 세계 최고 성능의 스트레처블 유기태양전지를 구현했다고 26일 밝혔다. 유기 태양전지(organic solar cells)는 빛을 받아 전기를 생산하는 광 활성층이 유기물로 구성되는 전자소자로, 기존 무기 재료 기반 태양전지에 비해 가볍고 유연하다는 장점이 있어 몸에 착용할 수 있는 웨어러블 전자소자에 사용 가능하다. 특히, 태양전지는 이러한 전자소자의 전력을 공급하는 필수적인 소자이지만, 기존 고효율 태양전지는 신축성을 가지기 어려워서 웨어러블 소자로 거의 구현된 바가 없다. 김범준 교수 연구팀은 높은 전기적 성질을 가지는 전도성 고분자에 고무처럼 늘어나는 고신축성 고분자를 화학 결합을 통해 연결하여, 높은 전기적 성능과 기계적 신축성을 동시에 가지는 새로운 형태의 전도성 고분자를 개발하였다. 개발된 고분자는 현재 세계 최고 수준의 광전변환효율 (19%)을 가지는 유기태양전지를 구현하면서도, 기존 소자들에 비해 10배 이상 높은 신축성을 달성하였다. 이를 통해 40% 이상 잡아당겨도 작동하는 세계 최고성능의 스트레처블 태양전지를 구현하였으며, 이를 통해 사람이 착용가능한 태양전지의 응용 가능성을 증명했다. 김범준 교수는 "이번 연구를 통해 세계 최고성능의 스트레쳐블 유기 태양전지를 개발했을 뿐만 아니라 새로운 개념의 고분자 소재 개발을 통해 자유형상 및 신축성을 요구로 하는 다양한 전자소자에 응용가능한 소재 원천 기술을 개발했다는 것에 큰 의의가 있다ˮ라고 밝혔다. 이진우, 이흥구 연구원이 공동 제1 저자로 참여하고, 기계공학과 김택수 교수, 생명화학공학과 리섕 교수팀이 공동으로 진행한 이번 연구는 국제 학술지 `줄(Joule)'에 12월 1일 출판됐다. (논문명: Rigid and Soft Block-Copolymerized Conjugated Polymers Enable High-Performance Intrinsically-Stretchable Organic Solar Cells). 이번 연구는 한국연구재단의 지원을 받아 수행됐다.
2023.12.26
조회수 3616
새로운 고무형태의 고체 전해질로 세계 최고성능 전고체전지 구현 성공
우리 대학 생명화학공학과 김범준 교수 연구팀이 미국 조지아공대(Georgia Tech) 이승우 교수팀과 공동연구를 통해 새로운 개념의 엘라스토머 고분자 전해질을 개발하고 이를 통해 세계 최고성능의 전고체전지를 구현했다고 13일 밝혔다. 우리 대학 한정훈 및 조지아공대 이승훈 연구원이 공동 제1 저자로 참여한 이번 연구는 국제 학술지 `네이처(Nature)' 1월 13일에 출판됐다. (논문명: Elastomeric electrolytes for high-energy solid-state lithium batteries). 전고체 리튬메탈전지(all-solid-state Li-metal battery)는 이차전지에 사용되는 휘발성이 높은 액체전해질을 고체로 대체해 화재 및 자동차 안전사고를 막을 수 있는 미래기술로서, 현재 상용화된 리튬이온전지(Li-ion battery)에 비해 에너지밀도를 획기적으로 향상해 자동차 주행거리 확보 및 안전 문제를 해결할 수 있는 `꿈의 배터리 기술'이다. 공동 연구팀은 상온에서 리튬(Li) 이온의 전도도가 탁월하며, 기계적 신축성이 모두 확보된 엘라스토머(고무) 형태의 고분자 전해질을 개발했으며, 이를 전고체전지에 적용해 410Wh/kg의 세계 최고성능을 보이는 전고체 리튬 메탈전지를 구현했다. 이러한 기술을 도입하면 현재 한번 충전으로 800 km까지 주행 가능한 전기자동차의 구현(현재 500 km수준)이 가능할 것으로 보이며, 기존의 액체 전해질을 적용한 리튬이온전지의 안정성을 획기적으로 향상할 것으로 기대된다. 고체 전해질은 크게 고분자 기반, 산화물 기반, 황화물 기반의 전해질로 나뉘는데, 현재 황화물 기반에서 가장 활발한 연구가 되고 있으나 가격이 매우 비싸다는 단점이 있다. 고분자 기반 고체전해질은 원료가 매우 싸고, 저온 대량생산 공정, 가벼움의 장점을 갖고 있지만, 상온에서 낮은 이온전도도를 가지는 문제점이 있으며, 전지 충‧방전 시 안정성이 떨어진다. 연구팀은 고무처럼 신축성이 탁월한 엘라스토머 내부에 리튬 이온전도도가 매우 높은 플라스틱 결정 물질을 3차원적으로 연결한 엘라스토머 고분자 고체전해질을 개발했다. 연구팀이 개발한 전해질은 기존에 대표적인 폴리에틸렌옥사이드(PEO) 기반의 고분자 전해질에 비해 100배 정도 향상된 10-3 S/cm의 이온전도도를 가진다. 또한, 고무처럼 신축성이 우수한 전해질은 전지 충‧방전 시 안정성에 가장 큰 문제가 되는 리튬 덴드라이트(dendrite)의 성장을 억제해, 탁월한 전지 성능 및 안정성을 확보했다. 개발된 고분자 전해질은 얇은 리튬금속 음극과 니켈 리치 양극(NCM-Ni83)으로 구성된 전고체전지에서 4.5V 이상의 고전압에서도 안정적인 구동을 보였으며, 410Wh/kg 이상의 세계 최고의 에너지밀도를 보였다. SK이노베이션의 최경환 차세대 배터리 센터장은 “전고체 배터리는 전기차주행거리와 안전성을 획기적으로 늘릴 수 있다”며 “전고체 배터리 상용화 여부는 전기차 시장의 판도를 가를 중요한 과제로, 김범준/이승우 교수 연구팀이 개발한 엘라스토머 전해질은 기존의 고분자계 고체전해질의 한계를 해결한 획기적인 결과”라고 말했다. 이차전지 분야의 권위자인 서울대 강기석 교수는 “전고체 이차전지에 대한 세계적인 개발 경쟁이 치열한 가운데, 기존 고체전해질과 차별되는 엘라스토머 기반의 신규 고체전해질 개발은 이 분야의 발전에 새로운 가능성을 제시할 것이다.”라고 말했다. 우리 대학 김범준 교수는 "이번 연구를 통해 미래의 배터리라고 불리는 세계 최고 성능 전고체전지를 개발했을 뿐만 아니라 엘라스토머 전해질이라는 기존과는 완전히 다른 새로운 종류의 고체전해질을 개발해 소재 원천 기술을 확보했다는 것에 큰 의의가 있다ˮ라고 밝혔으며, 미국 조지아공대 이승우 교수는 "이번 연구를 통해 개발한 엘라스토머 전해질은 기존의 고체전해질이 가진 문제점을 획기적으로 개선하고, 제조 공정이 매우 간단해, 전고체전지의 전해질의 게임체인저가 될 것으로 기대한다ˮ라고 밝혔다. 또한 이번 연구에는 한국연구재단의 중견도약연구사업, 미래소재디스커버리 사업, 기초연구실지원사업의 지원을 받아 수행되었으며, 한국화학연구원의 김병각 박사, 한국에너지기술연구원의 정규남 박사가 공동연구에 참여했다.
2022.01.13
조회수 13667
김범준 교수, 빛에 반응해 모양과 색 변하는 스마트 마이크로 입자 개발
〈 김범준 교수, 이준혁 박사, 구강희 박사 〉 우리 대학 생명화학공학과 김범준 교수 연구팀이 빛에 의해 모양과 색을 바꿀 수 있는 스마트 마이크로 입자 제작기술을 개발했다. 아주 작은 입자의 모양이나 색을 원하는 대로 가공(fabrication)할 수 있게 되면 군용장비의 위장막(artificial camouflage), 병든 세포만 표적하는 약물전달캡슐, 투명도 및 색이 변하는 스마트 윈도우나 외부 인테리어 등에 활용할 수 있다. 마이크로 입자의 모양과 색 변화 연구는 주로 약물전달이나 암세포 진단과 같은 생물학적 응용을 위해 산도(pH), 온도, 특정 생체분자 같은 물리화학적 자극과 관련해 주로 이뤄졌다. 하지만 이런 자극들은 의도하는 국소부위에만 전달하기 어렵고 자극 스위치를 명확하게 켜고 끄기 어려운 것이 단점이었다. 반면 빛은 원하는 시간 동안 특정부위에만 쬐어줄 수 있고 파장과 세기를 정밀하게 조절, 선택적·순차적으로 입자 모양을 변형시킬 수 있어 해상도 높은 자극으로 주목받는다. 하지만 기존 빛에 감응하는 스마트 입자는 제작방법이 복잡하고, 편광방향으로의 길이 연장만 가능한 등 정밀한 모양변화가 어려워 활용에 한계가 있었다. 연구팀은 빛에 의해 분자구조가 변해 친수성 정도나 광학적 특성을 조절할 수 있는 계면활성제*를 개발하고 이들의 자가조립방식을 기반으로 빛에 반응해 모양과 색깔이 변하는 수 마이크로미터 크기의 스마트 입자를 대량으로 제작하는 데 성공했다. 빛을 쬐어준 시간과 파장에 따라 구형에서 타원체, 튤립, 렌즈형태 등으로 변화시킬 수 있는 한편 입자의 색도 조절할 수 있다. 또한 100μm 이하의 국소 부위에만 빛을 조사함으로써 원하는 위치에서 원하는 모양을 정교하게 유도할 수 있다. 특히 반응하는 빛의 파장이 서로 다른 계면활성제를 활용하면 입자 모양의 변화를 여러 단계로 조절하거나 원래의 모양으로 되돌리는 변화가 가능하다. 이러한 스마트 입자로 만들어진 박막이나 용액은 그 성질을 정밀하게 조절할 수 있어 정보를 담거나 신호를 넣을 수 있는 스마트 소재로도 활용할 수 있다. 과학기술정보통신부와 한국연구재단이 추진하는 미래소재디스커버리사업, 글로벌프론티어사업 및 중견연구자지원사업의 지원으로 수행된 이번 연구의 결과는 화학 분야 국제학술지 잭스(JACS, Journal of the American Chemical Society)에 9월 4일 게재되는 한편 표지 논문으로 선정됐다. 김범준 교수는 “빛을 이용해 모양과 색이 조절되는 스마트 입자 제작 플랫폼을 개발한 것으로 빛을 신호로 국소부위 입자의 성질을 정밀하게 조절할 수 있어 스마트 디스플레이, 센서, 도료, 약물전달 등에 응용될 수 있을 것으로 기대된다.”고 설명했다. □ 그림 설명 그림1. 김범준 교수 연구성과 개념도
2019.09.09
조회수 13875
광전환 효율 높인 고분자 태양전지 모델 개발
<김 범 준 교수> 국내 연구진이 차세대 에너지원으로 각광 받고 있는 플라스틱 태양전지의 광전환 효율을 크게 높이는데(5% 이상, 기존 대비 1%p 이상 증가) 성공하였다. 특히 기존의 태양전지를 대체할 수 있다는 점에서 의미가 크다. 우리 대학 김범준, 부산대 우한영 교수(공동 교신저자)가 주도하고, 우리 대학 강현범, 부산대 우딘 모하메드 아프사르 박사(공동 제1저자)가 참여한 이번 연구는 미래창조과학부와 한국연구재단에서 추진하는 기초연구사업(중견연구자), 글로벌프론티어사업 등의 지원으로 수행되었고, 화학분야의 권위지 JACS(Journal of the American Chemical Society) 2월 18일자에 게재되었다. 고분자-고분자 태양전지는 기존의 풀러렌 유기태양전지에 비해 상용화에 핵심요소인 기계적인 안정성뿐만 아니라 열에 대한 안정성도 크게 향상시킬 수 있다. 그러나 풀러렌 유기태양전지(10%)에 비해 고분자-고분자 태양전지의 광전환 효율은 매우 낮다(4% 이하). 이것은 광 활성층을 형성하는 두 고분자가 잘 섞이지 않고 과도하게 분리되는 현상(상 분리)이 발생하기 때문이다. 이러한 상 분리 현상은 전자의 생성과 운반을 저해하고 태양전지의 광전환 효율을 감소시킨다. 연구팀은 전도성 고분자의 분자량과 구조를 조절함으로써 두 고분자의 상 분리 현상을 효과적으로 제어하여 5% 이상의 높은 광전환 효율을 가진 태양전지를 개발하였다. 연구팀은 현재 태양전지의 광전환 효율을 6%까지 끌어올렸는데, 이 수치는 지금까지 학계에 보고된 것 중에서 가장 높은 효율이다. 김범준 교수는 “이번 연구는 고분자 플라스틱 태양전지가 미래 에너지원, 특히 유연성이 필요한 휴대용 차세대 전자소자의 에너지원으로서 높은 응용가능성을 보여주는 사례”라고 밝혔다. □ 그림 설명 그림 1. 플렉서블 고분자 / 고분자 태양전지 샘플
2015.03.30
조회수 12671
<<
첫번째페이지
<
이전 페이지
1
>
다음 페이지
>>
마지막 페이지 1