본문 바로가기
대메뉴 바로가기
KAIST
연구뉴스
유틸열기
홈페이지 통합검색
-
검색
메뉴 열기
%EA%B9%80%ED%95%99%EC%84%B1
최신순
조회순
알츠하이머 조기 진단하는 센서단백질 디자인하다
고정된 3차원 구조가 없는 상태로 존재하는 비정형 단백질((Intrinsically disordered protein)은 알츠하이머, 파킨슨병과 같은 신경계 질환부터 암, 심혈관계 질환, 대사질환을 유발하는 것으로 알려져 있다. 따라서, 이들을 신속하게 검출하고 분석할 수 있다면 조기 진단을 통해 질병의 진행을 막고 환자의 예후를 개선할 수 있을 뿐 아니라, 병리기전을 밝히고 나아가 치료제를 개발하는 데 큰 도움이 될 수 있다. 우리 대학 생명과학과 김학성 교수 연구팀이 이러한 비정형 단백질을 간단하게 검출할 수 있는 센서 단백질을 디자인하는 데에 성공했다고 8일 밝혔다. 단백질은 특정한 3차원 구조를 가지며 생체 내 다양한 기능을 수행하는 데 실제 인간 단백질 중 44%는 상황에 따라 구조가 변화는 비정형 단백질로 고정된 구조를 갖는 일반 단백질보다 더욱 다양한 기능을 수행한다. 그러나, 비정형 단백질은 고정된 구조가 없어서 이들 단백질의 분석과 기능 연구가 매우 어려웠다. 연구팀은 비정형 단백질이 단백질 2차 구조인 베타 스트랜드(β-strand)를 형성하는 특정 아미노산 서열을 갖고 있다는 점에 착안하여 이러한 특정 서열과 상보적으로 결합할 경우에만 신호를 방출하는 새로운 형태의 센서 단백질 디자인 방법을 정립하였다. 연구팀은 자연계에 존재하는 녹색 형광 단백질(Green Fluorescent Protein, GFP)의 베타 스트랜드 하나를 제거한 후, 비정형 단백질의 특정 서열이 결합하면 형광 단백질 발색단(chromophore)의 파장 스펙트럼이 변화하는 센서 단백질을 컴퓨터 및 방향적 진화 방법을 이용하여 성공적으로 개발하였다. (그림 1) 연구팀은 대표적 비정형 단백질의 하나로 알츠하이머를 유발하는 세포 내 베타-아밀로이드(β-amyloid)를 검출할 수 있는 센서 단백질을 개발하여 실시간으로 세포막과의 상호작용을 추적하고 영상화할 수 있었다. 기존에는 비정형 단백질을 분석하기 위해 복잡한 여러 단계의 전처리 과정이 필요하였고 이로 인해 비정형 단백질 자체가 크게 변형되어 실제 비정형 단백질의 분석과 기능 연구에 많은 제약이 있었다. 그러나, 이번에 개발된 센서 단백질은 단순히 비정형 단백질과 섞어줌으로써 매우 간편하고 빠르게 비정형 단백질을 검출할 수 있어서 향후 비정형 단백질 분석 및 관련 질병 연구에 크게 기여할 것으로 기대된다. 생명과학과 유태근 박사가 제1 저자로 참여하고 이진수 박사 (허원도 교수 연구실)와 윤정민 박사(송지준 교수 연구실)가 공동으로 진행한 이번 연구는 국제 학술지 '잭스 골드 (JACS Au)'에 지난 10월 26일 자 3권 11호에 출판됐으며, 표지 논문으로 선정됐다. (그림 2) (논문명 : Engineering of a Fluorescent Protein for a Sensing of an Intrinsically Disordered Protein through Transition in the Chromophore State) 제1 저자인 유태근 박사는 “고정된 구조가 없는 비정형 단백질은 일반적 단백질에 비해 센서 단백질의 디자인과 개발이 매우 어려운 표적이었다”라며 “이번 연구가 비정형 단백질의 분석과 관련 병리기전의 연구에 새로운 방법과 전략을 제시할 수 있을 것이다”라고 말했다. 한편 이번 연구는 한국연구재단 기초연구사업과 중견연구자지원사업의 지원을 받아 수행됐다.
2023.12.08
조회수 3333
KAIST, 암세포에만 약물 전달 가능한 클라트린 조립체 개발
암을 부작용 없이 효과적으로 치료하기 위해서는 약물을 암세포에 특이적으로 전달할 수 있는 기술이 필요하다. 단백질로 구성되어 있는 단백질 조립체는 암 치료를 위한 약물 전달에 널리 활용되고 있다. 단백질 조립체를 약물 전달에 이용하기 위해서는 암세포를 인식하는 단백질과 암세포를 사멸시키는 약물을 단백질 조립체에 효과적으로 접합시키는 기술, 즉 기능화(functionalization) 기술이 필수적이다. 그러나, 단백질 조립체의 경우 기능화 과정이 매우 복잡하고, 효율이 낮으며, 대부분 작은 크기의 화학 약물(chemical drug)의 적용에만 한정되어 실제 사용에 많은 제약이 있었다. 우리 대학 생명과학과 김학성 교수 연구팀이 암세포에 특이적으로 약물을 전달할 수 있는 클라트린 조립체를 개발했다고 14일 밝혔다. 생체 내 클라트린이라는 단백질 조립체는 세포 안에서 자가조립(self-assembly)되어 물질을 효율적으로 수송(endocytosis)한다. 클라트린 조립체는 먼저 3개의 중쇄(heavy chain)와 3개의 경쇄(light chain)가 결합하여 트리스켈리온(triskelion)이 만들어지고, 이후 트리스켈리온이 자가조립 되어 형성된다. 연구팀은 이에 착안하여, 암세포에 특이적으로 약물을 전달하기 위해 암세포 인식 단백질과 독소 단백질의 기능화가 용이하도록 클라트린 사슬을 설계하였고, 이를 이용하여 새로운 형태의 클라트린 조립체(clathrin assembly)를 얻었다. (그림 1) 개발된 클라트린 조립체는 원 포트 반응(one-pot reaction)으로 두 종류의 단백질(암세포 인식 단백질과 독소 단백질)을 동시에 높은 효율로 접합시킬 수 있어, 향후 약물 전달, 백신 개발 및 질병 진단 등을 포함한 생물 의학 분야에서 광범위하게 활용될 수 있을 것으로 기대된다. 이번 연구에서는 대표적인 종양 표지자인 상피세포성장인자수용체(EGFR)를 인식하는 단백질을 사용하여, 암세포에 특이적으로 약물을 전달할 수 있었다. EGFR을 인식하는 단백질로 기능화된 클라트린 조립체는 결합증대 효과(avidity effect)로 인해, 기존보다 무려 900배 이상 향상된 결합력을 보였다. 연구팀은 이를 기반으로, 독소 단백질을 연결한 클라트린 조립체를 세포에 처리했을 때, 정상 세포에는 영향이 없으나 암세포만 효과적으로 사멸시킨다는 것을 확인했다. 우리 대학 생명과학과 김홍식 박사가 제1 저자로 참여한 이번 연구는 국제 학술지 `스몰(Small)'에 지난 2월 22일 자 19권 8호에 출판됐으며, 표지 논문으로 선정됐다. (그림 2) (논문명 : Construction and Functionalization of a Clathrin Assembly for a Targeted Protein Delivery) 제1 저자인 김홍식 박사는 "클라트린은 기능화가 어렵고 포유류의 세포로부터 추출해서 얻었기 때문에 실질적인 적용이 제한되었다”라며 “이번 연구에서 새로 설계한 클라트린 조립체는 한 번의 반응으로 서로 다른 두 종류의 단백질로 기능화할 수 있고, 대장균에서 생산 가능하여, 생물 의학 분야에서 광범위하게 활용될 수 있는 단백질 조립체 응용 기술이 될 것이다”라고 말했다. 한편 이번 연구는 한국연구재단 글로벌박사양성사업과 중견연구자지원사업의 지원을 받아 수행됐다.
2023.03.14
조회수 5070
거대 단백질 구조체를 레고 블록 쌓듯 조립하는 기술 개발
우리 대학 생명과학과 김학성 교수와 배진호 박사팀이 거대 (초분자) 단백질을 레고 블록 쌓듯 조립할 수 있는 새로운 기술을 개발했다고 19일 밝혔다. 이 방법으로 단백질 구조체의 크기 및 작용기 수를 원하는 대로 조절할 수 있고 메가 달톤(dalton) 크기의 대칭형 거대 단백질 구조체를 조립할 수 있다. 거대 단백질 구조체는 효율적인 약물 전달, 다양한 백신 개발, 그리고 질병 진단에 활용될 것으로 기대된다. 이번 연구 성과는 국제 저명 학술지인 `어드밴스드 사이언스(Advanced Science)' (IF: 16.806)에 2021년 11월 1일 字 온라인 발표됐다. (논문명: Dendrimer-like supramolecular assembly of proteins with a tunable size and valency through stepwise iterative growth) 자연계에는 매우 다양한 특성과 기능을 갖는 단백질이 존재하며 생명현상을 유지하는데 핵심 역할을 한다. 이러한 단백질 중에는 단량체가 큰 구조체 형태로 조립됐을 때만 정상적 기능을 수행하거나, 어떤 경우에는 조립된 경우가 단량체와 완전히 다른 특성을 나타내며, 심지어는 심각한 질병을 유발하는 경우도 많다. 예를 들어 바이러스의 껍질인 켑시드는 단백질 단량체가 조립(assembly)된 것이고, 치매는 아밀로이드 펩타이드나 타우(tau) 단백질이 파이브릴(fibril) 형태로 조립되면서 발생한다. 따라서, 거대(초분자) 단백질 구조체들의 조립 기작 이해는 단백질의 기능과 질병의 원인 규명 및 치료제 개발에 중요하다. 또한, 단백질 구조체는 뛰어난 생체 적합도 때문에 생명공학 및 의학 분야에서도 응용 가능성이 크다. 현재 많은 연구 그룹에서 자연계에 존재하는 단백질 구조체들의 조립 과정을 모방해 새로운 기능의 단백질 구조체 개발에 많은 연구를 진행하고 있다. 그러나 단백질의 구조적 다양성, 상이한 특성 및 큰 분자량 때문에 원하는 구조체를 자유자재로 조립하는 것은 아직도 어려운 과제로 남아 있다. 김학성 교수 연구팀은 두 종류의 빌딩(building) 블록 단백질을 코어(core) 단백질에 순차적으로 교대로 결합시킴으로써 간편하게 3차원 구조의 대칭형 거대 단백질 구조체를 조립하는 방법을 개발했다(그림 1). 즉, 서로 특이적으로 반응하는 두 쌍의 단백질과 리건드(P1/L1 과 P2/L2)를 이용해 코어(core) 단백질에 두 종류의 빌딩(building) 블록을 순차적, 반복적으로 결합함으로써 크기와 작용 기작 수를 조절하면서 메가 달톤 (Mega Dalton) 크기를 갖는 단백질 구조체를 쉽게 조립하였다. 개발된 구조체는 다양한 분야에 응용 가능하며 하나의 예로서, 이번 연구에서는 단백질 구조체에 박테리아 독소를 결합해 암세포 내로 고효율로 전달할 수 있었고, 결과적으로 암세포를 효과적으로 사멸했다(그림 2). 구조체 단백질의 특징인 다가 효과(avidity effect)로 인해 암 표적에 대한 결합력이 약 1,000배 이상 증가돼 암세포 사멸 효과가 획기적으로 증대됐고 이러한 특성은 백신 개발 및 질병 진단에도 응용될 수 있다. 제1 저자인 배진호 박사는 "이번 연구에서 개발된 거대(초분자) 단백질 구조체 조립 기술은 향후, 약물 전달, 백신 개발, 질병 진단 및 바이오센서 등을 포함한 광범위한 분야에서 새로운 플랫폼 기술로 활용될 수 있을 것ˮ이라고 말했다. 이번 연구는 한국 연구 재단의 중견 연구과제 (NRF-2021R1A2C201421811) 지원을 받아 수행됐다.
2021.11.19
조회수 7587
김학성 교수, 세포 내 단백질 전달 효율 높이는 DNA 기반 나노구조체 개발
우리 대학 생명과학과 김학성 교수, 류이슬 박사 연구팀이 강원대 이중재 교수, 한국원자력연구원 강정애 박사와의 공동 연구를 통해 DNA를 기반으로 나노 구조체를 개발해 세포 속으로의 단백질 전달 효율을 높이는 기술을 개발했다. 이번 연구 결과는 국제 학술지 ‘스몰(Small)’에 2018년 12월 28일일자 표지논문으로 게재됐다. 단백질 치료제는 저분자 화합물에 비해 반응 부위를 구별해내는 특이성이 우수해 차세대 의약품으로 활발히 개발되고 있다. 단백질 치료제가 탁월한 효과를 내기 위해서는 치료용 단백질이 세포 내로 효율적으로 전달되는 기술이 선행돼야 한다. 지금까지는 화학적 합성법 등으로 단백질 전달체를 제작해 왔지만 생체 독성, 낮은 전달 효율, 복잡한 제조공정과 효과가 일관적이지 않은 재현성 등이 해결돼야 할 과제로 남아있다. 연구팀은 생체 분자인 DNA를 기반으로 나노 구조체를 제작해 생체 친화적이면서 특정 세포로의 높은 전달 효율을 보였다. 특히 다양한 단백질을 전달할 수 있는 범용적인 기술로서 폐암 동물 모델에서도 항암 물질을 전달해 높은 항암 효과를 입증했다. 제조공정도 복잡하지 않다. 먼저 금 나노입자 표면에 DNA를 부착한다. 다음으로 징크 핑거를 이용해 각 DNA 가닥에 암세포를 표적하는 생체 분자와 항암 단백질을 결합해 제작했다. DNA와 징크 핑거 간의 상호작용을 이용하므로 DNA 서열과 길이를 조절해 나노 구조체에 탑재되는 단백질의 양을 손쉽게 조절할 수 있다. 김학성 교수는 “생체 적합한 소재인 DNA와 단백질의 상호작용을 이용해 세포 내로 단백질을 효율적으로 전달하는 새로운 나노 구조체를 개발한 것이다”라며, “세포 내 단백질 치료제의 전달뿐 아니라 동반 진단용으로 광범위하게 활용될 것으로 기대된다”라고 말했다. 이번 연구 성과는 과학기술정보통신부‧한국연구재단 기초연구사업(글로벌연구실, 중견연구, 생애첫연구) 지원으로 수행됐다. □ 그림 설명 그림1. small 표지 그림2. 나노 구조체 제조 과정 모식도 그림3. 나노 구조체의 세포 내 단백질 전달 효과 그림4. 나노 구조체의 현미경 관찰 사진
2019.01.21
조회수 11801
김학성 교수, 빛에 의해 스위치처럼 작동하는 단백질 개발
〈 김 학 성 교수 〉 우리 대학 생명과학과 김학성 교수 연구팀이 빛으로 결합력을 제어할 수 있는 결합 단백질을 개발해 빛을 이용한 세포 신호전달 제어에 새 방법을 제시했다. 이는 제한적이었던 기존 광 제어 기술의 한계를 극복해 다양한 세포신호 전달 제어에 활용할 수 있을 것으로 기대된다. 허우성, 최정민 박사가 주도한 이번 연구는 앙케반테 케미(Angewandte Chemie) 6월 27일자 온라인 판에 게재됐다. 빛을 이용한 세포의 신호전달 조절은 물리, 화학적 방법보다 비 침습적이고 빠르기 때문에 신호전달 연구에 효과적으로 활용 가능하다. 그러나 지금까지는 자연에 존재하는 광 스위치 단백질에 의존했기 때문에 이 단백질들을 각각의 신호전달 조절에 맞도록 다시 설계해야 하는 복잡하고 힘든 과정으로 인해 응용이 극히 제한됐다. 최근에는 합성된 광스위치 분자를 단백질에 결합시켜 빛에 따라 그 기능을 조절하려는 연구가 진행됐다. 그러나 이 경우 빛에 따라 스위치처럼 작동하는 단백질의 설계방법이 단백질 종류에 따라 다르고 복잡하다는 한계가 있었다. 연구팀은 LRR(Leucine-rich repeat) 단백질을 기반으로 아조벤젠 유래 광 스위치 분자를 합리적 방법으로 단백질 모듈에 결합시켰다. 이를 통해 빛으로 단백질의 구조변화를 유도해 표적에 대한 결합력을 조절했다. 또한 빛에 의한 상피세포 성장인자 수용체(EGFR, epithelial growth factor receptor)에 대한 결합력 조절이 가능한 단백질을 개발하고, 이를 이용해 세포 내 EGFR 신호 전달을 빛으로 조절할 수 있음을 증명했다. 연구팀은 LRR 모듈로 구성된 단백질의 구조 특성을 기반으로 광스위치 분자를 반복 모듈 사이에 결합시켜 빛으로 표적에 대한 결합력이 효과적으로 조절되는 단백질의 합리적 설계 방법을 개발했다. 이는 다양한 표적에 대해 결합하는 LRR 단백질에 광범위하게 적용할 수 있는 기반 기술로, 빛을 이용한 세포 내 다양한 신호 전달 조절에 활용할 수 있는 새로운 단백질 창출 방법을 제시한 것이다. 이번 연구는 한국연구재단의 글로벌연구실사업(GRL)과 중견연구자지원사업을 통해 수행됐다. □ 그림 설명 그림1. LRR 단백질 기반으로 합리적 설계를 통해 광스위치 단백질 개발 및 이를 이용한 세포 신호전달 조절
2018.08.13
조회수 11188
DNA 결합 단백질을 이용한 나노입자 클러스터 제작 기술 개발
우리 학교 생명과학과 김학성 교수와 류이슬 박사는 DNA 주형에 서열 특이적으로 결합하는 징크 핑거 (Zinc Finger) 단백질을 이용하여 크기 조절이 가능한 자성 나노 입자 클러스터 (Nanoparticle Clusters; NPCs)의 제작 방법을 새롭게 개발하여 국제적 권위의 학술지인 ‘앙게반테 케미 (Angewandte Chemie International Edition)’ 온라인 판에 발표하였다(2014년 11월 25일). 나노 입자 클러스터 구조체는 자성 나노 입자, 금 나노 입자, 양자 점과 같은 직경이 1~100 나노미터 (10-9 미터) 단위인 나노 입자들이 모여서 이루는 구조체를 말한다. 이 구조체는 단일 나노 입자와는 다른 독특한 집단적 특성을 가진다는 점에서 주목을 받고 있다. 구체적으로, 결합 플라즈몬 흡광도, 입자 간 에너지 전달, 전자 전달 및 전도성과 같은 광학적이거나 물리적인 성질이 다르다. 이러한 특성으로 인해 나노 입자 클러스터는 바이오 및 의료 분야 뿐 만 아니라 나노 전자 (nanoelectronic) 또는 나노플라즈몬 (nanoplasmon) 기기에 적용가능성이 매우 높다. 나노 입자 클러스터가 새로운 특성을 잘 나타내기 위해서는 클러스터의 크기와 조성이 정교하게 조절되어야 한다. 그러나, 기존의 방법은 주로 화학적인 결합에 의존하였기 때문에 복잡한 단계가 필요하고 크기와 조성을 조절하기 어렵다. 김 교수팀은 DNA 결합 단백질인 징크 핑거(Zinc Finger)를 이용하여 간단하고 용이하게 원하는 크기의 자성 나노 입자 클러스터를 제조하는 방법을 개발하였다. 징크 핑거 단백질은 DNA에 결합하는 단백질의 일종으로 구조상에 징크 이온 (Zinc ion)을 가지고 있으며 DNA 서열을 특이적으로 인식하여 결합하는 특성을 갖고 있다. 이러한 징크 핑거의 특성을 이용한 나노 입자 클러스터의 제작은 기존의 방법보다 생체 친화적이며 나노입자 클러스터의 크기와 조성이 잘 조절된다. 연구 결과 김 교수팀은 세 가지 길이가 다른 DNA를 주형으로 하여 징크 핑거 단백질을 이용하여 크기가 다른 자성 나노 입자 클러스터의 선형 구조체를 제작하였고, 만들어진 나노 입자 클러스터는 DNA 주형의 길이에 따라 크기와 형태가 잘 조절됨을 확인하였다. 제작된 자성 나노 입자 클러스터는 기존 MRI 조영제인 페리덱스 (Feridex)에 비해 3배 정도 향상된 T2 이완률 (T2 relaxation rate)을 보여주었고 특정 세포 내로 잘 전달되었다. 이러한 연구 결과는, 자성 나노 입자가 MRI 조영제, 형광 이미징, 약물전달 등 바이오 및 의료 분야에 활용 가능함을 보여준다. 김 교수팀의 연구는 단백질과 DNA의 특이적 결합 특성을 이용하여 무기물 나노 입자 (inorganic nanoparticle)의 초분자 집합체 (supramolecular assembly)를 간편하게 제작하는 새로운 방법으로 다른 나노 입자에 광범위하게 응용가능하며 향후 질병 진단과 이미징, 또는 약물 및 유전자 전달등 의 분야에 크게 활용될 것으로 기대된다. 그림 1. DNA 결합 단백질인 Zinc Finger를 이용한 나노입자 클러스터의 제작 모식도 그림 2. DNA 길이에 따른 자성 나노 입자 클러스터의 크기를 보여주는 전자투과현미경 사진
2014.11.26
조회수 13980
인공항체 기반 암 치료제 후보 개발
- 생명과학과 김학성 교수, Molecular Therapy에 표지 논문으로 발표 - 인공 항체 골격인 리피바디 기반 폐암 치료제 후보 개발- 리피바디 기반 단백질 신약 개발 가능성을 입증 우리 학교 생명과학과 김학성 교수는 충남대 의과대학 조은경 교수와 공동으로 인공 항체인 리피바디(Repebody) 기반 암 치료제 후보를 성공적으로 개발, 연구결과를 분자 치료(Molecular Therapy) 7월 호에 표지 논문으로 게재됐다. 김 교수팀은 암 유발 인자인 인터루킨-6 (Interleukin-6)와 강하게 결합하는 인공 항체인 리피바디를 개발했다. 또 리피바디가 비소 세포 폐암 동물 모델에서 암세포의 증식을 획기적으로 억제한다는 것을 확인했다. 많은 다국적 제약사 및 생명공학 기업들이 낮은 부작용과 높은 치료 효능을 갖는 단백질 치료제 개발에 천문학적인 연구비를 투자하고 있고 현재 20종 이상이 임상에 사용되고 있으며 100 여 종 이상이 임상실험 중이다. 이 중 항체 기반 치료제가 다수를 차지하고 있으며 많은 집중 투자가 진행되고 있다. 그러나 항체는 생산 비용이 매우 비싸고 큰 분자량과 복잡한 구조적 특성 때문에 설계가 어려우며 개발에 많은 시간과 비용이 소요된다. 이러한 기존 항체 기반 치료제의 한계점을 극복하고자, 김 교수팀은 신규 인공 항체 골격인 리피바디를 성공적으로 개발했다.(PNAS게재, 2012) 이를 기반으로 암 유발 인자인 인터루킨-6에 특이적으로 강한 결합력을 갖는 비소 세포 폐암 치료제 후보를 개발하는데 성공했다. 인터루킨-6는 면역 및 염증 관련 신호에 중요한 생체 내 물질로서, 비정상적으로 과 발현되는 경우에는 다양한 발암 경로를 활성화시켜 종양의 증식 및 전이를 촉진하는 것으로 알려져 있다. 이러한 중요성 때문에, 다국적 제약 업체들은 인터루킨-6에 의한 신호 전달을 억제할 수 있는 치료제 개발에 많은 연구를 집중하고 있다. 이번 연구에서 김 교수팀은 리피바디가 반복 모듈로 구성된 점에 착안, 질병 타겟에 대해 결합력을 효과적으로 증대시킬 수 있는 모듈 기반 친화력 증대 기술을 개발했다. 개발된 치료제 후보는 세포 및 동물 실험에서 낮은 면역원성과 비소세포 폐암의 증식을 탁월하게 억제한다는 것으로 확인됐다. 이와 함께 인터루킨-6와의 복합체 구조를 밝혀 리피바디의 작용기작을 규명해 치료제 개발 가능성을 입증했다. 김 교수팀은 현재 비 소세포 폐암 동물을 대상으로 임상 진입을 위한 전 임상 실험을 수행하고 있으며 향후 임상 시험을 통해 안정성 및 치료 효능을 입증해 단백질 신약으로 개발할 계획이다. 김 교수팀은 본 연구를 통해 인공항체 골격인 리피바디를 기반으로 단백질 신약을 개발할 수 있다는 것을 확인했고, 향후 국내의 단백질 신약 및 생명공학 산업 발전에 크게 기여할 것으로 기대하고 있다. 이번 연구결과는 미래창조과학부가 주관하는 미래 유망 파이오니어 사업의 지원을 받아 수행됐다. 그림 1. Molecular Therapy 7월 호 표지 논문 선정 그림 2. 동물 모델을 통한 리피바디의 암 성장 억제 효능 입증
2014.07.09
조회수 18126
단백질의 생체분자에 대한 결합력 조절기작 규명
우리 학교 생명과학과 김학성 교수와 서문형 박사 연구팀은 단백질이 생체 내 분자를 인식하고 기능을 수행하는데 중요한 단백질의 생체분자에 대한 결합력을 조절하는 메커니즘을 새롭게 밝혀냈다 . 연구 결과는 과학 분야의 권위지인 ‘ 네이처 커뮤니케이션즈 (Nature Communications)’ 24일자 온라인판에 게재됐다. 연구팀은 지난해에 단백질의 생체분자 인식 메커니즘을 최초로 밝혀내 Nature Chemical Biology 에 발표한데 이어 , 이번 연구를 통해 단백질이 생체분자에 대한 결합력을 조절하는 핵심 원리를 규명함으로써 생체 내 단백질의 기능과 조절 기작을 보다 명확하게 이해하는 데 크게 기여할 것으로 전망된다 . 효소나 항체 , 호르몬 등으로 대표되는 단백질은 모든 생명체 내에서 다양한 생체 분자를 특이적으로 인식하여 신호전달 , 면역반응 등을 정교하게 진행시켜 생명현상을 유지하고 조절하는데 가장 중요한 역할을 담당한다 . 이런 과정에서 단백질이 생체분자에 대한 결합력은 두 분자 사이의 결합지속 시간이 정해지고 , 단백질의 생체 내 기능을 결정하고 조절하는 핵심 요인이다 . 이번 연구 결과를 바탕으로 단백질 활성을 보다 정교하게 조절하는 것이 가능해질 것으로 예상된다 . 연구팀은 단백질들이 생체분자를 인식하는 과정에서 , 단백질의 생체분자에 대한 결합력은 두 분자 사이의 비 공유 상호작용의 크기뿐만 아니라 단백질의 고유한 동역학적 성질도 긴밀하게 연관되어 있다는 점에 주목했다 . 김 교수 연구팀은 단백질의 생체분자에 대한 결합력을 결정하는 기본 기작을 규명하기 위해 , 단백질의 allosteric site 에 돌연변이를 가하여 동일한 화학적 접촉면을 가지고 있지만 수십 배에서 수백 배의 결합력 차이를 보이는 다양한 돌연변이 단백질을 제작하였다 . 단백질의 allosteric site 는 생체분자와 직접 결합하는 부위는 아니지만 생체 분자 인식에 영향을 미치는 부위를 지칭한다 . 제작된 돌연변이 단백질들의 고유한 동역학적 성질을 단 분자 수준에서 실시간으로 분석하여 , 생체분자에 대한 결합력이 단백질의 고유한 동력학적 특성인 구조 열림 속도에 직접적으로 연관되어 있음을 밝혀냈다 . 또한 , 단백질이 생체 분자와 직접 결합하는 부위가 아닌 allosteric site 에서 단백질의 고유한 특성을 변화시킬 수 있음을 증명함으로써 , 생체 내 단백질들의 기능을 조절하는 새로운 방법론을 제시하였다 . 연구팀의 이번 결과는 다양한 생명현상을 관장하는 단백질의 특성을 보다 깊이 이해하는데 큰 역할을 하였으며 , 단백질의 생체분자에 대한 결합력을 결정하는 원리를 단백질의 동력학적 관점에서 입증한 것으로 평가되고 있다 . 김 학성 교수는 이번 연구에 대해 “ 지금까지는 단백질의 생체분자에 대한 결합력은 두 분자 사이의 직접적인 상호작용에 의해 결정되는 것으로 알려져 왔지만 , 본 연구를 통해 단백질의 고유한 동력학적 특성 , 즉 구조 열림 속도도 결합력을 결정하는 데 핵심적인 역할을 한다는 새로운 사실을 밝힌 것이 큰 의미가 있다 ” 라고 의의를 밝혔다 . 그림 1. 단백질의 안정한 상태인 열린 구조 (open) 와 불안정한 상태인 부분적으로 열린 구조 (partially closed) 사이의 전환 속도 (kopening; opening rate) 와 결합력 (Kd) 사이의 상관관계 그래프
2014.04.25
조회수 16717
단백질의 생체분자 인식 메커니즘 규명
- “단백질이 생체분자를 인식하고 결합하는 기작을 규명해 50년 동안의 수수께끼 풀었다” - - 생명현상의 이해와 효능이 높은 치료제 개발에 활용 가능성 기대 - 우리 학교 생명과학과 김학성 교수가 서울대학교 물리학과 홍성철 교수와 공동으로 단백질이 생체 내 분자를 인식하고 결합하는 메커니즘을 규명했다. 연구 결과는 생명과학분야의 권위지인 ‘네이처 케미컬 바이올로지(Nature Chemical Biology)’ 3월 18일자 온라인 판에 발표됐다. 단백질이 생체분자를 인식하고 결합하는 메카니즘을 밝혀낸 이번 연구로 인해 단백질의 조절기능을 보다 정확하게 파악할 수 있게 돼 앞으로 복잡한 생명현상을 이해하는데 핵심적인 역할을 할 것으로 기대된다. 이와 함께 단백질의 생체분자 인식은 각종 질병의 발생과도 밀접하게 연관돼 있어 향후 효능이 높은 치료제 개발에도 기여할 것으로 전망된다. 핵산, 단백질 등으로 알려진 생체분자는 생물체를 구성하거나 생물의 구조, 기능, 정보전달 등에도 꼭 필요한 물질이다. 특히, 단백질은 생체분자를 특이적으로 인지하고 결합하면서 모든 생명현상을 조절해 생명현상을 유지하는데 가장 중요한 역할을 한다. 단백질의 생체분자 인식에 오류가 발생하면 비정상적 현상으로 각종 질병이 유발되기도 한다. 연구팀은 단백질이 다양한 구조를 갖는데 구조적으로 가장 안정한 ‘열린 구조’와 상대적으로 불안정한 ‘부분 닫힘 구조’를 반복한다는 점에 주목했다.김 교수 연구팀은 단백질의 생체분자 인식 메커니즘을 설명하기 위해 생체분자가 결합하면서 단백질의 구조가 변하는 현상을 단 분자 수준에서 실시간으로 분석했다. 연구결과 생체분자는 가장 안정된 구조의 단백질을 주로 선호하며 결합과 동시에 단백질을 가장 에너지 수준이 낮은 안정된 구조로 변화시킨다는 사실을 세계 최초로 규명했다. 이와 함께 생체분자는 불안정한 ‘부분 닫힘 구조’에도 결합해 단백질 구조를 변화시킨다는 사실도 밝혀냈다. 연구팀의 이번 결과는 단백질의 생체분자 인식 메커니즘을 설명하기 위해 현재까지 제안된 모델인 단백질이 생체분자와 결합하면서 구조가 변한다는 ‘유도형 맞춤 모델’과 단백질의 다양한 구조 중에서 최적의 하나만을 선택적으로 인지한다는 ‘구조 선택 모델’에 대해 처음으로 실험을 통해 완벽히 입증해 낸 것으로 학계는 평가하고 있다. 김학성 교수는 이번 연구에 대해 “생체분자가 존재하는 경우 단백질의 구조 전환 속도가 변하는 현상을 단 분자 수준에서 분석해 단백질의 생체분자 인식 메카니즘을 처음으로 직접 증명한 것”이라며 “생물 교과서에 50년 동안 가설로만 인식되어지던 것을 세계 최초로 실험으로 증명해 풀리지 않을 것만 같았던 수수께끼를 풀어냈다”고 의의를 밝혔다. 그림1. 열린 구조와 부분적으로 열린 구조를 갖고 있는 단백질이 생체분자를 인지하고 결합하는 양상 그림2. 단백질의 다양한 구조 중에서 가장 안정한 상태인 열린 구조(open form)에 생체분자(ligand) 가우선적으로 결합해 더욱 안정한 완전히 닫힌 구조(closed form)로 변함. 또한 단백질의 불안정한 구조(partially closed form)에도 생체분자가 결합해 완전히 닫힌 구조로 변하게 함.
2013.03.21
조회수 14709
순수 국내기술로 단백질 신약 개발한다!
- KAIST 김학성 교수, 의약품 원료로 사용되는 인공항체 개발 성공 - - PNAS(미국국립과학원회보)에 2월 10일 발표 -의약품 원료로 사용되는 인간유래 항체를 대체할 수 있는 인공항체가 국내연구진에 의해 개발됐다. 가격은 현재보다 1/100수준으로 저렴하면서 개발이 훨씬 쉬워 개발기간은 기존 10년에서 5년 이내로 크게 단축될 것으로 기대된다. 우리 학교 생명과학과 김학성 교수가 바이오 및 뇌공학과 김동섭 교수와 공동으로 항체가 아닌 단백질을 재설계해 대장균에서 대량생산할 수 있는 인공항체개발에 성공했다. 개발된 인공항체는 항원과의 결합력, 생산성, 면역원성, 구조설계성 등이 용이해 장점만 갖춘 이상적인 단백질로 평가받고 있으며, 현재 치료제의 원료나 진단, 분석용으로 사용중인 항체를 그대로 대체 가능하다. 따라서 세계시장 규모가 192조원에 이르는 단백질 의약품 분야에서 앞으로 순수 국내기술로 개발된 단백질 신약이 세계시장을 주도할 수 있을 것으로 전망된다. 의약품 원료로 병원에서 사용되고 있는 기존의 항체는 치료제뿐만 아니라, 분석, 진단용 등 생명공학 및 의학 분야에서 광범위하게 활용되고 있다. 그러나 동물세포 배양을 포함해 복잡한 생산 공정을 통해 제조되기 때문에 1mg에 100만원 정도로 가격이 매우 비싸다. 또 대부분의 항체는 이미 해외 선진국의 특허로 등록돼 있어 비싼 로열티를 지불해야 한다. 이 때문에 우리나라를 포함한 많은 국가에서 이미 특허가 만료된 항체 의약품을 복제하는 바이오시밀러를 개발하는데 집중하고 있고, 질병에 대한 단백질 신약개발 분야는 선진국에 한참 뒤처지는 실정이다.김 교수팀은 먹장어나 칠성장어와 같은 무악류에 존재하는 단백질은 항체는 아니지만 항체처럼 면역작용을 한다는 사실에 착안해 이 분야 연구를 시작했고 마침내 인공항체 개발에 성공했다. 인공항체는 대장균에서 대량생산이 가능해 현재보다 1/100 수준의 싼 가격으로 만들 수 있으며, 모듈구조로 되어 있어 목적에 따라 자유롭게 구조 설계가 가능해 5년 내에 단백질 신약으로 개발 가능한 게 큰 특징이다. 이와 함께 단백질 신약개발에서 중요한 항원과의 결합력을 쉽게 조절할 수 있어 치료 효과가 높고 부작용이 적으며, 열과 pH(수소이온농도)에 대한 안정성이 매우 높고, 면역반응을 유도할 수 있는 면역원은 무시할 만한 수준으로 낮아 단백질 신약으로의 개발 가능성이 매우 높다. 연구팀이 개발한 인공항체 기술은 세포 분석을 통해 폐혈증과 관절염 치료제로서의 후보군으로 효과를 입증했으며 곧 동물실험을 수행할 예정이다. 김학성 교수는 “기존 항체는 항원과 결합하는 면적이 제한적이어서 결합강도를 높이는 것과 구조 설계가 매우 어려운 단점이 있다”며 “장점만을 갖춘 이상적인 특성의 인공항체는 현재 의약품 원료로 사용되는 항체를 대체할 수 있는 순수 국내 기술로 만들어진 단백질 신약이 될 것”이라고 말했다. 아울러 “개발된 인공항체 단백질 골격과 단백질 설계 기술은 생명공학 및 의학 분야에서 치료, 진단, 분석용 등으로 광범위하게 활용될 것으로 기대 된다”고 덧붙였다. 한편, 이 연구결과는 세계적 학술지인 미국국립과학원회보(PNAS) 2월 10 일자에 발표됐으며, 교육과학기술부가 주관하는 미래 유망 파이오니어 사업의 지원을 받아 수행됐다. <용어설명>○ 항원: 체내에 유입된 외부 물질로 이물질로 인식되어 항체를 생성하는 면역 반응을 유발함 ○ 항체: 항원에 특이적으로 결합하여 이를 제거하거나 무력화시키는 면역 관련 단백질 ○ 면역원성: 사람이나 동물의 체내에 접종되었을 때, 면역 반응을 유발할 수 있는 항원으로서의 특성 ○ 바이오시밀러: 치료 효능이 있는 항체나 호르몬 등을 의미하는 특허가 만료된 단백질 의약품의 복제약품 ○ 무악류: 고생대 전기의 초기 어류로서 위, 아래 양 턱이 발달하지 않은 척추동물로 칠성장어와 먹장어가 대표적임 ○ 모듈구조: 특정 단백질에서 반복적으로 존재하는 최소 구조적 단위인 모듈에 의해 형성되는 전체 단백질의 구조형태 ○ 대장균: 사람이나 동물의 대장에 많이 서식하는 장 내 세균으로, 생명 공학에서는 단백질의 대량 생산에 주로 이용됨 그림1. 사람 항체의 구조. 분자량(150Kda)이 커서 세포내로 침투할 수 없으며 서로 뭉쳐 치는 경향이 커서 쉽게 활성을 잃는다. 그리고 항원과 결합하는 면적이 제한적이어서 결합 강도를 높이는 것과 합리적 설계가 매우 어려운 단점이 있다. 그림2. 기존 항체 치료제의 한계를 근본적으로 극복할 수 있는 새로운 비항체 인공항체 단백질. 반복 모듈기반의 인공항체 단백질은 설계 및 구조 예측이 용이하고, 높은 안정성을 갖으며, 결합 면적 및 크기의 조절이 용이하다. 그림3. 연구팀이 개발한 인공항체가 질병유발 인자인 항원과 결합한 모습 그림4. 개발된 인공항체의 3차원 구조
2012.02.13
조회수 16856
생명과학과 김학성 교수, 사이언스誌에 논문 발표
“생명요소인 단백질도 설계, 제조한다” - 단백질의 자연 진화과정을 밝혀 신 기능 단백질 설계 기술 개발 - 의약용 단백질 및 산업용 효소 창출 등 생명공학 분야에서 광범위하게 활용될 수 있는 기반 기술 - 사이언스誌에 중요 논문 중 하나로 소개 : 별도“Perspective"란에 자세한 연구 내용 설명 KAIST 생명과학과 김학성(金學成, 48) 교수 / 박희성(朴熙成, 35) 박사팀이 개발한 ‘신 기능 단백질 설계 기반 기술’이 세계적 학술지인 사이언스 誌에 1월 27일자로 발표했다. “기존에 존재하는 단백질 골격을 이용한 신 기능 단백질의 설계와 창출 (Design and evolution of new catalytic activity using an existing protein scaffold)“이라는 제목으로 발표되는 이 기술에 대해 사이언스誌는 별도의 “Perspective"란에 연구 내용을 자세히 설명하여, 그 중요성과 파급 효과를 강조하고 있다. 金 교수팀은 자연계에서 단백질이 진화해온 복잡한 과정을 단순화시켜 새로운 기능을 가진 단백질을 효율적으로 설계하고 제조하는 기반 기술을 개발하였다. 이 기술은 의약용 단백질 및 산업용 효소의 개발 등 생명공학 분야에서 광범위하게 활용될 수 있으며 바이오기술(BT)의 산업화라는 점에서 주목된다. 생물체내에는 5만 종류 이상의 다양한 기능을 수행하는 단백질이 존재한다. 자연 진화 과정에서 생성된 다양한 단백질들은 기존 유전자의 염기서열이 변형된 것뿐만 아니라 임의의 길이나 염기서열을 갖는 유전자 조각들이 오랜 시간에 걸쳐 삽입, 제거, 재조합 등의 복잡한 과정의 단계를 거쳐서 만들어진 것으로 밝혀지고 있다. 단백질은 20개의 아미노산으로 구성된 고분자물질로 생명체가 살아가는데 필수적인 역할을 수행한다. 예를 들어 p53 이라는 단백질은 암을 억제하는 기능을 하고, 많은 효소는 우리가 섭취한 음식물로부터 우리 몸에 필요한 복잡하고 다양한 물질과 에너지를 효율적으로 생산하는 역할을 한다. 이러한 단백질은 의약용, 치료용 혹은 산업용으로 광범위하게 사용되고 있다. 특히, 단백질의 일종인 효소(Enzyme)는 최근 선진국을 중심으로 대대적인 연구개발 및 산업화가 추진되고 있는 화이트 바이오테크(White Biotech)분야의 핵심으로 부각되고 있다. 세계적 화학기업, 제약기업, 생명공학 기업들이 산업 목적에 맞는 효소의 개발에 집중적으로 투자하고 있다. 그러나 대부분의 단백질은 특이성, 리간드와의 친화성, 안정성, 활성 등이 실제 의약용이나 산업적으로 사용하기에는 많은 한계점을 가진다. 이를 해결하기 위해 목적에 맞는 특성이나 새로운 기능을 지닌 단백질을 설계하고 창출하는 연구가 지속적으로 진행되어 왔지만 아직까지 만족할 만한 연구 결과는 보고되지 않았다. 金 교수팀은 생물체내에는 수많은 종류의 단백질이 존재하지만 기본적인 골격의 수는 한정되어 있어 서로 다른 기능을 수행하는 단백질들의 경우라도 그 골격은 유사하거나 동일한 경우가 많다는 점에 착안, 새로운 기능을 가진 단백질 설계에 필요한 요소를 기존의 단백질 골격에 동시에 조합적으로 삽입함으로써 신 기능 단백질을 제조할 수 있는 기술을 성공적으로 개발할 수 있었다. 개발된 신 기능 단백질 설계 기술은 앞으로 새로운 단백질 의약품 개발, 산업용 효소 개발, 합성 생물학, 화이트 바이오테크놀러지(White Biotechnology), 생유기 합성 및 단백질 공학 분야에서 광범위하게 활용되어 생명공학의 산업화에 크게 기여할 것으로 기대된다. 또한, 이번 연구결과는 자연계에서 단백질이 어떠한 진화 과정을 거쳐 현재와 같은 다양한 단백질이 존재하게 되었는지에 대한 중요한 해답을 주고 있어 기초 생명과학 분야에서도 매우 획기적인 연구결과로 인식되고 있다. 사이언스誌 투고의 주역인 金 교수는 최근 국제공학회(ECI)에서 주관하는 국제학술대회인 제 18차 효소공학 학술대회(Enzyme Engineering)를 지난해 10월 국내에 유치하여 성공적으로 개최하는 등 국제적으로도 활발한 활동을 펼치고 있다.
2006.01.27
조회수 21766
김학성 오은규 연구팀 나노 입자 이용한 단백질 상호작용 분석기술 개발
상호작용 분석을 위한 다양한 특성의 금 나노입자 제조 기술도 함께 확보 두가지 나노 입자 사이의 물리적 특성변화를 이용, 서로 다른 단백질간의 상호작용을 고감도, 초고속으로 분석하는 기술이 KAIST 연구진에 의해 개발됐다. KAIST 생명과학과 김학성(金學成, 48, 교수), 오은규(吳恩圭, 34, 박사과정) 연구팀은 서로 다른 색상의 형광을 내는 두 개의 나노입자가 10나노미터 이내로 가까워지면 그 사이에 에너지 전달이 생겨, 각자의 형광스펙트럼이 달라지는 현상인 FRET(형광공명에너지전이) 방식을 이용, 단백질의 상호작용을 분석하는 시스템을 세계 최초로 구현했다고 밝혔다. 또한 金 교수팀은 수용액에서 안정성이 좋고 단백질 결합이 용이한 표면을 지닌 금 나노입자 제조기술도 함께 개발했다. 10나노미터 이하의 금속나노입자를 이용, 표적물질의 스크리닝, 세포 이미징, 단백질 상호작용 분석 등에 활용하는 기술이 최근 생명공학 분야에서 주목받고 있다. 특히 단백질 상호작용을 고감도, 초고속으로 분석하는 기술은 각종 질병의 진단, 의약품의 개발, 생명현상의 규명 등에 매우 중요하기 때문에 수많은 연구개발이 진행되고 있다. 기존의 연구개발은 주로 단일나노입자를 만들어 여기에 단백질 등의 바이오물질을 붙이는 기술에 집중되어 왔지만, 金 교수팀은 FRET 방식을 이용, 서로 다른 나노입자의 물리적 특성변화를 이용해 단백질 상호작용에 대한 분석이 가능하게 만들었다. 이 기술은 앞으로 질병진단, 의약품 개발, 세포내 단백질 상호작용 규명 등에 활용될 수 있는 기반 기술로, 국내외에 특허출원하였고 관련연구는 미국 화학회지(JACS) 인터넷판에 최근(2.19) 발표되었다. 위 사진 : 금 나노입자와 반도체 양자점을 이용한 inhibition assay(저해물질 분석) 도면 (사진2) 크기에 따라 다른 색상을 띠는 금 나노입자좌1. 금염수용액 고유의 노란색, 나머지 8개 샘플. 금염수용액으로부터 다양한 크기로 제조된 금 나노입자 (사진3) 좌. 금염과 리간드가 단순히 섞여있는 용액 / 우. 좌로부터 형성된 금 나노입자
2005.02.23
조회수 22211
<<
첫번째페이지
<
이전 페이지
1
>
다음 페이지
>>
마지막 페이지 1