본문 바로가기
대메뉴 바로가기
KAIST
연구뉴스
유틸열기
홈페이지 통합검색
-
검색
메뉴 열기
%EB%B0%95%EC%B0%AC%EB%B2%94
최신순
조회순
태양빛과 전기를 이용한 미세플라스틱 업사이클링 구축
우리 대학 신소재공학과 박찬범 교수 연구팀이 네덜란드 델프트 공과대학교(TU Delft) 프랭크 홀만(Frank Hollmann) 교수팀과의 협력을 통해 태양빛과 전기에너지를 이용해 *미세플라스틱(microplastic)을 화학연료로 변환하고, 미세플라스틱 *업사이클링(upcycling)과 생체촉매 반응을 접목해 다양한 고부가가치 화합물을 생성하는 데 성공했다고 17일 밝혔다. *미세플라스틱(microplastic): 5 mm 이하의 플라스틱 *업사이클링(upcycling): 업그레이드와 리사이클링의 합성어로, 폐기물을 새로운 활용가치를 가진 것으로 재탄생시키는 것을 지칭. 우리말은 새활용. 관련 연구는 국제학술지 `네이처 신세시스 (Nature Synthesis)' 10월호 표지논문으로 게재됐다 (논문명: Photoelectrocatalytic biosynthesis fueled by microplastics). 플라스틱(plastic)은 현대 생활에서 필수적인 재료로, 매년 약 3억 9천만 톤이 전 세계적으로 생산되고 있다. 최근 코로나바이러스(coronavirus) 대유행 때문에 포장재와 개인 보호 장비의 사용이 증가해 플라스틱 수요가 더욱 증가했다. 하지만, 대부분의 플라스틱 폐기물은 소각되거나 자연환경에 매립하는 방식으로 처리되고 있어 환경적/경제적 문제를 일으키고 있다. 또한, 이 과정에서 생성되는 미세플라스틱은 생체에 축적되기 때문에 생태적 위협이 되고 있다. 신소재공학과 김진현 박사과정이 제1 저자로 참여한 이번 연구에서는 태양에너지와 전기에너지를 이용해 미세플라스틱을 업사이클링하는 광전기화학 방식을 구축했다. 연구팀은 자연에 널리 존재하는 헤마타이트(hematite)를 광촉매로 이용해 폴리에틸렌 테레프타레이트(polyethylene terephthalate) 미세플라스틱을 포름산염(formate)과 아세트산염(acetate) 화학연료로 전환했다. 또한, 연구팀은 *분광학 및 (광)전기화학적 분석을 통해 헤마타이트의 *광여기홀(photoexcited hole)이 해당 업사이클링 반응에 핵심적이라는 과학적 원리를 밝혔다. 연구팀은 더 나아가, 스타벅스와 코카콜라 회사의 플라스틱 용기에서도 동일한 재활용 반응이 일어났다는 것을 입증해 해당 시스템의 실생활 적용 가능성을 확립했다. *분광학: 분자나 재료에 의한 빛의 흡수, 복사를 분석해 물질의 특성을 파악하는 학문 *광여기홀: 빛에 의해 원자가띠에 존재하던 전자가 전도띠로 전이되면서 생성되는 준입자 또한 연구팀은 플라스틱 업사이클링 광촉매반응을 여러 생체촉매 반응과 연합했다. *산화환원 효소(redox enzyme)를 활성화하는 기존의 광전기화학 시스템은 *물 산화 반응(water oxidation reaction)에 의존했다. 그러나 물 산화 반응은 속도가 느리고 경제적으로 가치가 낮은 산소를 생성한다는 문제가 있었다. 연구팀은 물 산화 반응보다 플라스틱 업사이클링 반응이 더 빠르다는 것을 이용해 산화환원 효소의 반응을 가속했을 뿐만 아니라 양극과 음극에서 동시에 고부가가치 화합물(*키랄성 화합물, 의약물질 중간체, 화학연료 등)을 생성하는 데 성공했다. *산화환원 효소(redox enzyme): 전자를 얻거나 잃는 방식으로 화학 반응을 가속화시키는 효소 *물 산화 반응(water oxidation reaction): 물에서 전자를 추출하는 산화 반응 *키랄성 화합물: 왼손과 오른손처럼 구조와 모양이 똑같이 생겼지만 마치 거울에 비친 듯이 반대 방향을 향하고 있어 서로 겹쳐질 수 없는 분자 박찬범 교수는 "이번 연구는 환경 문제를 해결하면서 지속가능한 태양-화학에너지 전환을 위한 광 전기화학적 방식을 제시했다는 것에 의의가 있다ˮ면서, "미세플라스틱을 더 빠르게 업사이클링(새활용)할 수 있는 광촉매를 개발하고, 여러 종류의 플라스틱을 새활용할 수 있는 방안을 찾을 계획ˮ이라고 밝혔다. 한편 이번 연구는 과학기술정보통신부 리더연구자지원사업(창의연구)과 한국연구재단 글로벌박사 양성사업의 지원을 받아 수행됐다.
2022.10.17
조회수 6611
저주파 자기장 반응성 나노입자 개발해 알츠하이머 원인물질 분해 성공
우리 대학 신소재공학과 박찬범 교수 연구팀이 저주파 자기장 반응성 나노입자를 개발하는 데 성공했다고 16일 밝혔다. 연구팀은 이를 이용해 알츠하이머질환을 유발하는 베타-아밀로이드 펩타이드(아미노산 화합물) 응집체를 자기장으로 분해할 수 있다고 밝혔다. 신소재공학과 장진형 박사과정이 제1 저자로 참여한 이번 연구는 국제학술지 `사이언스 어드밴시스(Science Advances)' 5월 13일 字에 게재됐다. (논문명: Magnetoelectric dissociation of Alzheimer's β-amyloid aggregates) 자기 전기(Magnetoelectric) 소재는 자성과 전기성이 결합한 물성을 가지며 스핀트로닉스(Spintronics) 소자, 트랜스듀서(Transducer) 등 다양한 전자기기를 구성하는 핵심 물질이다. 그러나 자기 전기 소재는 원자 내 전자의 회전과 궤도 운동을 방해하는 양성자의 정전기적 상호작용(스핀-오빗 상호작용)으로 인해 성능 향상에 한계를 지닌다. 연구팀은 자기 전기 소재의 일종이며, 반도체 및 배터리 분야에 주로 쓰이는 코발트 페라이트(Cobalt ferrite)와 비스무스 페라이트(Bismuth ferrite)를 코어쉘(Core-shell) 구조로 접합시킴으로써 이종(Heterogeneous) 자기 전기 나노입자를 개발했다. 서로 다른 자기 전기 소재의 균일한 접합을 통해 이들의 경계면에서 저주파 자기장에 반응하는 자기-압전효과(Magneto-piezoelectric effect)를 일으킬 수 있었다. 특히, 나노입자가 저주파 자기장에 반응해 전하 운반체를 생성할 때 열을 방출하지 않는 현상에 연구팀은 주목했다. 자기장은 뇌 조직을 손상 없이 투과할 수 있으며 자기공명영상(MRI, Magnetic Resonance Imaging) 등에서 활용돼 의료적 안전성이 이미 검증된 바가 있다. 연구팀이 개발한 나노입자에 저주파 자기장을 쏘았을 때 베타-아밀로이드 펩타이드(Beta-amyloid peptide)를 산화시킴으로써 그 응집체의 결합력을 약화시켜 분해했고, 신경독성도 중화시킬 수 있음을 연구팀은 관찰했다. 아밀로이드 응집체는 알츠하이머병 등 다양한 퇴행성 신경질환들에서 공통적으로 관찰되며, 규칙적인 수소 결합을 통해 매우 안정적인 단백질 이차구조(Secondary structure)를 가져 분해가 어렵다고 알려져 왔다. 박찬범 교수는 "저주파 자기장 반응성 나노소재는 독성이 낮으며 자기장과 반응해 아밀로이드 응집체를 효율적으로 분해할 수 있기에 의료분야로 확장할 수 있는 잠재력이 있다ˮ면서, "이를 검증하기 위해 향후 알츠하이머 형질변환 마우스 등을 이용한 동물실험 등이 우선적으로 필요하다ˮ고 말했다. 한편 이번 연구는 한편 이번 연구는 과학기술정보통신부 리더연구자지원사업(창의연구)의 지원을 받아 수행됐다.
2022.05.16
조회수 6805
식물 리그닌의 광촉매 특성 발견
우리 대학 신소재공학과 박찬범 교수 연구팀이 식물의 주요 구성성분인 *리그닌의 광촉매 특성을 규명하고, 리그닌 기반 광 촉매반응과 산화환원 효소 반응을 접목해 태양광으로 고부가가치 화합물을 생성하는 인공광합성을 성공시켰다고 28일 밝혔다. ☞ 리그닌(lignin): 식물 목질부를 형성하는 주요 물질로 셀룰로오스 다음으로 풍부한 성분이다. 주로 식물을 지지, 보호하는 구조체 역할을 한다. 신소재공학과 김진현 박사과정이 제1 저자로 참여한 이번 연구는 국제학술지 `네이처 신세시스(Nature Synthesis)' 3월호 표지논문으로 출판됐다. (논문명: Lignin as a Multifunctional Photocatalyst for Solar-Powered Biocatalytic Oxyfunctionalization of C-H Bonds) 식물의 20~30%를 차지하는 주요 구성성분인 리그닌은 세포벽 형성, 물 수송, 씨앗 보호 및 스트레스 적응 등의 역할을 담당한다. 바이오 연료, 펄프 및 종이를 생산하는 목재산업에서 리그닌이 부산물로 대량 배출되는데, 그 양은 연간 5천만 톤에 달한다. 그러나 리그닌은 분자구조가 상당히 복잡한 까닭에 활용이 어려워 95% 이상 소각되거나 폐기되고 있다. 연구팀은 자연계 리그닌이 일반적인 광촉매들이 지닌 작용기를 가지고 있다는 것에 착안해 리그닌이 광촉매 역할을 수행할 수 있다는 가설을 세웠다. 그리고 연구팀은 다양한 리그닌 고분자 모델이 가시광선하에서 과산화수소를 생성한다는 것을 입증했다. 또한, 분광학적 및 (광)전기화학적 분석을 통해 리그닌이 열역학적으로 해당 광 산화환원 반응(photoredox reaction)을 일으킬 수 있다는 것을 확인했다. 일반적인 광촉매는 산소를 환원해 과산화수소를 생성할 때 희생 전자 공여체(sacrificial electron donor, 예: 알코올, 포름산, 글루코스)를 필요로 한다. 이러한 요구 조건 때문에 기존의 과산화수소를 생성하는 광 촉매반응은 원자 경제성(atom economy)이 낮고, 바람직하지 않은 부산물이 축적된다는 한계가 있다. 하지만, 리그닌은 희생 전자 공여체 없이 산소와 물을 이용해 과산화수소를 합성할 수 있어 높은 원자 경제성(94.4%)을 보여주며, 부산물 축적 문제에서 벗어난다. 연구팀은 더 나아가 가시광선을 흡수하는 리그닌의 광 촉매반응을 생체촉매인 퍼옥시게나아제 활성에 적용했다. 퍼옥시게나아제는 유기합성에서 상당히 중요한 선택적 옥시 기능화 반응을 유도할 수 있는 효소다. 퍼옥시게나아제는 과산화수소를 필수적으로 요구하지만, 고농도의 과산화수소에 의해 비활성화된다는 단점이 있다. 이 문제를 극복하기 위해 연구팀은 리그닌이 광화학적으로 과산화수소를 적절한 속도로 생성하도록 설계해 퍼옥시게나아제가 지속해서 옥시 기능화 반응을 수행하도록 만드는 데 성공했다. 박찬범 교수는 "이번 연구는 리그닌을 고부가가치 화합물 생성에 이용할 수 있는 친환경적 방법을 제시했다는 것에 의의가 있다ˮ면서, "리그닌의 광촉매적 메커니즘을 더 자세하게 밝혀 리그닌의 촉매 성능을 높이고, 다양한 효소와 접목, 정밀화학제품을 생산하여 산업적 파급력을 높일 계획ˮ이라고 밝혔다. 한편 이번 연구는 과학기술정보통신부 리더연구자지원사업(창의연구), 한국연구재단 글로벌박사 양성사업 등의 지원을 받아 수행됐다.
2022.03.28
조회수 8543
박찬범, 스티브 박 교수, 혈액 기반 알츠하이머병 멀티플렉스 진단센서 개발
KAIST(총장 신성철) 신소재공학과 박찬범 교수와 스티브 박 교수 공동 연구팀이 혈액으로 알츠하이머병을 진단할 수 있는 센서를 개발하는 데 성공했다. 연구팀이 개발한 진단 센서를 활용해 혈액 내에 존재하는 베타-아밀로이드 및 타우 단백질 등 알츠하이머병과 관련한 4종의 바이오마커 농도를 측정·비교하면 민감도는 90%, 정확도 88.6%로 중증 알츠하이머 환자를 구별해 낼 수 있다. 김가영 박사과정·김민지 석사과정이 공동 1저자로 참여한 이번 연구 결과는 국제 학술지‘네이처 커뮤니케이션스(Nature communications)’1월 8일 자 온라인판에 게재됐다. (논문명: Clinically accurate diagnosis of Alzheimer’s disease via multiplexed sensing of core biomarkers in human plasma) 알츠하이머병은 치매의 약 70%를 차지하는 대표적인 치매 질환이다. 현재 전 세계 65세 이상 인구 중 10% 이상이 이 질병으로 인해 고통을 받고 있다. 하지만 현재의 진단 방법은 고가의 양전자 단층촬영(PET) 또는 자기공명영상진단(MRI) 장비를 사용해야만 하기에 많은 환자를 진단하기 위해서는 저렴하면서도 정확한 진단 기술개발의 필요성이 제기돼 왔다. 연구팀은 랑뮤어 블라젯(Langmuir-blodgett)이라는 기술을 이용해 고밀도로 정렬한 탄소 나노튜브(Carbon nanotube)를 기반으로 한 고민감성의 저항 센서를 개발했다. 탄소 나노튜브를 고밀도로 정렬하게 되면 무작위의 방향성을 가질 때 생성되는 접합 저항(Tube-to-tube junction resistance)을 최소화할 수 있어 분석물을 더 민감하게 검출할 수 있다. 실제로 고밀도로 정렬된 탄소 나노튜브를 이용한 저항 센서는 기존에 개발된 탄소 나노튜브 기반의 바이오센서들 대비 100배 이상의 높은 민감도를 보였다. 연구팀은 고밀도로 정렬된 탄소 나노튜브를 이용해 혈액에 존재하는 알츠하이머병의 바이오마커 4종류를 동시에 측정할 수 있는 저항 센서 칩을 제작했다. 알츠하이머병의 대표적인 바이오마커인 베타-아밀로이드 42 (β-amyloid42,), 베타-아밀로이드 40 (β-amyloid40), 총-타우 단백질 (Total tau proteins) 및 과인산화된 타우 단백질 (Phosphorylated tau proteins)은 그 양이 알츠하이머병의 병리와 직접적인 상관관계를 가지기 때문에 알츠하이머병 환자를 구별해 내는 데 매우 유용하다. 고밀도로 정렬된 탄소 나노튜브 기반 센서 칩을 이용해 실제 알츠하이머 환자와 정상인의 혈액 샘플 내에 존재하는 4종의 바이오마커 농도를 측정 하고 비교한 결과, 민감도와 선택성은 각각 90%, 그리고 88.6%의 정확도를 지녀 중증 알츠하이머 환자를 상당히 정확하게 진단할 수 있음을 확인했다. 연구팀이 개발한 고밀도로 정렬된 탄소 나노튜브 센서는 측정방식이 간편하고, 제작비용도 저렴하다. 박찬범 교수는“본 연구는 알츠하이머병으로 이미 확정된 중증환자들을 대상으로 진행하였다. 향후 실제 진료 환경에 활용하기 위해서는 경도인지장애 (Mild cognitive impairment) 환자의 진단 가능성을 테스트하는 것이 필요하다”며“이를 위하여 경도인지장애 코호트, 치매 코호트 등의 범국가적인 인프라 구축이 필수적이며, 국가 공공기관의 적극적인 연구 네트워크 구축 및 지원의 장기성 보장이 요구된다”고 강조했다. 한편 이번 연구는 과학기술정보통신부 리더연구자 지원사업과 충남대병원 및 충북대병원 인체자원은행의 지원을 받아 수행됐다. □ 그림 설명 그림 1. 혈액 내에 존재하는 총 4종의 바이오마커 농도를 측정해 알츠하이머병 환자를 구별하는 고밀도로 정렬된 카본 나노튜브 기반 저항 센서의 모식도 그림 2. 진단 센서 성능
2020.01.15
조회수 18305
빛 이용해 알츠하이머 완화 가능성 열어
박 찬 범 교수 우리 대학 신소재공학과 박찬범 교수 연구팀과 한국생명공학연구원(원장 오태광) 바이오나노센터 유권 박사팀이 빛과 유기분자인 포르피린을 이용해 알츠하이머 증후군의 원인 물질로 알려진 베타-아밀로이드(beta-amyloid)의 응집 과정을 억제하는 데 성공했다. 이 기술을 통해 알츠하이머 증후군을 비롯한 여러 가지 퇴행성 뇌질환 치료에 새로운 가능성을 제시할 것으로 기대된다. 이번 연구결과는 독일의 국제 저명 학술지인 앙케반테 케미(Angewandte Chemie) 21일자 표지논문에 게재됐다. 빛을 이용한 치료는 시간과 치료 부위를 조절하기 쉽다는 장점이 있다. 암과 같은 경우에는 유기 광감응제를 투여하고 빛을 병변 부위에 조사하는 광역학 치료(photodynamic therapy)가 활용되고 있다. 하지만 광역학 치료가 알츠하이머병과 같은 퇴행성 뇌질환에 적용된 사례는 없었다. 알츠하이머 증후군은 환자의 뇌에서 생성되는 베타-아밀로이드라는 단백질이 응집돼 뇌에 침착하면서 시작된다. 이렇게 형성된 응집체는 뇌세포에 유해한 영향을 주고 손상을 일으켜 치매와 같은 뇌 기능 저하를 일으킨다. 이 과정에서 베타-아밀로이드의 응집 과정을 억제하면 아밀로이드 퇴적물의 형성을 막을 수 있고, 따라서 알츠하이머 증후군을 예방하거나 완화시킬 수 있다. 연구팀은 생체 친화적 유기 화합물인 포르피린 유도체와 청색 LED 광을 이용해 베타-아밀로이드 응집을 효과적으로 억제했다. 포르피린과 같은 광감응제는 빛 에너지를 흡수해 여기 상태가 된 후 바닥상태로 돌아가며 활성 산소를 생성한다. 생성된 활성 산소가 베타-아밀로이드 단량체와 결합해 산화시킴으로써 베타-아밀로이드의 응집을 방해하는 원리이다. 연구팀은 이를 무척추 동물에 적용해 알츠하이머 초파리 모델에서 신경 및 근육 접합부의 손상, 뇌 신경세포의 사멸, 운동성 및 수명 감소 등 알츠하이머 증후군에서 발견되는 증상의 완화를 확인했다. 빛을 이용한 치료법은 기존 약물 치료에 비해 적은 양의 약물로도 높은 치료효과를 볼 수 있고 부작용이 적다는 장점이 있다. 뇌질환에 적용할 수 있는 기술 개발이 완료된다면 그 활용도가 높을 것으로 예상된다. 박 교수는 “빛과 광감응화합물을 사용해 무척추 동물(초파리)에서 베타-아밀로이드 응집과 독성을 막는 것을 세계 최초로 확인한 것에 의의가 있다”며 “향후 다양한 유기 및 무기 광감응소재들의 적용가능성을 알아보고, 알츠하이머 마우스 등 척추동물을 대상으로 알츠하이머병의 광역학적 치료 가능성을 연구하고 싶다"고 말했다. □ 그림 설명 그림 1. 포르피린과 빛을 이용해 알츠하이머 원인 물질의 응집을 제어한 모식도 그림2. 앙케반테 케미에 게재된 표지논문
2015.09.21
조회수 11077
빛을 이용한 약물효소반응 촉진 플랫폼 개발
우리 대학 신소재공학과 박찬범 교수와 생명화학공학과 정기준 교수 연구팀은 빛으로 약물효소반응을 유도할 수 있는 새로운 반응 플랫폼을 개발했다. 연구결과는 지난 12일, 화학분야의 세계적 학술지인 ‘앙게반테 케미’에 후면 표지논문으로 게재됐다. 이 기술을 활용하면 저가의 염료로 고지혈증 등의 심혈관질환 치료제 및 오메프라졸과 같은 위궤양 치료제 등 고부가가치 의약품 생산이 가능할 것으로 보인다. 시토크롬 P450(cytochrome P450)은 생물체 안에서 약물 및 호르몬 등의 대사 과정에서 중요한 산화반응을 수행하는 효소이다. 사람에게 투여되는 약물의 75% 이상의 대사를 담당하고 있기 때문에 신약개발 과정에서 핵심적인 요소로 알려져 있다. 시토크롬 P450의 활성화를 위해선 환원효소로부터 전자를 받아야 하며 전달물질인 NADPH(생물 세포 내의 조효소)가 필요하다. 하지만 NADPH의 높은 가격 때문에 시토크롬 P450의 활용은 실험실 수준에 머무르고 있었으며, 산업적 활용에도 제 역할을 다하지 못했다. 연구팀은 NADPH 대신 빛에 반응하는 감광제인 에오신 Y를 활용해 대장균 기반의 ‘전세포 광-생촉매’ 방법을 개발했다. 저가의 에오신 Y를 빛에 노출시켜 시토크롬 P450의 효소반응을 촉진하여 고가의 대사물질을 생산한다는 원리다. 박 교수는 “이번 연구를 통해 산업적 활용에 제한이 컸던 시토크롬 P450 효소의 활용이 수월해졌다” 며 “우리의 기술은 시토크롬 P450 효소가 고부가가치 의약 물질을 생산하는데 큰 도움을 줄 것이다”라고 말했다. 박찬범, 정기준 교수(교신저자)의 지도아래 박종현 박사과정 학생, 이상하 박사가 주저자로 참여한 이번 연구는 한국연구재단이 추진하는 중견연구자사업과 글로벌프론티어사업, KAIST HRHRP (High Risk High Return Project)의 지원으로 수행됐다. □ 그림설명 그림1. 빛으로부터 에오신 와이 (eosin Y, EY)를 통해 시토크롬 P450 효소로 전자를 전달하는 모식도 그림2. 연구결과를 설명하는 1월 12일자 ‘앙게반테 케미’ 후면 논문 표지
2015.01.21
조회수 16125
태양전지 소재 이용, 인공광합성 기술개발
- 국제저명학술지 어드밴스드 머티어리얼스 최근호 게재- 이종 분야 (생명과학, 태양전지)간 융합연구 성공사례로 주목 인류는 지금 지구온난화와 화석 연료의 고갈이라는 문제점을 갖고 있다. 이를 해결하기 위해 온난화의 원인인 이산화탄소를 배출하지 않고 무제한으로 존재하는 태양 에너지를 이용하려는 노력이 계속되고 있다. 이러한 가운데 우리학교 신소재공학과 박찬범 교수와 류정기 박사팀이 태양전지 기술을 이용해 자연계의 광합성을 모방한 인공광합성 시스템 개발에 성공했다. 이 기술은 정밀화학 물질들을 태양에너지를 이용해 생산해 내는 ‘친환경 녹색생물공정’ 개발의 중요한 전기가 될 전망이다. 광합성은 생물체가 태양광을 에너지원으로 사용해 일련의 물리화학적 반응들을 통해 탄수화물과 같은 화학물질을 생산하는 자연현상이다. 박 교수팀은 이 같은 자연광합성 현상을 모방해 빛에너지로부터 정밀화학 물질 생산이 가능한 신개념 ‘생체촉매기반 인공광합성 기술’을 개발했다. 이번 연구에서 연구팀은 자연현상 모방을 통해 개발된 염료감응 태양전지의 전극구조를 이용해 다시 자연광합성 기술을 모방해 발전시킬 수 있다는 것을 증명해냈다. 박찬범 교수는 “지난해 양자점을 이용한 인공광합성 원천기술을 개발해 한국과학기술단체 총연합회가 선정한 10대 과학기술뉴스로 선정된 바 있다”며 “이번 연구 결과는 광합성효율을 획기적으로 향상시킴으로써 인공광합성 기술의 산업화에 한 걸음 더 다가선 것으로 평가된다”고 강조했다. 이번 연구는 독일에서 발간되는 재료분야 국제저명학술지인 어드밴스드 머티리얼스(Advanced Materials) 4월 26일자에 게재됐으며 특허출원이 완료됐다. 한편, 연구결과는 재료공학과 생명과학분야의 창의적인 융합을 통해 새로운 공정기술을 개발하는 데 크게 기여했다는 평가를 받았으며, 교육과학기술부 신기술융합형 성장동력사업(분자생물공정 융합기술연구단), 국가지정연구실, KAIST EEWS 프로그램 등으로부터 지원받아 수행됐다.
2011.04.26
조회수 20005
뼈 형성 모방, 고성능 리튬전지 소재 개발
- 재료분야 세계적 학술지 Advanced Materials지 온라인판 게재- 리튬이차전지, 차세대 유․무기 나노복합소재 개발에 응용 가능해 우리학교 신소재공학과 강기석(35세) 교수팀과 박찬범(41세) 교수팀이 뼈의 형성 과정을 모방해 우수한 나노구조를 갖는 ‘리튬이차전지용 전극소재 합성을 위한 원천기술개발’에 성공했다고 22일 밝혔다. 뼈는 자연계에 존재하는 대표적인 나노복합소재로써 콜라겐이라는 단백질 섬유를 따라 칼슘인산염 나노결정이 생성․성장함으로써 생성된다.연구팀은 이러한 자연현상을 모방해 차세대 고안전성 리튬전지용 양극소재인 철인산염을 나노튜브 형태로 합성하는 데 성공했다. 리튬이차전지의 성능을 향상시키기 위해서는 에너지를 저장하거나 방출하기 위한 리튬의 빠른 이동이 필수적이다. 이를 위해 전극소재의 구조를 나노화하게 되면 표면적이 넓어지고 리튬의 확산에 필요한 거리가 짧아지기 때문에 보다 효과적으로 에너지를 저장하거나 방출할 수 있다. 이 기술의 핵심은 3차원 나노 구조를 갖는 생체재료 위에 철인산염을 균일하게 성장시킨 후 생체재료를 효과적 제거해 나노튜브구조를 얻는 것이다. 연구팀은 간단한 단백질의 일종인 펩타이드의 자기조립공정을 이용해 콜라겐 섬유와 유사한 구조 및 물성을 지니는 단백질 나노섬유를 합성한 뒤, 철 이온과 인산이온의 수용액상 침착반응을 이용해 단백질 나노섬유를 철인산염으로 균일하게 코팅했다. 이후 열처리를 통해 펩타이드 나노섬유를 탄화시키면, 내벽이 전도성 탄소층으로 코팅된 철인산염 나노튜브를 얻을 수 있었다 (그림). 연구팀은 철인산염 나노튜브가 차세대 리튬이차전지 전극소재로써 매우 우수한 특성을 가짐을 확인했다. 이번 연구는 생체재료분야와 리튬전지분야의 융합연구를 통해 이뤄졌으며, 기술적인 돌파구가 필요한 리튬전지개발에 이러한 접근방식이 새로운 해결방안이 될 수 있다는 가능성을 제시한 우수한 연구사례로 평가받고 있다. 이 기술을 이용하면 철인산염 외에 각종 다른 기능성 소재 개발에 응용이 가능해 리튬이차전지 뿐만 아니라 차세대 유․무기 나노복합소재 개발이 기여할 것으로 예상된다. 한편, 이번 연구결과는 재료분야 세계적 학술지 어드밴스드 머티리얼스(Advanced Materials) 12월 21일자 온라인판에 실렸다. 또한, 그 중요성을 인정받아 ‘네이처 퍼블리싱 그룹(Nature Publishing Group)’ 아시아 판에도 소개됐다.
2010.12.22
조회수 17054
홍합접착을 이용 뼈미네랄 형성 기술개발
우리학교 화학과 이해신(李海臣, 37세, 오른쪽사진), 신소재공학과 박찬범(朴燦範, 41세) 교수팀이 자연계의 홍합접착현상을 모방해 지지하는 소재에 관계없이 뼈의 미네랄성분을 고속으로 형성시킬 수 있는 원천기술개발에 성공했다. 범용성이 뛰어나 다양한 소재에 적용할 수 있다. 이 기술의 핵심은 뼈의 주요성분인 인산화칼슘 미네랄결정을 다양한 표면에서 고속 성장시키는 것이다. 뼈를 구성하는 칼슘성분의 대부분(약 99퍼센트)은 인산화칼슘으로 구성되어 있다. 기존 기술은 인산화칼슘 결정을 특정물질의 표면에서만 성장시키는 한계를 지녀왔으며, 이를 필요로 하는 인공뼈, 치아 임플란트 등 다양한 지지소재에 도입할 수 없다는 단점이 제기되어 왔다. KAIST 연구팀은 이러한 난제를 자연의 홍합접착제에서 착안하여 해결하였다. 홍합은 몸에서 내는 실 모양의 분비물인 족사를 이용해 바위, 수초표면 등에 붙어산다. 접착력이 강해 파도가 치는 해안가와 같은 다른 생물체가 살기 어려운 환경에서도 문제없이 붙어서 생존한다. 연구팀은 이러한 홍합접착제를 모방한 폴리도파민(polydopamine)이라 불리는 무독성의 화학성분을 코팅하면, 각종 금속, 산화규소, 산화철, 스테인리스, 테플론, 폴리스티렌 등과 같은 다양한 지지표면에서 인산화칼슘 결정이 손쉽게 자랄 수 있음을 입증했다. 또한 연구팀은 이번 논문에서 기존 기술로는 코팅이 불가능하였던 폴리에스터 섬유, 나일론, 셀룰로오스 등 3차원 다공성 물질 내부에도 뼈미네랄을 손쉽게 형성할 수 있음을 발견했다. 이번 연구결과는 인공뼈 재생과 같은 의료용 재료뿐만 아니라 차세대 치과용 임플란트용 표면 소재 개발과 같은 다양한 응용분야에 사용될 수 있다. 관련 연구결과는 독일에서 발간되는 재료분야 국제저명학술지인 Advanced Functional Materials지 최근호(7월 9일자 온라인판)에 인사이드 커버논문으로 게재됐으며, 최근 특허출원이 완료되었다. KAIST 나노융합연구소, 교육과학기술부 우수연구센터 등으로부터 지원받아 수행된 이번 연구성과는 자연계를 모방하여 새로운 기능을 가진 스마트 소재를 개발하였다는 평가를 받았다. <용어설명> ◯ 홍합모방 접착제: 홍합의 몸에서 내는 실모양의 분비물인 접착 단백질을 모방한 인공접착제◯ 족사 [足絲] : <동물>연체동물이 몸에서 내는 실 모양의 분비물. 바위 따위에 달라붙는 작용을 하며, 홍합 따위에서 볼 수 있다. [그림] 홍합의 접착현상을 이용하여 폴리에스터 섬유에 뼈미네랄을 대량으로 형성시킨 사진 (저널표지)
2010.07.09
조회수 19078
박찬범 교수팀, 나노크기의 광감응 소재를 이용한 인공광합성 원천기술개발
신소재공학과 박찬범(朴燦範, 41세) 교수팀이 나노소재를 이용해 자연계의 광합성을 모방한 ‘인공광합성’ 시스템 개발에 성공했다. 이러한 새로운 개념의 인공광합성 기술은 고부가가치의 각종 정밀의약품들을 태양 에너지를 이용해 생산하는 친환경 녹색생물공정 개발의 전기가 될 것으로 기대된다. 식물 등 자연계의 광합성 생물체들은 태양에너지를 이용해 환원력을 재생하여 보조인자(cofactor)라는 형태로 저장하고, 이렇게 재생된 보조인자 등을 빛이 없을 때 캘빈사이클 (calvin cycle)을 통해 생존에 필요한 탄수화물 등 각종 화학물질들을 합성하는데 이용한다. [그림 1. 자연광합성을 모방한 인공광합성 공정을 이용한 정밀화학제품 생산 개념도] 박 교수팀은 이러한 자연광합성시스템을 모방하여 자연계의 광반응 (light reaction) 대신 태양전지 등에서 사용되는 양자점 (quantum dot) 등 수 나노크기의 광감응소재로 빛에너지를 전기에너지로 효율적으로 전환하고, 이를 이용하여 보조인자를 재생했다. 또한 자연계의 복잡한 캘빈 사이클 대신 산화환원 효소반응을 보조인자 재생에 연결시킴으로써 빛에너지로부터 시작하여 최종적으로 정밀화학물질 생산이 가능한 반응시스템을 개발했다. 인류가 지구 온난화와 화석 연료의 고갈이라는 문제를 안고 있는 가운데, 온난화의 원인인 이산화탄소를 배출하지 않고 또한 무제한으로 존재하는 태양 에너지를 이용하려는 노력이 계속되고있는데, 이번에 개발된 인공광합성기술은 에너지원으로 무한한 태양광을 사용한다는 장점 때문에 그 파급효과가 매우 클것이다. 특히 각종 정밀화학물질 합성에 있어서 산화환원효소들이 매우 뛰어난 응용가능성/다양성을 가졌음에도 불구하고 이들의 효율적 사용을 위하여 필수적으로 요구되는 보조인자의 재생에 대한 연구는 지난 20여년동안 수행되어 왔으나 현재까지도 성공적인 결과가 거의 없어 향후 생물공학분야에서 해결되어야 할 미해결 난제들 중의 하나였다. 박교수팀의 연구성과는 산화환원효소를 산업적으로 활용하기 위한 토대를 마련한 것이다. [그림 2. 산화환원효소 기반 인공광합성을 통한 고부가가치 정밀화학제품 생산] 관련 연구결과는 독일에서 발간되는 나노분야 국제저명학술지인 Small지 최근호(4월 23일자 온라인판)에 게재됐으며, 최근 특허출원이 완료됐다. 이번 연구는 교육과학기술부 신기술융합형 성장동력사업(생물공정연구단) 등으로부터 지원을 받아 수행됐으며, 나노과학과 생명공학분야의 창의적인 융합을 통하여 새로운 공정기술을 개발하는데 크게 기여했다는 평가를 받았다.
2010.04.23
조회수 22753
박찬범 교수팀, 펩타이드 자기조립기술을 이용하여 전도성고분자 나노선/나노튜브 개발
- 화학분야 저명 국제학술지 안게완테 케미지 최근호 게재 우리대학 신소재공학과 박찬범(40) 교수와 유정기(28) 연구원이 자연계의 펩타이드 자기조립기술을 이용, 전도성고분자 나노선과 나노튜브 소재를 개발했다. 관련 논문은 독일에서 발간되는 세계적인 학술지인 안게완테 케미(Angewandte Chemie)지 최근호 (6월 15일자)에 게재됐으며, 나노기술과 생명과학분야의 창의적인 융합을 통해 새로운 나노소재를 개발하는데 크게 기여했다는 평가를 받았다. 펩타이드나 단백질은 20여가지 아미노산의 조합을 통해 다양한 3차원 구조를 형성할 수 있으며, 이들은 기존의 재료에서는 볼 수 없었던 매우 우수한 물성과 다양한 기능을 가지는 장점이 있다. 朴 교수 연구팀은 두 개의 아미노산으로 구성된 매우 단순한 펩타이드 (peptide)를 수만 개 이상 스스로 조립시켜 머리카락의 약 천분의 일 정도 두께를 가진 긴 나노선을 형성하고, 여기에 대표적인 전도성 고분자 물질인 폴리아닐린 (polyaniline)을 얇게 코팅하여 누드김밥처럼 코어(Core)/쉘(Shell) 구조를 가진 전도성 나노선을 제조했다. 코어/쉘 형태의 나노선은 일반 전선과는 반대로, 바깥쪽으로만 전류가 흐르는 특성을 가지고 있다. 朴 교수팀은 이렇게 형성된 전도성 나노선의 펩타이드 코어부분을 선택적으로 제거하여 폴리아닐린으로만 구성된 전도성 나노튜브 (채널직경 약 1/5000 mm)를 제조하는 데 성공했다. 화학물질들이 레고(Lego) 장난감처럼 스스로 조립하여 3차원 구조체를 만드는 것은 모든 생명현상의 근간이 될 뿐만 아니라, 최근 들어서는 나노소재를 개발하는 주요기술들 중의 하나로 각광받고 있다. 특히 朴 교수팀의 연구에서 사용한 펩타이드는 알츠하이머병 등 각종 퇴행성 신경질환의 발병과도 밀접한 연관성을 가진 섬유상 구조의 아밀로이드 플라크(amyloid plaque)로부터 유래되어 펩타이드의 자기조립 현상에 관한 연구는 의학적 측면에서도 중요성이 매우 크다. 전도성 고분자를 나노크기의 구조로 제조할 경우 그 전기적 특성이 대폭 향상되기 때문에 이번에 개발된 전도성 고분자 나노선/나노튜브 소재는 차세대 태양전지, 각종 센서/칩 개발 등에 응용이 가능할 것으로 예상되며, 향후 나노-바이오 융합분야에서 국가 과학기술 경쟁력 제고에 기여할 것으로 기대된다. 朴 교수팀은 2008년도부터 교육과학기술부의 ‘국가지정연구실사업’으로부터 지원을 받아 다양한 형광색상(RGB)을 가진 나노튜브, 연잎처럼 물에 젖지 않는 펩타이드 소재, 식물의 광합성을 모방한 인공광합성 재료 등 새로운 기능을 가진 바이오소재를 개발하기 위한 연구를 수행해 왔으며, 해외 저명학술지들로부터 크게 주목받는 연구 성과들을 발표하고 있다 (http://biomaterials.kaist.ac.kr).
2009.06.16
조회수 19447
신소재공학과 박찬범 교수, 자기조립기술 이용 다양한 색상 가진 바이오 나노튜브 개발
- 재료분야 저명 국제학술지 어드밴스드 머티리얼스지 최근호 게재 신소재공학과 박찬범(朴燦範, 40세, 바이오신소재 국가지정연구실) 교수 연구팀이 자연계의 자기조립기술을 이용, 빨강(R), 녹색(G), 파랑(B) 등 ‘다양한 형광 색상을 구현할 수 있는’ 나노튜브 소재를 세계최초로 개발했다. 관련 논문은 재료분야 저명 국제학술지인 어드밴스드 머티리얼스(Advanced Materials)지 최근호(4월 27일자)에 게재됐으며, 나노기술과 생명과학분야의 창의적인 융합을 통하여 새로운 나노소재를 개발하는데 크게 기여했다는 평가를 받았다. 특히, 이 학술지는 朴 교수 연구팀 연구결과의 중요성과 응용성에 주목하여 “Advances in Advance”에 저널 대표논문들(상위 10%이내) 중 하나로 선정하였다. 朴 교수 연구팀은 두 개의 아미노산으로 구성된 매우 단순한 펩타이드 (peptide)를 수만 개 이상 스스로 조립시켜 머리카락의 약 천분의 일 정도 두께를 가진 긴 나노튜브 구조를 형성하였는데, 이러한 자기조립 과정에서 다양한 광감응현상(photosensitization)을 크게 증폭할 수 있음을 밝혔다. 이를 통해 각종 디스플레이기기 등에서 사용하는 RGB의 모든 색상을 구현할 수 있는 바이오기술 기반의 나노소재를 개발하였다(아래 그림). 화학물질들이 레고(Lego) 장난감처럼 스스로 조립하여 3차원 구조체를 만드는 것은 모든 생명현상의 근간이 될 뿐만 아니라, 최근 들어서는 나노소재를 개발하는 주요기술들 중의 하나로 각광받고 있다. 특히 朴 교수팀의 연구에서 사용한 펩타이드는 알츠하이머병과 밀접한 관계가 있는 아밀로이드(amyloid)라는 단백질 플라크(plaque)로부터 유래했기 때문에 퇴행성 신경질환 현상을 응용하여 새로운 기능성 나노소재를 개발하였다는 점에서 과학기술계의 주목을 받고 있다. 이번에 개발된 자기조립형 형광 나노소재는 바이오센서/칩, 각종 약물의 세포전달체, 의료용 하이드로젤, 차세대 디스플레이기기 등에 응용이 가능할 것으로 예상되며, 향후 나노-바이오 융합분야에서 국가 과학기술 경쟁력 제고에 기여할 것으로 기대된다. 朴 교수팀은 2008년도부터 교육과학기술부의 ‘국가지정연구실사업’으로부터 지원을 받아 새로운 바이오소재를 개발하기 위한 연구를 수행해 왔으며, 해외 저명학술지들로부터 크게 주목받는 연구 성과를 발표하고 있다. <용어설명> 자기조립(self-assembly): 구성물질 간의 약한 비공유결합성 상호작용에 의해 스스로 일정한 구조나 패턴을 형성하는 현상을 가리키는 용어로 최근 전 세계적으로 가장 널리 연구되고 있는 분야 중 하나다. <박찬범 교수 프로필> ■ 학 력 1987-1999: 포스텍 화학공학과 학사(1기), 석사, 박사 1999-2002: UC Berkeley, 박사후연구원 ■ 주요경력 2008-현재: 교육과학기술부 국가지정연구실 Director 2006-현재: KAIST 신소재공학과 부교수 2002-2006: 미국 애리조나주립대학교 조교수 ■ 주요 연구분야 - 자기조립형 바이오소재(Self-Assembled Biomaterials) - 유기/무기 하이브리드 소재(Organic and Inorganic Hybrid Materials) - 인공광합성 소재(Materials for Artificial Photosynthesis)
2009.04.29
조회수 19549
<<
첫번째페이지
<
이전 페이지
1
>
다음 페이지
>>
마지막 페이지 1