-
유룡 교수, 3차원 그래핀 합성 기술 개발
〈 유 룡 교수 〉
우리 대학 화학과 유룡 교수 연구팀이 꿈의 소재 그래핀의 성능을 뛰어 넘는 3차원 그래핀 합성법 개발에 성공했다.
연구팀은 제올라이트 주형과 란타늄 촉매를 활용한 나노주형합성법으로 그래핀의 강점을 고스란히 살린 마이크로 다공성 3차원 그래핀을 제작했다.
기존의 3차원 그래핀은 2차원 평면구조를 곡면으로 구현, 반응면적이 좁고 2차원 구조로 되돌아가는 등의 문제로 상용화가 어려웠다.
그러나 새롭게 개발된 3차원 그래핀은 완벽한 입체 결정 구조로 안정성과 우수한 물성을 고루 갖춰, 화학공업용 고효율 촉매 패키징, 고성능 배터리 음극제, 고효율 여과막(멤브레인) 등 다용도로 활용이 가능, 관련 산업 전반에 혁신을 가져올 것으로 기대된다.
연구진은 제올라이트 주형의 미세기공에 란타늄 양이온을 촉매로 주입함으로써, 기공 내 탄화수소기체(에틸렌‧아세틸렌)의 탄화온도를 낮춘 것이 이번 연구의 핵심이라고 밝혔다. 그 결과 미세기공 속에서도 원활한 탄소 증착을 유도해 견고한 탄소 결정 구조물을 구현해냈다. 마지막으로 산용액(염산, 불산)으로 제올라이트 주형을 녹여내 3차원 그래핀을 만들어 냈다. 연구진은 포항가속기연구소와 한국기초과학지원연구원 서부센터의 도움을 받아 X선 회절 분석법으로 3차원 그래핀의 완벽한 탄소 결정구조를 확인했다.
연구진은 이번 연구로 과거 이론적 구상에 그쳤던 마이크로 다공성 3차원 그래핀의 양산법이 고안 됨에 따라, 앞으로 실제 양산과 산업 적용이 이뤄지며 화학공업 등 관련 산업 전반에 혁신을 가져올 것으로 전망하고 있다.
실제로 연구진은 3차원 그래핀을 기존 상업용 그래핀 전지의 음극재로 시험 적용, 기존 약 100mAh의 정전용량을 약 300mAh(전류밀도 8mA/cm²기준)로 끌어올렸다. 특히 이번 연구는 주재료인 제올라이트가 1톤 당 300달러 정도로 매우 저렴하고, 탄화반응 후 염산과 불산으로 제올라이트 주형을 녹여 제거하는 공정도 단순하다. 또한 대량 합성에서도 높은 재현성을 보여, 머지 않아 본격적인 양산으로 이어질 것으로 보인다.
유 교수는 “그 동안 여러 가지 실험상의 어려움으로 제올라이트를 주형으로 3차원 그래핀을 만드는 연구가 크게 활성화되지 못했었다”며 “이번 연구 결과를 계기로 많은 과학자들이 이러한 탄소나노물질에 관심을 갖게 될 것이며, 2차원 그래핀의 장점에 더해 넓은 반응면적과 다양한 응용이 가능한 나노 다공구조를 갖춘 3차원 그래핀은 응용 분야에서도 큰 관심을 끌 수 있을 것이다”고 말했다.
□ 그림 설명
그림1. 마이크로 다공성 3차원 그래핀의 투과 전자현미경 사진
그림2. LTA 제올라이트를 활용한 탄소합성 결과
그림3. 마이크로다공성 3차원 그래핀의 전기전도도 측정결과
그림4.제올라이트 기공내부에 형성된 탄소의 전자밀도
2016.06.30
조회수 14472
-
유룡 교수, 벌집 모양 규칙적 구조의 제올라이트 개발
- 사이언스誌 발표,“제올라이트 학계의 20여년 숙원 과제 해결!”-
우리 학교 화학과 유룡 교수 연구팀은 벌집모양의 메조나노기공과 보다 미세한 크기의 마이크로나노기공이 규칙적으로 배열되어 있는 ‘육방정계 구조규칙적 위계나노다공성 제올라이트’ 신물질을 개발하는데 성공하였다.
유 교수팀은 2009년 나노판상형태의 초박막 제올라이트 물질을 합성하여 세계 최고 권위의 과학 학술지인 네이처誌에 게재한데 이어, 벌집모양의 메조나노기공을 갖는 제올라이트 물질의 개발 성과로 사이언스誌 2011년 7월호(7월 15일자)에 논문을 게재하여 제올라이트 연구의 우수성과 학술적 중요성을 모두 인정받았다.
제올라이트는 가솔린 생산을 비롯하여 석유화학산업 전반에 걸쳐 세계적으로 가장 널리 이용되는 촉매물질이다. 촉매는 다양한 화학 반응에서 사용되어 반응을 촉진시킴은 물론, 반응 시간을 단축시켜 경제성을 높이는 데 활용되는 물질이다. 화학 산업 분야에서 사용되는 촉매 물질들은 사용 후 분리를 용이하게 하기 위해 주로 고체 형태로 이루어진 촉매를 사용하는데, 제올라이트는 현재 사용되고 있는 다양한 고체 촉매들 중에서 40% 이상을 차지할 정도로 매우 높은 비율로 다양한 화학 산업 전반에 걸쳐 이용되고 있는 물질이다. 때문에, 제올라이트의 촉매 효율을 높일 경우, 이에 따른 경제적 효과는 막대하다고 할 수 있다.
기존에 산업 전반 분야에 사용되고 있는 일반 제올라이트 촉매 물질들은 내부에 무수한 미세구멍(나노세공)들이 규칙적으로 뚫려 있지만 그 직경이 매우 작아 반응 대상 분자의 확산 속도가 느리기 때문에 촉매활성이 낮은 단점이 있었다. 이를 해결하기 위해 연구팀은 미세한 마이크로나노기공과 그 보다 큰 직경의 메조나노기공이 동시에 규칙적으로 배열*되어 있는 제올라이트 물질을 합성하였다. 이러한 구조의 물질은 제올라이트 학계에서 수많은 연구자들이 합성하고자 지난 20여 년 이상을 시도해온 물질로서, 이번에 유 교수팀이 드디어 제올라이트 학계의 20여 년 동안의 숙원 과제를 해결하는 방법을 제시한 것이다. * 작은 도로만 있어 교통체증이 심한 대도시에 큰 도로와 작은 도로를 유기적으로 구성하는 도시계획을 수립, 시행함으로써 원활한 교통 흐름을 만들어 내는 원리와 같다. 크고 작은 나노세공이 유기적으로 연결된 제올라이트 내부에서 분자의 흐름이 훨씬 수월해진다.
이번에 개발한 제올라이트 물질은 연구팀이 특수 설계한 계면활성제를 사용하여 합성할 수 있었다. 이 계면활성제는 머리 부분에 제올라이트 마이크로 기공 유도체를 포함하여 제올라이트 골격의 형성을 유도하고, 소수성 꼬리 부분은 제올라이트의 마이크로 기공보다 더 큰 메조 기공을 벌집 구조 모양으로 배열할 수 있도록 하였다. 지금까지 알려져 있는 제올라이트 합성 원리는 하나의 기공 유도 분자가 하나의 매우 작은 마이크로 기공을 유도했던 반면에, 본 연구팀이 개발한 방법은 하나의 분자가 서로 다른 크기의 기공을 규칙적으로 유도한다는 점에서 기존의 방법과 차별화된다.
유교수팀이 세계 최초로 2009년에 개발한 2 nm 극미세 두께의 나노판상형 제올라이트가 2차원적인 형태로 이루어진 물질이었다면, 이번에 합성에 성공한 ‘육방정계 구조규칙적 위계나노다공성 제올라이트’는 3차원적 구조 규칙성을 띤 나노구조물로 지금까지 볼 수 없었던 이상적이고 안정적인 벌집 구조를 갖고 있다.
때문에, 새로 개발한 제올라이트는 산업적으로는 중요하지만 커다란 분자 크기 때문에 기존의 제올라이트를 사용하기 쉽지 않았던 물질의 촉매로 사용할 수 있게 되었다.
유룡 교수는 “이번에 개발한 제올라이트는 지금까지 볼 수 없었던 이상적이고 안정적인 기공구조를 갖고 강한 산성을 띠고 있어 기존의 제올라이트의 단점을 충분히 보안한 물질이다. 따라서 앞으로 산업적으로 중요한 많은 고부가 가치 반응에서 고성능 촉매로 사용될 수 있을 것으로 기대한다. 뿐만 아니라, 이번 연구를 통해 본 연구단이 개발한 합성 방법이 여러 종류의 제올라이트에도 적용이 가능함을 보이면서 앞으로 200여 가지가 넘는 기존의 제올라이트들의 단점도 해결할 수 있을 것이다.”고 연구의의를 밝혔다.
이번 논문의 제1저자인 나경수 박사는 성균관대학교 화학과를 조기졸업하고 KAIST에서 석사와 박사를 4년 반만에 마친 수재다. 지난 2월에는 KAIST 우수 박사학위 논문상을 수상하기도 했으며, 현재 유룡 교수가 맡고있는 KAIST 화학과 기능성 나노물질 연구단에서 박사후 과정 중이다.
[그림1] ‘육방정계 구조규칙적 위계나노다공성 제올라이트’의 주사 전자현미경 사진. 균일한 두께와 길이의 뾰족한 바늘 모양의 결정들이 전 영역에 걸쳐 고루 존재하는 것을 볼 수 있다.
[그림2] ‘육방정계 구조규칙적 위계나노다공성 제올라이트’의 투과 전자현미경 사진
2011.07.15
조회수 20234
-
유룡 교수, 나노판상 제올라이트 촉매 물질 합성 성공
화학과 유룡(54)교수가 특수한 계면활성제 분자와 실리카를 조립하는 새로운 방법으로 세계 최초로 2나노미터(nm) 극미세 두께의 나노판상형 제올라이트 촉매 물질을 합성하는데 성공했다.
이 연구결과는 세계 최고 권위의 과학저널인 ‘네이처(Nature)지’ 10일자에 게재됐으며, 이 논문은 세계 과학계에서 저자의 위상과 연구결과의 과학적 중요성을 인정받아 네이처 인터뷰 기사로 소개되는 영예를 얻었다.
이번에 합성된 제올라이트는 2nm두께의 판상으로, 제올라이트 물질에 대해 이론적으로 예상할 수 있는 최소 두께다. 또한 이렇게 얇은 두께임에도 불구하고, 이 물질은 섭씨 700도의 고온에서도 높은 안정성을 나타냈다.
연구를 주도한 유교수는 “이처럼 극미세 두께의 제올라이트 물질은 분자가 얇은 층을 뚫고 쉽게 확산할 수 있기 때문에 석유화학공정에서 중질유 성분처럼 부피가 큰 분자를 반응시키는 촉매로 사용될 수 있다. 특히 이 제올라이트 촉매는 메탄올을 가솔린으로 전환시키는 화학공정에서 기존의 제올라이트 촉매에 비해 수명이 5배 이상 길어, 촉매 교체 주기를 연장시킬 수 있기 때문에 경제효과가 매우 높다.”라고 연구의의를 설명했다.
이번 연구결과는 앞으로 대체에너지 자원개발과 녹색성장에 적합한 친환경 고성능 촉매 개발연구에 직접적으로 활용될 수 있을 것으로 기대된다.
유교수팀이 독창적으로 설계한 계면활성제 분자는 머리 부분에 제올라이트 마이크로 기공(micropore)유도체를 포함하여 제올라이트 골격의 형성을 유도하고, 꼬리 부분에 긴 알킬(alkyl) 그룹이 연결되어 제올라이트의 마이크로 기공보다 더 큰 메조 기공(mesopore)을 규칙적으로 배열할 수 있도록 했다.
이러한 독창적인 물질 설계는 제올라이트 합성 메커니즘에 대한 과학적 지식을 넓히는 획기적인 연구 결과로서, 향후 다양한 구조의 다른 물질을 합성하는 새로운 분야를 개척한 선구적인 성과라고 평가할 수 있다.
유교수는 2000, 2001년에 국내 최초로 2년 연속 ‘Nature’지에 메조다공성 실리카와 메조다공성 탄소에 대한 논문을 게재했고, 2003년과 2006년에 ‘Nature Materials"지에 고분자-탄소 복합물질과 메조다공성 제올라이트에 관한 논문을 게재한 후, 이번에 세 번째로 ’Nature"지에 책임저자(교신저자)로 논문을 게재하는 쾌거를 올렸다. 이것은 국내 과학자도 세계 과학을 선도하는 그룹의 반열에 올랐다는 것을 의미하며, 우리나라 과학의 우수성을 전 세계에 알리는 기회가 됐다.
이 연구는 교육과학기술부(장관 안병만)와 한국연구재단(이사장 박찬모)이 추진하는 ‘국가과학자지원사업’의 지원을 받아 이뤄졌다. 또한 교육과학기술부와 한국연구재단이 추진하는 ‘세계수준의 연구중심대학(WCU, World Class University)육성사업’과 나노기술육성사업(나노팹사업)에 따른 결실이다. 이번 연구에서 유 교수팀은 KAIST 부설 나노팹센터와 테라사키교수 연구팀의 협조로, 전자현미경을 통해 물질의 세부구조를 분석하였다. 특히 나노팹의 높은 기술력은 연구시간을 최대로 단축시켜 단시간에 훌륭한 연구 성과를 도출할 수 있도록 했다.
2007년 국가과학자로 임명된 유교수의 주도 하에, KAIST 최민기 박사, 나경수연구원(화학과 박사과정), 김정남연구원(화학과 박사과정)이 연구를 수행하고, 분해능이 높은 현미경 사진으로 구조를 확인하기 위해 스웨덴 스톡홀름대학교의 오사무 테라사키 교수와 야수히로 사카모토 박사가 추가로 참여했다. 테라사키 교수는 현재 스웨덴 스톡홀름대학교 석좌교수로, WCU사업의 지원을 받아 올해부터 KAIST EEWS(Energy, Environment, Water and Sustainability)학과에 겸임교수로 재직하고 있다.
이번 연구결과는 세계 수준의 연구중심대학과 세계적인 나노과학기술 육성을 위한 정부의 지원으로, 우리나라 과학기술의 수준을 한 단계 발전시킨 결과로서, 국내 기술력과 해외 우수 연구자들의 연구능력과 기술력을 통합한 국제공동연구의 모범사례로 평가된다.
2009.09.10
조회수 23773