본문 바로가기
대메뉴 바로가기
KAIST
연구뉴스
유틸열기
홈페이지 통합검색
-
검색
메뉴 열기
%EC%9E%A5%EC%84%9D%EB%B3%B5
최신순
조회순
저렴한 촉매로 간단하게 항생제 만드는 전략 개발
자연에 풍부한 탄화수소를 원료로 페니실린 등 항생제를 합성할 수 있는 새로운 촉매가 나왔다. 우리 대학 화학과 장석복 특훈교수(기초과학연구원 (IBS) 분자활성 촉매반응 연구단장) 연구팀은 서상원 전(前) 기초과학연구원 차세대 연구 리더(現 DGIST 화학물리학과 교수)와의 협업으로 경제적인 니켈 기반 촉매를 이용해 탄화수소로부터 항생제 원료물질인 ‘카이랄 베타-락탐’을 합성하는 화학반응을 개발했다. 1928년 영국의 생물학자인 알렉산더 플레밍은 푸른곰팡이에서 인류 최초의 항생제인 페니실린을 발견했다. 이후 1945년 영국 화학자 도로시 호지킨이 베타-락탐으로 불리는 고리 화합물이 페니실린을 구성하는 주요 구조임을 밝혀냈다. 베타-락탐은 탄소 원자 3개와 질소 원자 1개로 이루어진 고리 구조(4원환 구조)로 페니실린 외에도 카바페넴, 세팔렉신과 같은 주요 항생제의 골격이기도 하다. 페니실린 구조 규명 덕분에 인류는 베타-락탐 계열의 항생제를 화학적으로 합성할 수 있게 됐다. 하지만 80여 년이 지난 지금도 베타-락탐 합성에는 해결해야 할 과제가 있다. 베타-락탐은 카이랄성(거울상 이성질성)을 지닐 수 있는데, 구성하는 원소의 종류나 개수가 같아도 완전히 다른 성질을 내는 두 유형의 거울상 이성질체가 존재한다는 것이다. 대부분의 시판 베타-락탐 의약품은 유용성을 가진 유형만 선택적으로 제조하기 위해 합성과정에서 카이랄 보조제를 추가로 장착시킨다. 합성 단계가 복잡해지고, 제조 단가가 높아질 뿐만 아니라 보조제 제거를 위해 추가로 화학물질을 투입해야 해서 폐기물이 발생한다는 단점이 있다. 장석복 교수 연구팀은 2019년 탄화수소로부터 합성 가능한 다이옥사졸론과 새로 개발한 촉매를 이용해 카이랄 감마-락탐을 합성하는 데 최초로 성공했다(Nature Catalysis). 당시 5원환 구조인 감마-락탐은 카이랄 선택적으로 합성했지만, 4원환 구조의 베타-락탐을 합성하지는 못했다. 또, 이 반응을 위해서는 값비싼 이리듐 촉매를 써야 한다는 한계도 있었다. 베타-락탐은 감마-락탐보다 더 쓰임이 많지만, 합성에 많은 에너지가 필요해 더 제조가 까다롭다. 이번 연구에서는 상대적으로 저렴하고, 풍부하게 존재하는 니켈 촉매를 이용하여 제조가 까다로운 베타-락탐을 카이랄 선택적으로 합성하는 데 성공했다. 시판 공정에서는 항생제 합성에 필요한 베타-락탐 원료를 8단계에 거쳐 합성했지만, 연구진이 제시한 촉매반응은 보조제 장착 및 제거 과정이 필요 없어 약 3단계 정도로 절차를 대폭 단축할 수 있다. 게다가, 원료물질에 비해 합성된 물질은 시장 가치가 700배가량 높아 고부가가치를 창출할 수 있다. 서상원 교수는 “니켈과 다이옥사졸론의 반응 과정에서 생기는 니켈-아미도 중간체가 베타 위치의 탄소와 선택적으로 반응하여 원하는 베타-락탐 골격을 얻을 수 있다”이라며 “두 유형의 카이랄 베타-락탐 중 한쪽만을 95% 이상의 정확도로 골라 선택적으로 합성할 수 있음을 보여줬다”고 말했다. 한편, 연구진은 천연물 등 복잡한 화학 구조의 물질에 베타-락탐 골격을 높은 정확도로 도입하는 데도 성공했다. 기존 의약품 합성 전략보다 간단하게 후보 약물이 될 새로운 물질을 합성할 수 있다는 의미다. 연구를 이끈 장석복 교수는 “페니실린, 카바페넴과 같은 주요 항생제의 골격인 카이랄 베타-락탐을 손쉽게 합성해냈다”며 “유용 물질의 합성과정을 간소화해 산업에 이바지하는 동시에 신약 개발을 위한 다양한 후보물질 발굴도 견인할 것”이라고 말했다. 연구결과는 8월 25일(한국시간) 화학 분야 권위지인 ‘네이처 카탈리시스(Nature Catalysis, IF 37.8)’ 온라인판에 실렸다.
2023.08.25
조회수 4934
신기루처럼 사라지는 중간체의 모습 최초 공개
아이는 청소년기를 거쳐 성인이 된다. 화학반응도 반응물에서 생성물이 생겨나는 일종의 성장 과정에서 중간 단계인 ‘중간체’가 만들어진다. 사진과 영상으로 기록할 수 있는 사람의 청소년기와 달리, 화학반응 도중 빠르게 생성되었다가 사라지는 중간체의 모습을 기록하는 것은 매우 어렵다. 우리 대학 화학과 장석복 특훈교수 (IBS 분자활성 촉매반응 연구단장) 연구팀은 기초과학연구원 김동욱 연구위원, 우리 대학 화학과 임미희 교수 연구팀과의 협업으로 자연에 풍부한 탄화수소를 고부가가치의 물질인 질소화합물로 변환시키는 화학반응에서 생겼다가 사라지는 ‘전이금속-나이트렌’ 촉매 중간체의 구조와 반응성을 세계 최초로 규명했다. 질소화합물은 의약품의 약 90%에 포함될 정도로 생리 활성에 중요한 분자다. 제약뿐만 아니라 소재, 재료 분야에서도 중요한 골격이 된다. 현대 화학자들이 석유․천연가스 등 자연에 풍부한 탄화수소를 질소화합물로 바꾸는 아민화 반응(질소화 반응)을 효율적으로 진행할 수 있는 촉매 개발에 집중하는 이유다. 장석복 교수 연구팀은 2018년 다이옥사졸론 시약과 전이금속(이리듐) 촉매를 활용하여 탄화수소로부터 의약품의 원료가 되는 락탐을 합성하는 촉매반응을 개발한 바 있다(Science). 당시 아민화 반응을 유발하는 핵심 중간체가 바로 전이금속-나이트렌이라는 분석을 내놓았고, 이후 세계 120여 개 연구팀이 다이옥사졸론 시약을 활용한 아민화 반응 연구를 이어갔다. 하지만 계산화학적으로 구조를 파악할 뿐, 전이금속-나이트렌 중간체의 모습을 직접 관찰한 적은 없었다. 제1저자인 정회민 연구원은 “촉매 화학반응이 진행되며 어떤 촉매 중간체를 거쳐 가는지를 규명하는 것은 반응의 진행 경로를 면밀히 이해하는 동시에 더욱 효율이 높은 차세대 촉매를 개발하는데 중요한 단서가 된다”고 설명했다. 대부분의 촉매반응은 용액 상태에서 이뤄진다. 용액 내 분자들은 끊임없이 다른 분자와 상호작용하기 때문에 전이금속-나이트렌과 같이 빠르게 반응하고 사라지는 중간체를 규명하는 일은 매우 어려웠다. 이 한계를 극복하기 위해 연구팀은 고체상태의 시료에 빛을 쬐며 분자 수준에서 일어나는 구조 변화를 단결정 엑스선(X-ray) 회절 분석을 통해 관찰하는 광 결정학 분석을 활용하자는 아이디어를 냈다. 우선, 연구팀은 빛에 반응하는 로듐(Rh) 기반 촉매를 새롭게 제작했다. 이 촉매와 다이옥사졸론 시약이 결합한 복합체는 빛을 받으면 탄화수소에 아민기를 도입하는 과정에서 전이금속-나이트렌을 형성할 것으로 예상했다. 이 과정을 포항 가속기연구소의 방사광을 활용한 광 결정학 방법으로 분석한 결과, 기존 관찰된 적 없는 ‘로듐-아실나이트렌’ 중간체의 구조와 성질을 세계 최초로 확인할 수 있었다. 더 나아가, 로듐-아실나이트렌 중간체가 다른 분자와 반응하는 과정도 광 결정학으로 분석했다. 즉, 고체 시료에서 화학 결합이 끊어지며 중간체가 생성되고, 중간체가 다시 다른 물질과 반응해 새로운 화학 결합을 형성하는 전 과정을 마치 카메라가 사진을 찍듯이 포착했다는 의미다. 연구를 이끈 장석복 단장은 “그간 그 존재가 제안되었을 뿐, 입증된 적 없는 아민화 반응의 핵심 중간체의 모습을 최초로 공개했다”며 “현재 밝혀낸 로듐-아실나이트렌 중간체의 구조와 친전자성 반응성을 바탕으로, 여러 산업에서 쓰이는 차세대 촉매 반응을 개발할 수 있을 것”이라고 말했다. 연구결과는 7월 21일(한국시간) 최고 권위의 국제학술지 ‘사이언스(Science, IF 56.9)’온라인판에 실렸다. (논문명: Mechanistic snapshots of rhodium-catalyzed acylnitrene transfer reactions.)
2023.07.21
조회수 3987
장석복 교수, 한 종류의 분자만 선택적으로 합성할 수 있는 새 촉매 개발
〈 박윤수 연구원, 장석복 교수 〉 자연계의 많은 분자들은 자신과 똑 닮은 ‘쌍둥이 분자’를 갖고 있다. 이들은 구성하는 원소의 종류와 개수가 같아도 서로 완전히 다른 성질을 나타낸다. 특히 쌍둥이 분자가 서로를 거울에 비친 모습과 같은 형상을 띈 경우를 ‘거울상 이성질체’라고 한다. 우리 대학 화학과 장석복 교수(IBS 분자활성 촉매반응 연구단장)와 IBS 박윤수 연구원은 두 개의 거울상 이성질체 중 한 종류의 분자만을 선택적으로 합성할 수 있는 새로운 촉매를 개발했다. 또 이 촉매를 이용해 자연에 풍부한 탄화수소화합물을 의약품의 필수재료인 카이랄 락탐으로 제조하는 데도 성공했다. 거울상 이성질체는 왼손과 오른손처럼 서로를 거울에 비춰보면 같은 모양이지만, 아무리 회전시켜도 겹칠 수 없는 이성질체를 말한다. 거울상 이성질성 또는 카이랄성(Chirality)이라고 불리는 이 특성은 의약품 개발에도 매우 중요하다. DNA, 단백질 등 생체물질 역시 카이랄성을 지녀 개발된 약물의 유형에 따라 각각 다른 생리활성을 나타내기 때문이다. 또 한 쪽 유형이 유용할지라도, 다른 유형의 이성질체는 독약이 될 수도 있다. 하지만 유용한 이성질체만을 선택적으로 합성하는 비대칭반응(asymmetric synthesis)은 아직까지 현대 화학의 난제로 꼽히고 있다. 연구진은 새로운 촉매 개발로 이 난제를 해결했다. 연구팀은 2018년 3월 국제학술지 ‘사이언스(Science)’에 자연계에 풍부한 탄화수소를 고부가가치의 감마-락탐 화합물로 전환시키는 이리듐 촉매 개발 성과를 발표한 바 있다. 하지만 당시 개발된 촉매 역시 두 가지 형태의 거울상 이성질체가 선택성 없이 모두 얻어진다는 단점이 있었다. 이번 연구에서 연구진은 수십여 개의 후보 촉매 중 카이랄 다이아민(Chiral Diamine) 골격을 포함한 이리듐 촉매가 99% 이상의 정확도로 거울상을 선택할 수 있음을 발견했다. 개발된 촉매는 필요에 따라 카이랄성 감마-락탐을 골라서 합성할 수 있다. 왼손잡이성 이리듐 촉매를 사용할 경우엔 왼손잡이성 감마-락탐이, 오른잡이성 이리듐 촉매를 사용하면 오른손잡이성 감마-락탐을 제조할 수 있다. 이후 연구진은 계산화학 시뮬레이션 연구를 통해 높은 선택성의 원인을 분석했다. 가령, 왼손잡이성 촉매를 사용한 경우에는 락탐의 합성과정에서 카이랄 다이아민 촉매와 탄화수소화합물 사이에는 일시적인 수소 결합이 발생하고, 이로 인해 왼손잡이성 락탐 형성이 촉진된다는 사실을 확인했다. 연구진은 개발한 촉매를 통해 다양한 구조를 갖는 카이랄 락탐 화합물을 합성하는 데도 성공했다. 이렇게 합성된 카이랄 락탐은 독특한 입체적 특성 때문에 생체 단백질과의 상호작용이 유용하다. 특히 우리 신체를 구성하는 아미노산 유도체나, 천연물도 모두 카이랄성 분자인 만큼, 신체 내 생리활성을 효과적으로 높인 약물 개발이 가능할 것으로 기대된다. 이번 연구를 이끈 장석복 단장은 “약효를 갖는 의약품의 핵심 단위만 선택적으로 제조할 수 있는 기술로 향후 유기합성 및 의약분야 연구로 이어져 부작용을 덜고 효과는 높인 신약개발까지 이어지리라 기대한다”며 “자연계에 풍부한 탄화수소화합물을 재료로 고부가가치 원료를 제조할 수 있다는 경제적 효과도 있다”고 말했다. 연구성과는 화학분야 권위지인 네이처 카탈리시스(Nature Catalysis) 2월 19일자(한국시간) 온라인 판에 실렸다. □ 그림 설명 그림1. 비대칭반응을 통한 카이랄성 감마-락탐 합성 그림2. 연구 성과 개요
2019.02.19
조회수 12126
장석복, 백무현 교수, 상온 감마-락탐 합성 성공해 사이언스 紙 게재
석유, 천연가스 등 자연에 풍부한 탄화수소로부터 의약품이나 화학소재의 원료가 되는 락탐을 합성할 수 있는 방법이 나왔다. 우리 대학 화학과 장석복 교수, 백무현 교수 공동 연구팀이 반응 효율이 높은 이리듐 촉매를 개발해 상온에서 감마-락탐을 합성하는데 성공했다. 이번 연구성과는 세계적 권위의 학술지 사이언스(Science) 3월 2일자 온라인 판에 게재됐다. 감마-락탐은 뇌전증 치료제(레비티라세탐)나 혈관형성 억제제(아자스파이렌)와 같이 복잡한 유기분자의 핵심 구성성분으로 의약품, 합성화학, 소재 등에 폭넓게 활용된다. 자연에 풍부한 탄화수소로부터 감마-락탐을 만들기 위해 많은 연구가 있었지만 탄화수소는 상온에서 반응성이 낮아 합성하는데 큰 어려움이 있었다. 탄화수소에서 감마-락탐을 합성하기 위해서는 탄소-수소 결합을 탄소-질소 결합으로 변환하는 질소화반응이 필요한데 이 과정에서 중간체인 카보닐나이트렌(carbonylnitrene)이 상온에서 너무 쉽게 부산물로 분해돼 합성이 불가능했기 때문이다. 연구팀은 최적화된 촉매를 계산화학으로 분석해 예측하고 실험에 돌입하는 방식으로 중간체 분해 문제를 해결할 수 있었다. 이론 연구팀은 밀도범 함수를 활용한 계산화학으로 어떤 촉매가 탄화수소에 효율적인 반응을 일으킬지 분석하고 시뮬레이션을 통해 완성도 높은 촉매를 개발했다. 이를 바탕으로 실험 연구팀이 중간체 분해 및 부산물 형성을 억제하는 이리듐 촉매를 개발하고 탄화수소에 적용해 감마-락탐 합성에 성공했다. 장석복 교수는 “이번 연구는 질소화 반응의 중간체 분해 문제를 해결함으로써 탄화수소로 감마-락탐을 합성하는 계기를 만들 수 있었다”며 “새로운 금속 촉매를 설계하고 합성해 성공적으로 적용시키는 모든 과정에 열정적으로 임해준 참여 학생들에게 깊이 감사한다”고 말했다. 또한 “이번에 개발한 촉매반응의 확장연구를 통해 학문적인 진보는 물론 합성된 물질의 생리활성 및 임상 연구를 통한 의약품과 신소재 개발 등 산업적인 면에서도 큰 기여할 수 있게 되기를 바란다”고 말했다. □ 그림 설명 그림1. 연구진이 개발한 새로운 이리듐 촉매로 만든 질소화 반응 메커니즘 그림2. 밀도범함수를 활용한 계산화학으로 예측한 반응 경로와 에너지 장벽 그림3. 본 연구에서 개발한 질소화 촉매반응의 메커니즘과 합성한 다양한 질소고리 화합물
2018.03.02
조회수 11672
장석복, 백무현 교수, 상온에서 아릴기의 선택적 도입 반응 개발
우리 대학 화학과 장석복 교수와 백무현 교수 공동연구팀이 이리듐 촉매를 활용해 상온에서도 분자 내 원하는 위치에 아릴기를 선택적으로 도입하는 반응을 개발하는 데 성공했다. 또한 계산화학으로 반응 원리를 밝혀내 기존의 반응과 다른 경로로 이루어진다는 사실을 증명했다. 탄화수소는 자연상태에 많이 존재하지만 일반적 조건에서는 반응성이 낮아 합성의 원료로 사용되기 어렵다. 반응을 촉진시키기 위해 금속촉매를 활용하는 등 다양한 연구가 이루어지고 있다. 특히 의, 약학이나 재료화학 분야에서 중요하게 활용되는 대다수의 화합물들이 분자 내에 아릴기를 포함하고 있기 때문에 효율적이고 위치선택적으로 아릴기를 도입할 수 있는 반응의 개발은 유기화학 분야의 지속적인 연구주제이다. 안정적인 탄소-수소 결합에 아릴기 도입 반응을 유도하기 위해서는 탄소-수소 결합에 할로젠 원자나 유기금속을 붙여 사전활성화하거나 이 과정 없이 탄소-수소 결합을 직접 활성화(C-H functionalization)하는 과정을 거친다. 직접 활성화하는 방법이 효율성과 경제성이 뛰어나지만 개발된 반응 대부분이 고온의 반응온도, 과량의 첨가물이 필요한 격렬한 반응 조건을 필요로 하고 탄소-수소 결합이 분자 내에 많이 존재하므로 선택성 확보 역시 어려웠다. 연구진은 이리듐 촉매 하에서 아릴실레인(arylsilanes)을 반응제로 사용하여 탄소-수소 결합 활성화를 통한 아릴화 반응을 상온에서 구현하는 데 성공했다. 여태껏 전이금속 촉매를 사용하는 탄소-수소 결합 활성화를 통한 아릴화 반응이 대부분 높은 온도에서 이루어진 것과 달리 상온에서도 이 반응이 가능할 뿐 아니라, 분자 내에서 위치선택적으로 아릴기를 도입할 수 있다. 상온에서 아릴기 도입 반응에 성공할 수 있었던 것은 실험과 이론연구가 동시에 이루어졌기 때문이다. 기존에 알려진 아릴화 반응경로는 과정중 생성되는 금속교환반응 중간체(transmetallation intermediate)의 안정성 때문에 반응과정에서 높은 에너지가 요구됐다. 원리 연구를 통해 전이금속을 촉매로 하는 탄소-수소 결합 활성화를 통한 아릴화 반응에서 최초로 금속교환반응 중간체를 분리, 분석했다. 이를 바탕으로 금속교환반응 중간체만을 선택적으로 산화시키는 새로운 경로를 개발하여 에너지 장벽을 효과적으로 낮췄다. 또한 밀도범함수를 활용한 계산화학으로 실험 결과를 토대로 제안된 반응경로의 타당성을 검증했다. 장 교수는 “상온에서 위치 선택적 아릴화 반응을 이끌어 낸 것과 더불어 반응 메커니즘 연구를 통해 기존에 통상적으로 제안되어져 왔던 진행경과와는 다른 새로운 반응경로로 반응이 이루어짐을 규명했다”며 “이 반응경로를 알아내고 이를 바탕으로 고온이나 과량의 첨가물 없이도 선택적인 반응방법을 개발하였다는 점에서 그 의의가 크다”고 말했다. 연구결과는 국제학술지 네이처 케미스트리 12월 11일자 온라인 판에 게재됐다. □ 그림 설명 그림1. 금속교환반응 중간체(transmetallation intermediate)의 X-ray 결정구조 그림2. 밀도범함수를 활용한 계산화학으로 본 중간체의 산화상태와 중간체에서 일어나는 환원성 제거반응(reductive elimination)에 필요한 에너지장벽(energy barrier)간의 상관관계 그림3. 연구진이 제안한 이리듐 촉매를 활용한 아릴화 반응 메커니즘
2018.01.02
조회수 14345
<<
첫번째페이지
<
이전 페이지
1
>
다음 페이지
>>
마지막 페이지 1