< 기계공학과 공경철 교수 >
우리 대학 기계공학과 공경철 교수가 포함된 국제공동연구팀이 로봇의 성능을 최적화하는 과정에 사람을 포함시킴으로써, 인적 요소(Human factor)를 로봇의 제어 알고리즘에 충분히 반영하는 방법인 힐로(HILO, Human-in-the-loop optimization)에 대한 연구를 네이처 본지(IF 50.5)에 발표했다고 4일 밝혔다.
이 논문은 공경철 교수 이외에도 스탠퍼드 대학의 Steven H. Collins(스티븐 콜린스) 교수, 하버드 대학의 Patrick Slade(패트릭 슬래드) 교수 등이 참여했다. HILO 방법의 핵심 연구자들이 모여 이론에 대한 설명과 응용 분야, 발전 방향까지 총망라하였고, 견해(Perspective)를 발표했다.
이 연구를 통해 로봇이 우리의 일상에 깊이 침투할수록, 그 로봇은 개별 사용자에게 적합하도록 계속해서 개발되어야 한다고 밝히고 있다. HILO 방법이 이러한 난제를 해결하고, 우리의 일상에 로봇이 더욱 가까이 다가오게 할 것이라고 말한다.
로봇은 이제 우리 일상에서 쉽게 만날 수 있으며 인간과 로봇이 서로 복잡하게 상호작용하는 경우가 빈번하게 발생하고 있다. 공장에서 협동 로봇과 사람이 함께 물건을 들어 나르기도 하고, 반자율주행 자동차의 운전자는 제어알고리즘과 동시에 차량을 운전한다.
웨어러블 로봇의 경우에는 로봇과 사람이 함께 하나의 동작을 만들어내는 극단적인 경우이다. 이외에도 사람과 로봇이 어우러져 협동하는 경우는 흔하게 찾아볼 수 있다.
< 그림 1. HILO가 적용되는 로봇 시스템들 예시(출처 : Nature) >
이처럼 로봇이 사람과 복잡한 상호작용을 하게 되면, 로봇의 성능을 원하는 만큼 이끌어내기가 쉽지 않다. 사람마다 서로 다른 행동 특성이 로봇의 동역학적인 특성에 영향을 끼치기 때문이다. 이 경우, 로봇이 사람과 동떨어져 동작하는 것보다는 로봇의 정밀도나 안전성을 확보하는 것이 훨씬 까다로워진다. 우리가 흔히 보는 바리스타 로봇이 유리장 안에 갇혀 있는 이유이기도 하다.
이와 같은 문제를 해결하기 위하여 HILO(Human-in-the-loop optimization) 방법이 제안됐다. 로봇과 사람을 별개의 시스템으로 간주하는 것이 아니라, 하나의 통합된 시스템으로 간주하여 최적화를 진행하는 방식이다.
이를 통해 HILO 방법은 로봇과 사람이 상호작용하는 시스템을 제어함에 있어 ‘개인 맞춤형 자동 최적화’라는 혁신적인 방향성과 가능성을 제시했다.
< 그림 2. HILO가 로봇 시스템에 적용되어 최적화가 이루어지는 원리(출처 Nature) >
공경철 교수(KAIST 기계공학과, ㈜엔젤로보틱스 대표이사)는 “연구하고 있는 웨어러블 로봇의 경우에는 인적 요소가 매우 강하게 작용한다. 사람마다 적절한 보행 패턴이 다르고, 같은 장애물이라도 극복하는 방법이 모두 제각각이기 때문이다”라고 말했다. 또한 “㈜엔젤로보틱스에서는 HILO 방법을 이용해 하반신 마비 장애인이 착용한 웨어러블 로봇의 성능을 개인맞춤형으로 최적화했고 앞으로 웨어러블 로봇의 온라인 자동최적화 기능을 상용화할 계획을 갖고 있다”고 강조했다.
실제로 공 교수가 개발해 상용화된 웨어러블 로봇은 사람마다 특성을 다르게 최적화할 수 있도록 알고리즘이 설계되어 있고, 현재 데이터 클라우드를 이용하여 병원-가정-일상에 이르는 다양한 환경에서 자동으로 최적화를 진행할 수 있도록 연구를 진행하고 있다.
로봇이 우리의 일상에 깊이 침투할수록, 그 로봇은 개별 사용자에게 적합하도록 계속해서 튜닝되어야 한다. HILO 방법이 이러한 난제를 해결하고, 우리의 일상에 로봇이 더욱 가까이 다가올지 기대된다.
한편 HILO에 대한 논문은 2024년 9월 네이쳐 본지(Vol 633, p.779)에 발표됐다.
(논문명 : On human-in-the-loop optimization of human–robot interaction)
현재 전 세계적으로 마이크로 및 나노급의 작은 입자 기반의 비생명체 자가 추진 로봇 기술은 활발하게 연구되고 있는 반면에, 세포와 같은 생명체 구성 요소를 직접 활용한 세포로봇 연구는 아직 초기 단계에 머물러 있다. 우리 연구진이 세포 기반 시스템의 자율적으로 이동하는 세포로봇을 개발하는데 성공했다. 향후 정밀 약물 전달이나 차세대 세포 기반 치료법의 원천기술로 활용될 수 있을 것으로 기대된다. 우리 대학 화학과 최인성 교수 연구팀이 외부 동력 장치나 복잡한 기계 구조 없이, 생체 부산물인 ‘요소(urea)’*를 연료로 사용하는 자가 추진 세포로봇을 개발했다고 30일 밝혔다. *요소(urea): 사람을 포함한 대부분의 동물 체내에서 단백질을 분해하면서 생기는 노폐물로 생명체 안에서는 단백질 대사 과정에서 암모니아를 독성이 낮은 형태로 전환하여 배출하는 중요한 역할을 함 연구팀이 구현한 세포로봇은 방향성을 갖고 스스로 이동할 수 있으며, 원하는 물질
2025-06-30기존 신약 개발에서는 수많은 농도 조건에서 반복 실험을 거쳐 약물 간 상호작용을 분석하고, 저해상수를 추정하는 방식이 사용돼 왔다. 이 방법은 지금까지 6만 편 이상의 논문에 활용될 만큼 널리 쓰였다. 그런데 최근, 학부생이 제 1저자로 참여한 국내 연구진이 단 하나의 저해제 농도만으로 저해상수를 정확히 추정할 수 있는 획기적인 분석법을 제안해 주목을 받고 있다. 우리 대학 수리과학과 김재경 교수 연구팀(IBS 의생명 수학 그룹 CI)이 충남대(총장 김정겸) 약대 김상겸 교수팀과 기초과학연구원(원장 노도영, IBS) 의생명수학그룹과 공동연구를 통해, 단 하나의 실험으로 약물 저해 효과*를 예측할 수 있다고 26일 밝혔다. *약물 저해 효과: 한 약물이 특정 효소의 작용을 억제함으로써 다른 약물의 대사(분해 및 처리 과정) 또는 생리학적 효과에 영향을 주는 현상 공동 연구팀은 수학적 모델링과 오차 지형 분석을 통해 정확도 향상에 기여하지 않는 저해제 농도를 제거하고, 단
2025-06-16노화나 만성 질환은 장기간에 걸쳐 미세한 조직 변화가 서서히 축적되는 과정을 거치기 때문에, 장기 내 이러한 변화를 정량적으로 파악하고, 이를 질병 발병의 초기 신호와 연결하는 데에는 여전히 한계가 있다. 이에 우리 연구진이 조직 안에서 처음 문제가 생기는 국소적인 변화를 정확히 포착해, 질병을 더 빠르게 발견하고 예측하며, 맞춤형 치료 타깃을 설정하는 데 큰 도움이 될 플랫폼 기술을 개발하는 데 성공했다. 우리 대학 의과학대학원 박종은 교수, 한국생명공학연구원(KRIBB, 원장 권석윤) 노화융합연구단 김천아 박사 공동 연구팀이 노화 간 조직 내에서 국소적으로 발생하는 섬유화된 미세환경을 포착하고 이를 *단일세포 전사체 수준으로 정밀 분석*할 수 있는 ‘파이니-시퀀싱(FiNi-seq, Fibrotic Niche enrichment sequencing)’기술을 개발했다고 12일 밝혔다. *단일세포 전사체 분석: 세포 하나하나가 어떤 유전자를 얼마나 활발히
2025-06-12RNA 유전자 가위는 코로나바이러스와 같은 바이러스의 RNA를 제거하여 감염을 억제하거나 질병 원인 유전자 발현을 조절할 수 있어, 부작용이 적은 차세대 유전자 치료제로 크게 주목받고 있다. 우리 연구진은 세포 내 존재하는 수많은 RNA(유전 정보를 전달하고 단백질을 만드는 데 중요한 역할을 하는 분자) 중에서 원하는 RNA만을 정확하게 찾아서 아세틸화(화학 변형)할 수 있는 기술을 세계 최초로 개발했고, 이는 RNA 기반 치료의 새 장을 열 수 있는 핵심 기술이 될 것으로 기대된다. 우리 대학 생명과학과 허원도 석좌교수 연구팀이 최근 유전자 조절 및 RNA 기반 기술 분야에서 각광받는 RNA 유전자 가위 시스템(CRISPR-Cas13)을 이용해 우리 몸 안의 특정한 RNA에 아세틸화를 가할 수 있는 혁신적 기술을 개발했다고 10일 밝혔다. RNA는 ‘화학 변형(chemical modification)’이란 과정을 통해 그 특성과 기능이 변화할 수 있
2025-06-10우리 대학 건설및환경공학과 유지환 교수가 5월 22일 미국 애틀랜타에서 열린 세계적인 로봇 학회인 ‘2025 IEEE 국제 로봇 및 자동화 학회(ICRA)’에서, 미국전기전자학회(IEEE) 산하 로봇 프리미어 저널 ‘로봇 및 자동화 레터(Robotics and Automation Letters, RA-L)’의 2024 최우수 논문상(Best Paper Award)을 수상했다. 이번 최우수 논문상은 2024년도에 출판된 약 1,500편의 논문 중 상위 5편에만 수여되는 영예로운 상으로, 국제적으로도 높은 경쟁률과 권위를 자랑한다. 유 교수가 수상한 논문은, 식물의 뿌리처럼 자라나는 동작(growing motion)을 통해 이동하거나 작업을 수행하는 연성재료(soft material) 기반의 ‘소프트 그로잉 로봇(Soft Growing Robot)’의 실용성과 응용 가능성을 획기적으로 확장할 수 있는 새로운 작업 채
2025-06-09