< (왼쪽부터) 전기및전자공학부 이영남 박사과정, 이상국 교수, 권경하 교수 >
전기차 배터리를 효율적으로 관리하고 안전하게 사용하기 위해서는 정확한 배터리 상태 진단이 필수적이다. 우리 연구진이 소량의 전류만을 사용해 높은 정밀도로 배터리의 상태를 진단하고 모니터링할 수 있는 기술을 개발하여 배터리의 장기적 안정성과 효율성을 극대화할 것으로 기대된다.
우리 대학 전기및전자공학부 권경하 교수와 이상국 교수 연구팀이 전기차 대용량 배터리의 안정성과 성능 향상에 활용할 수 있는 전기화학 임피던스 분광법(이하 EIS) 기술을 개발했다고 17일 밝혔다.
EIS 기술은 배터리의 임피던스* 크기와 변화를 측정해 배터리 효율과 손실을 평가할 수 있는 강력한 도구로, 배터리의 충전 상태(state-of-charge; SOC) 및 건강 상태(state-of-health; SOH)를 평가하는 중요한 도구로 여겨진다. 또한 배터리의 열적 특성과 화학적/물리적 변화, 수명 예측, 고장의 원인을 식별하는 데 활용 가능하다.
* 배터리 임피던스: 배터리 내부에서 전류 흐름에 저항하는 요소로, 이를 통해 배터리 의 성능과 상태를 평가할 수 있는 지표
그러나 기존 EIS 장비는 비용 및 복잡성이 높아 설치, 운영 및 유지 보수가 쉽지 않다. 또한, 감도 및 정밀도 제약으로 수 암페어(A)의 전류 교란을 배터리에 인가하는 과정에서 배터리에 큰 전기적 스트레스가 가해지기 때문에 배터리의 고장이나 화재 위험을 증가시킬 수 있어 활용이 어려웠다.
이에 연구팀은 고용량 전기차 배터리의 상태 진단 및 건강 모니터링을 위한 소전류 EIS 시스템을 개발하고 입증했다. 이 EIS 시스템은 낮은 (10mA) 전류 교란으로, 배터리의 임피던스를 정밀하게 측정할 수 있으며 측정 시 발생하는 열적 영향 및 안전 문제를 최소화한다.
추가로 부피가 크고 비용이 많이 드는 구성요소를 최소화해 차량 내 탑재가 용이한 설계다. 해당 시스템은 전기차 배터리의 여러 운영 조건(다양한 온도 및 배터리 잔존용량을 나타내는 SOC 레벨에서 배터리의 전기화학적 특성을 효과적으로 파악할 수 있음이 입증됐다.
< 그림 1. 전기차 배터리 임피던스 측정을 통한 상태 진단 및 사고 방지 흐름도 >
권경하 교수(교신저자)는 "이 시스템은 전기차용 배터리 관리 시스템 (BMS)에 쉽게 통합 가능하며, 기존의 고전류 EIS 방식 대비 비용과 복잡성을 현저히 낮추면서도 높은 측정 정밀도를 입증했다ˮ면서 "전기차 뿐만 아니라 에너지저장시스템(ESS)의 배터리 진단 및 성능 향상에도 기여할 수 있을 것ˮ이라고 말했다.
이번 연구 결과는 국제 저명 학술지 `IEEE Transactions on Industrial Electronics (동 분야 상위 2%; IF 7.5)'에 지난 9월 5일 발표됐다.
(논문명 : Small-Perturbation Electrochemical Impedance Spectroscopy System With High Accuracy for High-Capacity Batteries in Electric Vehicles, 링크: https://ieeexplore.ieee.org/document/10666864)
< 그림 2. 전기차용 대용량 배터리의 임피던스 측정 결과 >
한편, 이번 연구는 과학기술정보통신부 한국연구재단의 기초연구사업, 산업통상자원부 한국산업기술기획평가원의 차세대지능형반도체기술개발사업 및 정보통신기획평가원의 인공지능반도체대학원사업의 지원을 받아 수행됐다.
그린수소 또는 배터리 분야 등 청정 에너지의 성능을 높이는데 가장 큰 영향을 미치는 소재 중 하나는 전극이다. 한국 연구진이 차세대 전극 및 촉매로 활용될 수 있는 신소재를 효율적으로 설계하는 인공지능 기술을 개발했다. 이 기술을 통해 친환경 에너지 사회를 촉진하는데 중요한 역할을 할 것으로 기대된다. 우리 대학 기계공학과 이강택 교수 연구팀의 주도로 한국에너지기술연구원 (원장 이창근), 한국지질자원연구원 (원장 이평구), KAIST 신소재공학과 공동 연구팀들과 함께, 인공지능(AI)과 계산화학을 결합해 그린수소 및 배터리에 활용될 수 있는 스피넬 산화물 신소재를 설계하고, 성능과 안정성을 예측할 수 있는 새로운 지표를 개발하는 데 성공했다고 21일 밝혔다. 스피넬 산화물(AB2O4)은 그린수소 또는 배터리 분야의 차세대 촉매 및 전극 물질로 활용되어 산소 환원 반응(ORR)과 산소 발생 반응(OER)의 속도를 향상시킬 수 있는 잠재력이 높은 물질이다. 하지만, 수천 개
2024-11-21친환경 에너지 기반 자동차, 모빌리티, 항공우주 산업군 등에 활용되는 구조배터리는 높은 에너지 밀도를 통한 에너지 저장과 높은 하중 지지의 두 기능을 동시에 충족되어야 한다. 기존 구조배터리 기술은 두 가지 기능이 상충하여 동시에 향상하기 어려웠지만 우리 연구진이 이를 해결하기 위한 기반 기술 개발에 성공했다. 우리 대학 기계공학과 김성수 교수 연구팀이 하중 지지가 가능하고 화재 위험이 없고 얇고 균일한 고밀도 다기능 탄소섬유 복합재료 구조 배터리*를 개발했다고 19일 밝혔다. *다기능 복합재료 구조 배터리(Multifunctional structural batteries): 복합재료를 구성하는 각 소재가 하중 지지 구조체 역할과 에너지 저장 역할을 동시에 수행할 수 있다는 점을 의미 초기의 구조 배터리는 상용 리튬이온전지를 적층형 복합재료에 삽입한 형태로, 기계적-전기화학적 성능 통합 정도가 낮으므로, 이는 소재 가공, 조립 및 설계 최적화에 어려움이 있어 상용화되기
2024-11-19전기자동차에 사용되는 무음극 배터리는 1회 충전에 800㎞ 주행, 1,000회 이상 배터리 재충전이 가능할 것을 전망하는 꿈의 기술로 알려져 있다. 일반적으로 배터리는 양극과 음극으로 구성되는데, 무음극 배터리는 음극이 없어 부피가 감소하여 높은 에너지 밀도를 가지지만 리튬금속 배터리에 비해 성능이 현저하게 낮다는 문제점이 있다. 우리 연구진이 무음극 배터리를 고성능화시킬 방안을 제시했다. 우리 대학 생명화학공학과 최남순 교수 연구팀이 전극 계면에서 일어나는 반응의 비가역성과 계면피막 구조의 변화를 체계적으로 분석해 무음극 배터리의 퇴화 원인을 규명했다고 5일 밝혔다. 최남순 교수 연구팀은 무음극 배터리의 첫 충전 과정에서 구리 집전체 표면과 전착된 리튬 표면에서 바람직하지 않은 전해질 분해반응이 일어나 계면피막 성분이 불안정하게 변한다는 것을 밝혀냈다. 배터리 제조 직후에는 용매가 구리 집전체 표면에 흡착해 초기 계면 피막을 형성하고, 충전시 양극으로부터 구리 집전체
2024-11-05소리는 작은 구멍이나 틈새만으로도 잘 빠져나가는 특징이 있다. 이러한 틈새를 통해 빠져나오는 소리는 보다 넓은 공간까지 잘 전파되며, 틈새를 전혀 막지 않으면서 외부 소리가 안에서 들리지 않게 하거나 내부 소리가 바깥에서 들리지 않도록 하는 것은 음향학적으로도 매우 도전적인 문제다. 우리 연구진이 다양한 산업 현장의 소음 문제 해결에 새로운 솔루션이 될 뿐 아니라 최근 가속화되고 있는 미래 기술인 항공 택시, 드론과 같은 도심 항공 모빌리티 등에서 발생하는 소음을 효과적으로 저감할 수 있는 획기적 기술을 개발했다. 우리 대학 기계공학과 전원주 교수 연구팀이 구조물의 틈새나 개구부를 통한 열 교환과 공기의 흐름은 자유롭게 허용하면서도 소음은 효과적으로 차단하기 위해, 음향 임피던스를 원하는 복소수 값으로 조절할 수 있는 신개념 음향 메타물질인 ‘복소 임피던스 타일’을 개발했다고 6일 밝혔다. 음향 임피던스란 소리가 전파되는 매질(예: 공기, 물)이 가
2024-08-06국제공동연구진이 인공지능 학습을 통해 배터리의 표면 형상만 보고 각 원소의 함량 그리고 충·방전 횟수에 대한 정보를 높은 정확도로 알아내는 영상인식 기술을 개발하여 화제다. 우리 대학 신소재공학과 홍승범 교수가 한국전자통신연구원(ETRI), 미국 드렉셀대학과 공동연구를 통해 다양한 조성과 각기 다른 충·방전 사이클의 NCM 양극재 주사전자현미경 사진을 합성곱 신경망* 기반 인공지능에 학습시켜 주요 원소 함량과 충·방전 상태를 99.6%의 높은 정확도로 맞추는 방법론을 세계 최초로 개발했다고 2일 밝혔다. *합성곱 신경망(콘볼루션 신경망, Convolutional Neural Network, CNN): 시각적 영상을 분석하는 데 사용되는 다층의 피드-포워드적인 인공신경망의 한 종류이다. 연구팀은 반도체 공정에서는 웨이퍼의 불량 검수를 위해 주사전자현미경(SEM)을 사용하는 반면 배터리 공정에서는 그런 경우가 드물고 연구 현장에서만 입자
2024-07-02