< 사진 1.(왼쪽부터) 한국지질자원연구원 정인철 박사, KAIST 오세은 박사과정, 이강택 교수 >
그린수소 또는 배터리 분야 등 청정 에너지의 성능을 높이는데 가장 큰 영향을 미치는 소재 중 하나는 전극이다. 한국 연구진이 차세대 전극 및 촉매로 활용될 수 있는 신소재를 효율적으로 설계하는 인공지능 기술을 개발했다. 이 기술을 통해 친환경 에너지 사회를 촉진하는데 중요한 역할을 할 것으로 기대된다.
우리 대학 기계공학과 이강택 교수 연구팀의 주도로 한국에너지기술연구원 (원장 이창근), 한국지질자원연구원 (원장 이평구), KAIST 신소재공학과 공동 연구팀들과 함께, 인공지능(AI)과 계산화학을 결합해 그린수소 및 배터리에 활용될 수 있는 스피넬 산화물 신소재를 설계하고, 성능과 안정성을 예측할 수 있는 새로운 지표를 개발하는 데 성공했다고 21일 밝혔다.
스피넬 산화물(AB2O4)은 그린수소 또는 배터리 분야의 차세대 촉매 및 전극 물질로 활용되어 산소 환원 반응(ORR)과 산소 발생 반응(OER)의 속도를 향상시킬 수 있는 잠재력이 높은 물질이다. 하지만, 수천 개 이상의 후보군을 일일이 실험으로 성능을 확인하기 위해서는 많은 시간과 노력이 소요된다.
연구팀은 이를 해결하기 위해 AI와 계산화학을 동시에 사용해 1,240개의 스피넬 산화물 후보 물질을 체계적으로 선별하고, 그중 기존 촉매보다 뛰어난 성능을 보일 촉매 물질들을 찾는 데 성공했다.
< 그림 1. Advanced Energy Materials 표지 >
그뿐만 아니라, 연구팀은 이번 연구를 통해서 전공 서적에서 손쉽게 찾아볼 수 있는 원자들의 전기음성도를 바탕으로 스피넬 촉매의 안정성과 성능을 예측할 수 있는 지표를 개발했다.
이로써 기존의 실험 방식에 비해 촉매 설계 과정을 훨씬 더 빠르고 효율적으로 진행할 수 있게 되었다. 또한, 연구팀은 스피넬 산화물에서 산소 이온이 움직일 수 있는 3차원 확산 경로를 발견해, 촉매의 성능을 더욱 향상할 수 있는 메커니즘을 처음으로 규명했다.
< 그림 2. AI 및 계산화학 기반 스피넬 신소재 촉매 스크리닝 프레임워크 >
이강택 교수는 “이번 연구는 인공지능을 통해 신소재의 성능을 빠르고 정확하게 예측할 수 있는 새로운 방법을 제시했다”며, “특히, 이를 통해 그린수소와 배터리 분야에 활용될 수 있는 촉매 및 전극의 개발을 가속화해, 고성능의 친환경 에너지 기술의 발전에 기여할 것”이라고 전했다.
연구팀이 제시한 예측 방법은 기존 실험 방식에 비해 신소재 개발의 효율성을 70배 이상 크게 높였으며, 이러한 성과가 차세대 에너지 변환 및 저장 장치를 위한 소재 개발 연구에 핵심 기술로 자리 잡을 가능성을 높게 보고 있다.
한국에너지기술연구원 이찬우 박사가 공동 교신 저자로 참여하였으며, 한국지질자원연구원 정인철 박사, KAIST 신소재공학과 심윤수 박사가 공동 제1 저자로 참여하고, KAIST 신소재공학과 육종민 교수, 한국지질자원연구원 노기민 박사가 공동 저자로 참여한 이번 연구 결과는 세계적인 학술지‘어드밴스드 에너지 머터리얼즈, Advanced Energy Materials (IF:24.4)’에 중요한 연구 결과임을 인정받아 표지(Inside Front cover) 에 선정됐으며, 24년 10월 21일에 게재됐다. (논문명: A Machine Learning-Enhanced Framework for the Accelerated Development of Spinel Oxide Electrocatalysts)
< 그림 3. 양이온 전기음성도 지표에 따른 스피넬 산화물의 안정성, 촉매 활성도 및 전기화학적 메커니즘 상관관계 >
한편, 이번 연구는 과학기술정보통신부의 개인기초 연구사업, 집단기초연구사업, 그리고 국가과학기술연구회 창의형 융합연구사업의 지원을 받아 수행됐다.
친환경 에너지 기반 자동차, 모빌리티, 항공우주 산업군 등에 활용되는 구조배터리는 높은 에너지 밀도를 통한 에너지 저장과 높은 하중 지지의 두 기능을 동시에 충족되어야 한다. 기존 구조배터리 기술은 두 가지 기능이 상충하여 동시에 향상하기 어려웠지만 우리 연구진이 이를 해결하기 위한 기반 기술 개발에 성공했다. 우리 대학 기계공학과 김성수 교수 연구팀이 하중 지지가 가능하고 화재 위험이 없고 얇고 균일한 고밀도 다기능 탄소섬유 복합재료 구조 배터리*를 개발했다고 19일 밝혔다. *다기능 복합재료 구조 배터리(Multifunctional structural batteries): 복합재료를 구성하는 각 소재가 하중 지지 구조체 역할과 에너지 저장 역할을 동시에 수행할 수 있다는 점을 의미 초기의 구조 배터리는 상용 리튬이온전지를 적층형 복합재료에 삽입한 형태로, 기계적-전기화학적 성능 통합 정도가 낮으므로, 이는 소재 가공, 조립 및 설계 최적화에 어려움이 있어 상용화되기
2024-11-19우리 대학이 12일(화) 오전 대전 인터시티호텔에서 ‘제1회 한국인공지능시스템포럼(이하 KAISF) 조찬 강연회’를 개최했다. 이는 우리 대학 인공지능반도체대학원이 AI 기술에 관련 미래와 혁신 등에 대해 다양한 분야의 전문가들이 함께 논의하는 장을 열고자 추진됐다. 총 77명의 전문가가 참석한 이번 행사에는 이광형 총장, 홍진배 정보통신기획평가원장, 방승찬 한국전자통신연구원장 등이 축사를 전했다. 이어서 ▲칩렛 이종 집적 첨단 패키지 기반 페타플롭스급 고성능 PIM 설계(한진호 한국전자통신연구원 PIM인공지능반도체연구실장) ▲자율주행·자율 행동체 연구개발사업 소개(최정단 한국전자통신연구원 모빌리티로봇연구본부장)에 대해 발표했다. 이후 인공지능 반도체 설계 전문 기업인 리벨리온(Rebellions)의 박성현 대표가 ‘인공지능 반도체와 리벨리온의 여정’을 주제로 강연을 진행했다. 박성현 리벨리온 대표는 강연에서 &ldq
2024-11-12최근 건강에 관한 관심이 점차 커지면서 일상생활에서 스마트 워치, 스마트 링 등을 통해 자기 신체 변화를 살펴보는 일이 보편화되었다. 그런데 기존 헬스케어 앱에서는 걷기에서 뛰기로 갑자기 변화를 줄 경우는 잘 측정이 되지만 천천히 속도를 높이는 경우는 측정이 안 되는 현상이 발생했다. 우리 연구진이 완만한 변화에도 동작을 정확하게 파악하는 기술을 개발했다. 우리 대학 전산학부 이재길 교수 연구팀이 다양한 착용 기기 센서 데이터에서 사용자 상태 변화를 정확하게 검출하는 새로운 인공지능 기술을 개발했다고 12일 밝혔다. 보통 헬스케어 앱에서는 센서 데이터를 통해 사용자의 상태 변화를 탐지하여 현재 동작을 정확히 인식하는 기능이 필수이다. 이를 변화점 탐지라 부르며 다양한 인공지능 기술이 변화점 탐지 품질을 향상하기 위해 적용되고 있다. 이재길 교수팀은 사용자의 상태가 급진적으로 변하거나 점진적으로 변하는지에 관계없이 정확하게 잘 동작하는 변화점 탐지 방법론을 개발했다.
2024-11-12우리 대학 문술미래전략대학원 전우정 교수가 우리나라 법학자 최초로 세계 최고 과학 학술지인 네이처(Nature)의 자매지 ‘네이처 일렉트로닉스(Nature Electronics)'의 코리스판던스(Correspondance) 섹션에 군사 AI 통제의 과학적 도전에 관한 기고문을 게재했다고 8일 밝혔다. 지난 9월 9일부터 10일까지 서울에서 개최된 ‘2024 인공지능(AI)의 책임 있는 군사적 이용에 관한 고위급 회의(REAIM 2024)'에서 군사 AI 거버넌스에 중요한 진전이 이뤄졌다. 우리나라 뿐만 아니라 네덜란드, 싱가포르, 케냐, 영국이 공동 주최국으로 참여한 이 회의에서 미국, 독일, 프랑스, 일본 등 61개국이 ‘행동을 위한 청사진(Blueprint for Action)'을 채택했다. 이후 두 개 국가가 추가로 동참해 현재 총 63개국이 채택하고 있다. 전우정 교수는 이번 기고문에서 군사 분야의 AI 활용에 대한 이러한 원칙들을
2024-11-08전기자동차에 사용되는 무음극 배터리는 1회 충전에 800㎞ 주행, 1,000회 이상 배터리 재충전이 가능할 것을 전망하는 꿈의 기술로 알려져 있다. 일반적으로 배터리는 양극과 음극으로 구성되는데, 무음극 배터리는 음극이 없어 부피가 감소하여 높은 에너지 밀도를 가지지만 리튬금속 배터리에 비해 성능이 현저하게 낮다는 문제점이 있다. 우리 연구진이 무음극 배터리를 고성능화시킬 방안을 제시했다. 우리 대학 생명화학공학과 최남순 교수 연구팀이 전극 계면에서 일어나는 반응의 비가역성과 계면피막 구조의 변화를 체계적으로 분석해 무음극 배터리의 퇴화 원인을 규명했다고 5일 밝혔다. 최남순 교수 연구팀은 무음극 배터리의 첫 충전 과정에서 구리 집전체 표면과 전착된 리튬 표면에서 바람직하지 않은 전해질 분해반응이 일어나 계면피막 성분이 불안정하게 변한다는 것을 밝혀냈다. 배터리 제조 직후에는 용매가 구리 집전체 표면에 흡착해 초기 계면 피막을 형성하고, 충전시 양극으로부터 구리 집전체
2024-11-05