< (왼쪽부터) 반도체공학대학원 김은영 박사과정, 신소재공학과 김경민 교수, 신소재공학과 김도훈 박사과정, (상단사진 왼쪽부터) 신소재공학과 정운형 박사, 신소재공학과 김근영 박사 >
뉴랜지스터(Neuransistor)는 ‘뉴런(Neuron) + 트랜지스터(Transistor)’의 합성어로 뇌의 뉴런 특성을 구현하는 트랜지스터라는 의미로 만들어진 새로운 용어이다. 이는 뇌 속 신경세포(뉴런)의 흥분과 억제 반응을 모방하여 시간에 따라 달라지는 정보를 스스로 처리하고 학습할 수 있는 차세대 인공지능 하드웨어의 핵심 반도체 소자다. KAIST 연구진이 뉴랜지스터의 개념을 제시하고 최초로 뉴랜지스터를 개발하는데 성공했다.
우리 대학 신소재공학과 김경민 교수 연구팀이 시간에 따라 변화하는 정보를 효과적으로 처리할 수 있는 액체 상태 기계(Liquid State Machine, 이하 LSM)*의 하드웨어 구현을 가능케 하는 뉴랜지스터 소자 개발에 성공했다.
* 액체상태 기계(LSM): 생물학적 신경망의 동적 특성을 모사해, 시간에 따라 변화하는 입력 데이터를 처리하는 스파이킹 뉴럴 네트워크 모델
현재의 컴퓨터는 동영상과 같이 시간 흐름에 따라 변하는 데이터인 시계열 데이터를 분석하는데 복잡한 알고리즘을 사용하며, 이는 매우 많은 시간과 전력 소모를 필요로 했다.
< 그림 1. 뉴랜지스터는 흥분성(EPSP)과 억제성(IPSP) 신경 동역학을 동시에 구현할 수 있으며, 뇌와 유사한 LSM 구조에 적용될 수 있다. 뇌의 신경망은 이러한 흥분과 억제를 통해 E/I 균형을 유지하며 정보를 처리하고, LSM 또한 이러한 노드를 기반으로 아날로그 입력을 처리하고 출력을 생성한다. 뉴랜지스터 기반 하드웨어 LSM에서는 각각의 뉴랜지스터가 입력을 다양한 방식으로 인코딩하고, 이들의 가중 합을 통해 최종 출력이 생성된다. >
김경민 교수 연구팀은 이러한 난제를 해결하며 뇌 속 뉴런처럼 흥분하거나 억제되는 반응을 전기 신호만으로 동시에 구현하여 시계열 데이터의 정보 처리에 특화된 단일 반도체 소자를 새롭게 설계했다.
해당 소자는 산화 티타늄(TiO2)과 산화 알루미늄(Al2O3)이라는 두 산화물층을 쌓아 만든 구조로, 두 층이 맞닿는 계면에서는 전자가 자유롭게 빠르게 이동하는 이차원 전자가스(2DEG)** 층이 형성된다. 그리고, 이 층의 양 끝에는 흥분성 및 억제성 신호에 모두 반응하는 뉴런형 소자가 연결되어 있다.
**2DEG(Two-Dimensional Electron Gas): 계면에서 전도성이 우수한 전자 층이 형성되는 현상으로, 높은 이동도와 빠른 응답속도를 제공함
이러한 독특한 구조 덕분에 뉴랜지스터는 게이트 전압의 극성에 따라 소스와 드레인 간에 흥분성(EPSP) 또는 억제성(IPSP) 반응을 선택적으로 구현할 수 있다.
이 소자는 또한 기존 LSM 구현에서 필수적이었던 복잡한 입력 신호 전처리 과정(마스킹)도 간단히 해결했다. 기존에는 '마스킹' 기능 구현이 매우 복잡했으나, 뉴랜지스터는 소스 전극에 가해지는 전압을 조절함으로써 간단하게 마스킹 기능을 구현하고, 시계열 입력 신호를 다차원의 출력 정보로 정확하게 변환하였다. 또한, 높은 내구성과 소자 간의 균일성도 확보해 실용성도 역시 뛰어났다.
< 그림 2. 뉴랜지스터 소자의 특성을 활용한 혼돈 상태 예측 특성. 뉴랜지스터 소자는 게이트 전압 조건에 따라 양방향 전도 특성을 보이며, 특히 소스 전압을 통한 추가적인 신호 변조가 가능하여 풍부한 시공간 동역학을 구현할 수 있다. 이를 이용하여 로렌츠 어트랙터와 같은 복잡한 시계열 데이터 학습 및 예측이 가능하다. >
연구팀은 뉴랜지스터를 기반으로 복잡한 시계열 데이터를 처리하는 ‘두뇌형 정보처리 시스템’인 LSM을 구현하였다. 실험 결과, 뉴랜지스터를 활용하는 경우 기존의 방식보다 10배 이상 낮은 오차율과 높은 예측 정확도를 기록했고, 학습 속도도 더 빨라졌다.
김경민 교수는 “이번 연구는 인간 뇌의 신호 처리 방식과 유사한 구조를 실제 반도체 소자로 구현했다는 데 큰 의의가 있다”며 “이 기술은 향후 뇌신경 모사형 AI, 예측 시스템, 혼돈 신호 제어 등 다양한 분야에서 중요한 역할을 할 것으로 기대된다”고 전했다.
이번 연구는 신소재공학과 정운형 박사, 김근영 박사가 공동 제1 저자로 참여했으며, 재료 분야 세계적 권위의 국제 학술지 ‘어드밴스드 머터리얼즈(Advanced Materials, IF: 27.4)’에 2025년 4월 8일 字 게재됐다.
(논문명: A Neuransistor with Excitatory and Inhibitory Neuronal Behaviors for Liquid State Machine, DOI: 10.1002/adma.202419122)
한편, 이번 연구는 나노종합기술원, 한국연구재단의 지원을 받아 수행됐다.
생명과학 분야의 ‘노벨상 펀드’로 불리며, 지금까지 31명의 노벨상 수상자를 배출한 ‘휴먼 프론티어 사이언스 프로그램(HFSP)’에서 우리 대학 연구진이 2025년 수상자로 선정됐다. 이번 수상은 KAIST의 학제 간 융합연구와 혁신적 연구 역량이 다시 한 번 전 세계적으로 인정받았다는 점에서 큰 의미를 가진다. 우리 대학 전기및전자공학부 윤영규 교수와 바이오및뇌공학과 신우정 교수가 2025년 휴먼 프론티어 사이언스 프로그램(HFSP) 상을 받게 됐다고 1일 밝혔다. 두 교수는 올해 첫 선정자를 배출한 액셀러레이터 트랙에 선정되어 향후 2년간 약 10만 달러를 지원받게 된다. 휴먼 프론티어 사이언스 프로그램(HFSP)은 생명과학 분야 세계 최고 권위의 국제 연구 지원 프로그램으로, 독창적인 학제 간 융합 국제공동연구를 수행할 역량이 있는 연구자를 선별, 새로운 접근법으로 생명 기전을 밝히는 연구를 지원하자는 취지로 1997년 G7
2025-04-01우리 대학 뇌인지과학과 백세범 교수가 세계적 권위의 과학 학술지인 사이언스 어드밴시스 (Science Advances)의 신경과학 (Neuroscience) 분과 부편집장(Associate Editor)으로 임명됐다고 14일 밝혔다. 이는 계산 신경과학 기반의 뇌 연구를 선도하고 있는 연구자인 백세범 교수의 탁월한 학문적 영향력과 학술적 소통 역량이 세계적으로 인정받은 성과다. 백세범 교수는 신경과학의 난제 중 하나였던 시각피질 뇌 지도 발생의 원리*를 세계 최초로 밝힌 이래, 지난 10여 년간의 연구를 통해 독창적인 이론 연구의 전문성을 인정받고 있다. *시각피질 뇌 지도 발생의 원리: 포유류의 시각피질에서는 서로 다른 시각 정보(예: 색상, 방향 등)에 선택적으로 반응하는 신경세포들이 일정한 패턴을 이루며 배치되어 있는데 이를 기능성 뇌 지도(functional map)라고 함. 이 연구에서는 수학적 모델에 기반한 컴퓨터 시뮬레이션을 통하여 망막에 있는 신경세포들이
2025-03-14뇌의 맥락 추론 방식이 챗지피티 같은 대규모 인공지능 모델과 어떻게 다를까? 우리 연구진이 ‘뇌처럼 생각하는 인공지능’기술로서 과도한 자신감을 보이는 인공지능의 할루시네이션(Hallucination) 현상을 완화하거나 인간이나 동물과 유사하게 스스로 가설을 세워 검증하는 신개념 인공지능 모델을 개발하는데 성공했다. 우리 대학 뇌인지과학과 이상완 교수(신경과학-인공지능 융합연구센터장)와 생명과학과 정민환 교수(IBS 시냅스 뇌질환 연구단 부연구단장) 연구팀이 동물이 가설을 세워 일관된 행동 전략을 유지함과 동시에, 본인의 가설을 스스로 의심하고 검증하면서 상황에 빠르게 적응하는 새로운 강화학습 이론을 제시하고 뇌과학적 원리를 규명했다고 20일 밝혔다. 현재 상황에 맞게 행동의 일관성과 유동성 사이의 적절한 균형점을 찾아가는 문제를 ‘안정성-유동성의 딜레마(Stability-flexibility dilemma)’라 한다. 이를 위해서
2025-02-27우리 대학은 미래 첨단 디지털 바이오 시대를 대비하여 연구 투자 및 산학협력을 확대하고자 1월 9일 서울 도곡캠퍼스에서 (주)에이티앤씨(AT&C, 대표 이종원)와 포괄적인 상호협력 협약을 체결한다고 9일 밝혔다. 노인성 치매는 빠르게 증가하는 뇌질환으로써 65세 노인 인구의 10%를 차지하며 85세 이상의 경우 약 38%가 치매를 앓고 있다. 알츠하이머병은 가장 많은 노인성 치매 질환이며 최근에는 40세 이상 인구에서 유병율이 빠르게 증가하고 있으나 효과적인 치료제가 없는 실정이다. 정부는 2020년부터 2029년까지 총 1조 1,054억 원을 치매 연구개발사업에 투자하여 치매 환자 증가 속도를 50% 감소시키는 것을 목표로 하고 있다. 치매치료제를 개발하는 데에는 많은 시간과 비용이 들기 때문에 보다 빠르게 치매 치료에 적용할 수 있는 디지털 치료제의 개발이 절실하다. 디지털헬스케어기업인 (주)에이티앤씨는 자기장을 이용한 경두개 자기자극술(TMS) 기반의 이미
2025-01-09우리 대학은 대전 본원 창의학습관에서 ‘KAIST 명상과학연구소(소장 김완두)’의 증축 개관식을 1월 3일(금)에 개최한다고 2일 밝혔다. 명상과학연구소는 2018년 ‘인류의 행복과 번영을 위한 명상과 과학의 융복합 연구’라는 미션을 기반으로 설립한 연구소로, 2022년 신설된 뇌인지과학과와 연구 협력을 통해 명상의 신경과학적 연구를 확대하고 명상과학을 이끌어나갈 공감형 교육자를 양성하는데 주력하고 있다. 재단법인 플라톤 아카데미에서 지원하여 설립된 명상과학연구소는 (주)SK디스커버리에서 연구소 공간 위해 기부금을 출현하여 증축하게 되었다. 보다 심화된 연구와 교육 프로그램 구축을 위해 창의학습관 5층에 확장된 형태의 연구소를 완공하고, ▲최첨단 연구 장비 ▲명상과학 실험실 ▲VR/XR 기반 명상 체험실 ▲대형 디지털 아트 명상홀 ▲개인 명상홀 등을 구축했다. 특히 ▲뇌-컴퓨터 인터페이스 기술 ▲명상 웨어러블 디바이스
2025-01-02