< (왼쪽부터) 생명화학공학과 김지한 교수, 임윤성 박사과정, 박현수 박사 >
기후 위기를 막기 위해 이미 배출된 이산화탄소를 적극적으로 줄이는 것이 필수적이며, 이를 위해 공기 중 이산화탄소만 직접 포집하는 기술(Direct Air Capture, 이하 DAC)이 주목받고 있다. 하지만 공기 중에 존재하는 수증기(H₂O)로 인해 이산화탄소만 효과적으로 포집하는 것이 쉽지 않다. 이 기술의 핵심 소재로 연구되는 금속–유기 구조체(Metal-Organic Frameworks, 이하 MOF)를 활용해 우리 연구진이 AI 기반 기계학습 기술을 적용, MOF 중에서 가장 유망한 탄소 포집 후보 소재들을 찾아내는 데 성공했다.
우리 대학 생명화학공학과 김지한 교수 연구팀이 임페리얼 칼리지 런던(Imperial College London) 연구팀과 공동 연구를 통해 대기 중 이산화탄소 포집에 적합한 MOF를 빠르고 정확하게 선별할 수 있는 기계학습 기반 시뮬레이션 기법을 개발했다고 29일 밝혔다.
복잡한 구조와 분자 간 상호작용의 예측 한계로 인해 고성능 소재를 찾는 데 큰 제약을 극복하기 위해, 연구팀은 MOF와 이산화탄소(CO2), 물(H2O) 사이의 상호작용을 정밀하게 예측할 수 있는 기계학습(머신러닝) 기반 역장(Machine Learning Force Field, MLFF)을 개발하고, 이를 통해 양자역학 수준의 예측 정확도를 유지하면서도 기존보다 월등히 빠른 속도로 MOF 소재들의 흡착 물성을 계산할 수 있도록 했다.
< 그림 1. 직접공기포집(Direct Air Capture, DAC) 기술과 금속-유기 구조체(Metal-Organic Frameworks, MOF)의 탄소 포집 개념도. MOF는 대기 중 이산화탄소를 포집할 수 있는 유망한 다공성 소재로, DAC 기술의 핵심 소재로 주목받고 있다. >
연구팀은 개발된 시스템을 활용해 8,000여 개의 실험적으로 합성된 MOF 구조를 대규모 스크리닝한 결과, 100개 이상의 유망한 탄소 포집 후보 소재를 발굴했다. 특히 기존의 고전 역장 기반 시뮬레이션으로는 확인되지 않았던 새로운 후보 소재들을 제시했으며, MOF의 화학 구조와 흡착 성능 간의 상관관계를 분석해 DAC용 소재 설계에 유용한 7가지 핵심 화학적 특징도 함께 제안했다.
이번 연구는 MOF–CO2 및 MOF-H2O 간 상호작용을 정밀하게 예측함으로써, DAC 분야의 소재 설계 및 시뮬레이션 기술을 크게 향상한 사례로 평가된다.
< 그림 2. 머신러닝 기반 역장(Machine Learning Force Field, MLFF)을 활용한 흡착 시뮬레이션 개념도. 개발된 MLFF는 다양한 MOF 구조에 적용 가능하며, 반복적인 위돔 삽입 시뮬레이션 과정에서 상호작용 에너지를 예측하여 흡착 물성을 정밀하게 계산할 수 있게 한다. 기존 고전 역장 대비 높은 정확도와 낮은 계산 비용을 동시에 달성하는 것이 특징이다. >
우리 대학 생명화학공학과 임윤성 박사과정과 박현수 박사가 공동 제1 저자로 참여한 이번 연구 결과는 국제 학술지 `매터 (Matter)'에 지난 6월 12일 게재됐다.
※논문명: Accelerating CO2 direct air capture screening for metal-organic frameworks with a transferable machine learning force field
※DOI: 10.1016/j.matt.2025.102203
한편, 이번 연구는 Saudi Aramco-KAIST CO2 Management Center와 과학기술정보통신부의 글로벌 C.L.E.A.N. 사업의 지원을 받아 수행됐다.
생성형 AI 기술이 발전하면서 이를 악용한 온라인 여론 조작 우려가 커지고 있다. 이에 따른 AI 생성글 탐지 기술도 개발되었는데 대부분 영어로 된 장문의 정형화된 글을 기반으로 개발돼, 짧고(평균 51자), 구어체 표현이 많은 한국어 뉴스 댓글에는 적용이 어려웠다. 우리 연구진이 한국어 AI 생성 댓글을 탐지하는 기술을 개발해서 화제다. 우리 대학 전기및전자공학부 김용대 교수 연구팀이 국가보안기술연구소(국보연)와 협력해, 한국어 AI 생성 댓글을 탐지하는 기술 'XDAC'를 세계 최초로 개발했다고 23일 밝혔다. 최근 생성형 AI는 뉴스 기사 맥락에 맞춰 감정과 논조까지 조절할 수 있으며, 몇 시간 만에 수십만 개의 댓글을 자동 생성할 수 있어 여론 조작에 악용될 수 있다. OpenAI의 GPT-4o API를 기준으로 하면 댓글 1개 생성 비용은 약 1원 수준이며, 국내 주요 뉴스 플랫폼의 하루 평균 댓글 수인 20만 개를 생성하는 데 단 20만 원이면 가능할 정도다.
2025-06-24기후 변화와 지구온난화를 막기 위해서는 이산화탄소(CO2)가 ‘얼마나’ 배출되고 있는지를 정확히 파악하는 것이 핵심이다. 이를 가능하게 하는 것이 바로 이산화탄소 모니터링 기술이다. 최근 한국 연구진이 외부 전력 없이도 이산화탄소 농도를 실시간 측정하고 무선으로 전송할 수 있는 시스템을 개발해 환경 모니터링 기술의 새로운 가능성을 열었다. 우리 대학 전기및전자공학부 권경하 교수 연구팀이 중앙대학교 류한준 교수팀과 공동연구를 통해, 주변의 미세 진동 에너지를 수확해 이산화탄소 농도를 주기적으로 측정할 수 있는 자가발전형 무선 모니터링 시스템을 개발했다고 9일 밝혔다. 지구온난화의 주요 원인인 이산화탄소 배출은 산업계의 지속가능성 평가 지표로 자리 잡고 있으며, 유럽연합(EU)은 이미 공장 배출량 규제를 도입한 상태다. 이러한 규제 흐름에 따라, 효율적이고 지속 가능한 이산화탄소 모니터링 시스템은 환경 관리와 산업 공정 제어에 필수적인 요소로 주목받고 있
2025-06-09지구 온난화의 주범인 이산화탄소를 시장 가치가 높은 화학물질로 전환할 수만 있다면, 환경 문제를 해결함과 동시에 높은 경제적 가치를 창출할 수 있다. 국내 연구진이 이산화탄소(CO2)를 일산화탄소(CO)로 전환하는 고성능 ‘세라믹 전해전지’를 개발하여 탄소중립 실현을 위한 핵심 기술로 주목받고 있다. 우리 대학 기계공학과 이강택 교수 연구팀이 신소재 세라믹 나노 복합섬유를 개발해 현존 최고 성능의 이산화탄소 분해 성능을 갖는 세라믹 전해전지를 개발하는 데 성공했다고 1일 밝혔다. 세라믹 전해전지(SOEC)는 이산화탄소를 가치 있는 화학물질로 전환할 수 있는 유망한 에너지 변환 기술로 낮은 배출량과 높은 효율성이라는 추가적인 이점이 있다. 하지만 기존 세라믹 전해전지는 작동 온도가 800℃ 이상으로, 유지 비용이 크고 안정성이 낮아 상용화에 한계가 있었다. 이에 연구팀은 전기가 잘 통하는 ‘초이온전도체’ 소재를 기존 전극에 함
2025-04-01이산화탄소는 주요 호흡 대사 산물로서, 날숨 내 이산화탄소 농도의 지속적인 모니터링은 호흡·순환기계 질병을 조기 발견 및 진단하는 데 중요한 지표가 될 뿐만 아니라, 개인 운동 상태 모니터링 등에 폭넓게 사용될 수 있다. 우리 연구진이 마스크 내부에 부착하여 이산화탄소 농도를 정확히 측정하는데 성공했다. 우리 대학 전기및전자공학부 유승협 교수 연구팀이 실시간으로 안정적인 호흡 모니터링이 가능한 저전력 고속 웨어러블 이산화탄소 센서를 개발했다고 10일 밝혔다. 기존 비침습적 이산화탄소 센서는 부피가 크고 소비전력이 높다는 한계가 있었다. 특히 형광 분자를 이용한 광화학적 이산화탄소 센서는 소형화 및 경량화가 가능하다는 장점에도 불구하고, 염료 분자의 광 열화 현상으로 인해 장시간 안정적 사용이 어려워 웨어러블 헬스케어 센서로 사용되는 데 제약이 있었다. 광화학적 이산화탄소 센서는 형광 분자에서 방출되는 형광의 세기가 이산화탄소 농도에 따라 감소하는 점을 이용하
2025-02-10세계적으로 기후 변화와 탄소 배출 문제의 심각성이 대두되면서 이산화탄소(CO2)를 화학 연료와 화합물 등의 자원으로 전환해서 활용하는 기술이 절실한 상황이다. 우리 대학 화학과 박정영 교수 연구팀이 한국재료연구원 나노재료연구본부 박다희 박사 연구팀과 공동연구를 통해 이산화탄소(CO2) 전환 효율을 크게 향상하는 촉매 기술을 개발했다. 기존의 이산화탄소(CO2) 전환 기술은 높은 에너지를 소비하는 것에 비해 효율은 낮아 상용화가 어렵다. 특히, 단원자 촉매(SACs)는 촉매 합성이 복잡하고, 금속 산화물 지지체(촉매 입자를 안정적으로 유지하거나 내구성을 높이는 역할)와 결합 안정성을 유지하기 어려워 촉매 성능이 떨어졌다. 이러한 한계를 극복하기 위해 연구팀은 단일 및 이중 단원자 촉매 기술을 개발하고 간단한 공정으로 촉매 효율을 높이는 기술을 선보였다. 본 성과는 이중 단원자 촉매(DSACs)로 금속 간 전자 상호작용을 적극 활용해 기존보다 50% 이상 높은 전환율과 우수한
2025-01-23