본문 바로가기
대메뉴 바로가기
KAIST
연구뉴스
유틸열기
홈페이지 통합검색
-
검색
메뉴 열기
%EA%B3%B5%EA%B3%BC%EB%8C%80%ED%95%99
최신순
조회순
AI로 방사성 오염 '아이오딘' 제거용 최적 신소재 발굴
원자력 에너지 활용에 있어 방사성 폐기물 관리는 핵심적인 과제 중 하나다. 특히 방사성 ‘아이오딘(요오드)’는 반감기가 길고(I-129의 경우 1,570만 년), 이동성 및 생체 유독성이 높아 환경 및 인체에 심각한 위험을 초래할 수 있다. 한국 연구진이 인공지능을 활용해 아이오딘을 제거할 원자력 환경 정화용 신소재 발굴에 성공했다. 연구팀은 향후 방사성 오염 흡착용 분말부터 오염수 처리 필터까지 다양한 산학협력을 통해 상용화를 추진할 예정이다. 우리 대학 원자력및양자공학과 류호진 교수 연구팀이 한국화학연구원 디지털화학연구센터 노주환 박사가 협력하여, 인공지능을 활용해 방사성 오염 물질이 될 수 있는 아이오딘을 효과적으로 제거하는 신소재를 발굴하는 기술을 개발했다고 2일 밝혔다. 최근 보고에 따르면 방사능 오염 물질인 아이오딘이 수용액 환경에서 아이오딘산염(IO3-) 형태로 존재하는 것으로 밝혀졌으나, 기존의 은 기반 흡착제는 이에 대해 낮은 화학적 흡착력을 가져 비효율적이었다. 따라서 아이오딘산염을 효과적으로 제거할 수 있는 새로운 흡착제 신소재 개발이 시급한 실정이다. 류호진 교수 연구팀은 기계학습을 활용한 실험 전략을 통해 다양한 금속원소를 함유한 ‘이중층 수산화물(Layered Double Hydroxide, 이하 LDH)’이라는 화합물 중 최적의 아이오딘산염 흡착제를 발굴했다. 이번 연구에서 개발된 구리-크롬-철-알루미늄 기반의 다중금속 이중층 수산화물 Cu3(CrFeAl)은 아이오딘산염에 대해 90% 이상의 뛰어난 흡착 성능을 보였다. 이는 기존의 시행착오 실험 방식으로는 탐색이 어려운 방대한 물질 조성 공간을 인공지능 기반의 능동학습법을 통해 효율적으로 탐색해 얻어낸 성과다. 연구팀은 이중층 수산화물(이하 LDH)이 고엔트로피 재료와 같이 다양한 금속 조성을 가질 수 있고 음이온 흡착에 유리한 구조를 지녔다는 점에 주목했다. 그러나 다중금속 LDH의 경우 가능한 금속 조합이 너무 많아 기존의 실험 방식으로는 최적의 조합을 찾기 어려웠다. 이를 해결하기 위해 연구팀은 인공지능(기계학습)을 도입했다. 초기 24개의 2원계 및 96개의 3원계 LDH 실험 데이터로 학습을 시작해, 4원계 및 5원계 후보 물질로 탐색을 확장했다. 이 결과 전체 후보 물질 중 단 16%에 대해서만 실험을 수행하고도 아이오딘산염 제거에 최적인 신소재 물질을 찾아낼 수 있었다. 류호진 교수는 “인공지능을 활용하면 방대한 신소재 후보 물질 군에서 방사성 오염 제거용 물질을 효율적으로 찾아낼 가능성을 보여, 원자력 환경 정화용 신소재 개발에 필요한 연구를 가속화하는데 기여할 것으로 기대된다”고 말했다. 류 교수 연구팀은 개발된 분말 기술에 대한 국내 특허를 출원했으며 이를 기반으로 해외 특허 출원을 진행 중이다. 연구팀은 향후 방사성 오염 흡착용 분말의 다양한 사용 환경에서의 성능을 고도화하고, 오염수 처리 필터 개발 분야에서 산학 협력을 통한 상용화 방안을 추진할 예정이다. 우리 대학 신소재공학과를 졸업한 이수정 박사와 한국화학연구원 디지털화학연구센터 노주환 박사가 제1 저자로 참여한 이번 연구는 이번 연구 결과는 환경 분야 국제 저명 학술지인 ‘위험물질 저널(Journal of Hazardous Materials)'에 5월 26일 온라인 게재됐다. ※논문명: Discovery of multi-metal-layered double hydroxides for decontamination of iodate by machine learning-assisted experiments ※DOI: https://doi.org/10.1016/j.jhazmat.2025.138735 이번 연구는 과학기술정보통신부 한국연구재단의 원자력기초연구지원사업과 나노·소재기술개발사업의 지원으로 수행됐다.
2025.07.02
조회수 5
기계공학과 윤국진 교수 연구팀, 세계 최고 권위 컴퓨터비전 국제학술대회 ICCV 2025에 논문 12편 채택
우리 대학 기계공학과 윤국진 교수 연구팀의 논문 12편이 세계 최고 권위 컴퓨터비전 국제 학술 대회 중 하나인 IEEE/CVF International Conference on Computer Vision 2025(ICCV 2025)에 채택되어, 연구팀의 독보적인 연구 역량을 다시 한번 국제적으로 인정받았다. ICCV는 CVPR, ECCV와 함께 컴퓨터비전 및 인공지능 분야에서 가장 영향력 있는 국제 학술대회 중 하나로, 1987년부터 격년으로 개최되어 왔다. 이번 ICCV 2025에는 총 11,152편의 논문이 제출되었고, 이 중 2,698편이 채택되어 약 24.19%의 낮은 채택률을 기록하였다. 학술대회에 제출할 수 있는 논문 편수에 대한 제한이 있음에도 불구하고 단일 연구실에서 12편의 논문이 동시 채택되는 것은 매우 드문 성과다. 윤국진 교수 연구팀은 학습 기반의 시각 지능 구현을 목표로 연구를 진행하고 있으며, 이번에 발표된 12편의 논문들은 3D 객체 탐지 및 재구성, 동작 예측 및 계획, 악천후나 모션 블러와 같은 극한 환경에서의 영상 인식 및 개선, 테스트 시점 적응 및 멀티태스크 학습, 4D 맵을 활용한 재구성과 같은 컴퓨터비전 분야의 핵심 주제들에 대한 논문들이다. 특히 연구팀은 지난해 CVPR 2024와 ECCV 2024에서도 각각 9편과 12편의 논문을 발표하여 학계의 주목을 받은 바 있는데, 이번 ICCV 2025에서의 성과를 통해 전 세계 컴퓨터 비전 분야의 선두 연구실로서 입지를 더욱 확고히 했다. 연구팀은 앞으로도 도전적인 연구를 이어가며 학문적·기술적 한계를 확장해 나갈 계획이다. ICCV 2025는 오는 10월 19일부터 23일까지 미국 하와이 호놀룰루에서 개최될 예정이다.
2025.06.30
조회수 284
이산화탄소만 잡아내는 유망 소재를 AI로 쉽게 찾는다
기후 위기를 막기 위해 이미 배출된 이산화탄소를 적극적으로 줄이는 것이 필수적이며, 이를 위해 공기 중 이산화탄소만 직접 포집하는 기술(Direct Air Capture, 이하 DAC)이 주목받고 있다. 하지만 공기 중에 존재하는 수증기(H₂O)로 인해 이산화탄소만 효과적으로 포집하는 것이 쉽지 않다. 이 기술의 핵심 소재로 연구되는 금속–유기 구조체(Metal-Organic Frameworks, 이하 MOF)를 활용해 우리 연구진이 AI 기반 기계학습 기술을 적용, MOF 중에서 가장 유망한 탄소 포집 후보 소재들을 찾아내는 데 성공했다. 우리 대학 생명화학공학과 김지한 교수 연구팀이 임페리얼 칼리지 런던(Imperial College London) 연구팀과 공동 연구를 통해 대기 중 이산화탄소 포집에 적합한 MOF를 빠르고 정확하게 선별할 수 있는 기계학습 기반 시뮬레이션 기법을 개발했다고 29일 밝혔다. 복잡한 구조와 분자 간 상호작용의 예측 한계로 인해 고성능 소재를 찾는 데 큰 제약을 극복하기 위해, 연구팀은 MOF와 이산화탄소(CO2), 물(H2O) 사이의 상호작용을 정밀하게 예측할 수 있는 기계학습(머신러닝) 기반 역장(Machine Learning Force Field, MLFF)을 개발하고, 이를 통해 양자역학 수준의 예측 정확도를 유지하면서도 기존보다 월등히 빠른 속도로 MOF 소재들의 흡착 물성을 계산할 수 있도록 했다. 연구팀은 개발된 시스템을 활용해 8,000여 개의 실험적으로 합성된 MOF 구조를 대규모 스크리닝한 결과, 100개 이상의 유망한 탄소 포집 후보 소재를 발굴했다. 특히 기존의 고전 역장 기반 시뮬레이션으로는 확인되지 않았던 새로운 후보 소재들을 제시했으며, MOF의 화학 구조와 흡착 성능 간의 상관관계를 분석해 DAC용 소재 설계에 유용한 7가지 핵심 화학적 특징도 함께 제안했다. 이번 연구는 MOF–CO2 및 MOF-H2O 간 상호작용을 정밀하게 예측함으로써, DAC 분야의 소재 설계 및 시뮬레이션 기술을 크게 향상한 사례로 평가된다. 우리 대학 생명화학공학과 임윤성 박사과정과 박현수 박사가 공동 제1 저자로 참여한 이번 연구 결과는 국제 학술지 `매터 (Matter)'에 지난 6월 12일 게재됐다. ※논문명: Accelerating CO2 direct air capture screening for metal-organic frameworks with a transferable machine learning force field ※DOI: 10.1016/j.matt.2025.102203 한편, 이번 연구는 Saudi Aramco-KAIST CO2 Management Center와 과학기술정보통신부의 글로벌 C.L.E.A.N. 사업의 지원을 받아 수행됐다.
2025.06.30
조회수 173
軍 전투원, 신소재 입고 개인 맞춤형 훈련시대 연다
기존 군 훈련은 정형화된 방식에 의존하는 경우가 많아 전투원 개인의 특성이나 전투 상황에 맞춘 최적화된 훈련 제공에 한계가 있었다. 이에 우리 연구진이 전자섬유 플랫폼을 개발해 전투원 개개인의 특성과 전투 국면을 반영할 수 있는 원천기술을 확보했다. 이 기술은 전장에서 활용할 수 있을 만큼 튼튼함이 입증됐고, 많은 병력에게 보급할 수 있을 정도의 경제성도 갖췄다. 우리 대학 신소재공학과 스티브 박 교수 연구팀이 섬유 위에 전자회로를 `그려 넣는' 혁신적인 기술을 통해 유연하고 착용 가능한 전자 섬유(E-textile) 플랫폼을 개발했다고 25일 밝혔다. 연구팀이 개발한 웨어러블 전자 섬유 플랫폼은 3D 프린팅 기술과 신소재공학적 설계를 결합해 유연하면서도 내구성이 뛰어난 센서와 전극을 섬유에 직접 인쇄했다. 이를 통해 전투원 개개인의 정밀한 움직임 및 인체 데이터를 수집하고, 이를 기반으로 맞춤형 훈련 모델을 제시할 수 있게 됐다. 기존 전자 섬유 제작 방식은 복잡하거나 개인별 맞춤형 제작에 한계가 있었다. 연구팀은 이를 극복하고자 `직접 잉크 쓰기(Direct Ink Writing, DIW)' 3D 프린팅이라는 적층 방식 기술을 도입했다. 이 기술은 센서와 전극의 기능을 하는 특수 잉크를 섬유 기판 위에 원하는 패턴으로 직접 분사해 인쇄하는 방식이다. 이를 통해 복잡한 마스크 제작 과정 없이도 다양한 디자인을 유연하게 구현할 수 있게 됐다. 이는 수십만 명에 달하는 군 병력에 손쉽게 보급할 수 있는 효과적인 기술로 기대된다. 해당 기술의 핵심은 신소재공학적 설계에 기반한 고성능 기능성 잉크 개발이다. 연구팀은 유연성을 가진 스티렌-부타디엔-스티렌(Styrene-butadiene-styrene, SBS) 고분자와 전도성을 부여하는 다중 벽 탄소나노튜브(Multi-walled carbon nanotube,MWCNT)를 조합해, 최대 102% 늘어나면서도, 10,000번의 반복적인 테스트에서도 안정적인 성능을 유지하는 인장/굽힘 센서 잉크를 개발했다. 이는 전투원의 격렬한 움직임 속에서도 정확한 데이터를 꾸준히 얻을 수 있음을 의미한다. 또한, 섬유의 위아래 층을 전기적으로 연결하는 `상호연결 전극(Interconnect electrode)' 구현에도 신소재 기술이 적용됐다. 은(Ag) 플레이크와 단단한 폴리스티렌(Polystyrene) 고분자를 조합한 전극 잉크를 개발, 섬유 속으로 잉크가 스며드는 정도(Impregnation level)를 정밀하게 제어해 섬유의 양면 또는 다층 구조를 효과적으로 연결하는 기술을 확보했다. 이를 통해 센서와 전극이 집적된 다층 구조의 웨어러블 전자 시스템 제작이 가능하다. 연구팀은 실제 인체 움직임 모니터링 실험을 통해 개발된 플랫폼의 성능을 입증했다. 연구팀은 개발된 전자 섬유를 옷의 주요 관절 부위(어깨, 팔꿈치, 무릎)에 프린팅하여 달리기, 팔 벌려 높이뛰기, 팔굽혀 펴기 등 다양한 운동 시의 움직임과 자세 변화를 실시간으로 측정했다. 또한, 스마트 마스크를 활용해 호흡 패턴을 모니터링하거나, 장갑에 여러 센서 및 전극을 프린팅해 기계학습을 통한 물체 인식 및 복합적인 촉감 정보를 인지하는 응용 가능성도 시연했다. 이러한 결과는 개발된 전자 섬유 플랫폼이 전투원의 움직임 역학을 정밀하게 파악하는 데 효과적임을 보여준다. 이번 연구는 최첨단 신소재 기술이 국방 분야 첨단화에 기여할 수 있음을 보여주는 중요한 사례다. 이번 연구에 참여한 박규순 육군 소령은 군사적 활용이나 실 보급을 위한 경제성 등의 요구되는 목표들을 연구설계 시부터 고려했다. 박 소령은 "현재 우리 군은 인구절벽으로 인한 병력자원의 감소와 과학기술의 발전으로 위기이자 기회를 마주하고 있다. 또한, 전장에서의 생명 존중이 큰 이슈로 떠오르고 있다. 해당 연구는 병과/직책별, 전투의 유형에 따른 맞춤식 훈련을 제공할 수 있는 원천기술을 확보해 우리 장병들의 전투력을 향상하고 생존성을 보장하기 위한 것이다ˮ 라고 전했다. 이어, “이번 연구가 과학적인 기여와 군 활용성의 두 마리 토끼를 모두 잡은 사례로 평가받길 기대한다”라고 밝혔다. 우리 대학 신소재공학과 박규순 박사과정(육군 소령)이 제1 저자로 참여하고 스티브 박 교수가 지도한 이번 연구는 전기·전자/재료공학 분야 국제 학술지인 `npj Flexible Electronics (JCR 분야 상위 1.8%)' 에 2025년 5월 27일 자로 출판됐다. ※논문명 : Fabrication of Multifunctional Wearable Interconnect E-textile Platform Using Direct Ink Writing (DIW) 3D Printing ※DOI: https://doi.org/10.1038/s41528-025-00414-7 한편 이번 연구는 산업통상자원부 및 한국연구재단의 지원을 받아 수행됐다.
2025.06.25
조회수 665
와이파이보다 100배 빠른‘라이파이’속도·보안 다 잡았다
라이파이(Li-Fi)는 LED 불빛처럼 눈에 보이는 빛인 가시광선 대역(400~800 THz)을 활용한 무선통신 기술로, 기존 와이파이(Wi-Fi)보다 최대 100배 빠른 속도(최대 224Gbps)를 제공한다. 사용할 수 있는 주파수 할당의 제약이 없고 전파 혼신 문제도 적지만, 누구나 접근이 가능해서 보안에는 상대적으로 취약하다. 한국 연구진이 기존 광통신 소자의 한계를 뛰어넘어 송신 속도와 보안을 동시에 향상시킬 수 있는 라이파이의 새로운 플랫폼을 제시했다. 우리 대학 신소재공학과 조힘찬 교수 연구팀이 국가과학기술연구회(NST, 이사장 김영식) 산하 한국표준과학연구원(KRISS, 원장 이호성) 임경근 박사와 협력해, 차세대 초고속 데이터 통신으로 주목받는 ‘라이파이(Li-Fi)’ 활용을 위한 ‘온-디바이스 암호화 광통신 소자’ 기술을 개발했다고 24일 밝혔다. 조힘찬 교수팀은 친환경 양자점(독성이 적고 지속 가능한 소재)을 이용해 고효율 발광 트라이오드 소자를 만들었다. 연구팀이 개발한 소자는 전기장을 이용해 빛을 발생시키는 장치이다. 특히, ‘투과 전극에 존재하는 아주 작은 구멍(핀홀)’ 영역에 전기장이 집중되고 전극 너머로 투과되는데, 이 소자는 이를 이용하여 두 가지 입력 데이터를 동시에 처리할 수 있다. 이 원리를 이용해 연구팀은 ‘온-디바이스 암호화 광송신 소자’라는 기술을 개발했다. 이 기술의 핵심은 기기 자체에서 정보를 빛으로 바꾸면서 동시에 암호화까지 한다는 점이다. 즉, 복잡한 별도의 장비 없이도 보안이 강화된 데이터 전송이 가능하다. 외부양자효율(EQE)은 전기를 얼마나 효율적으로 빛으로 변환하는지를 나타내는 지표로, 상용화를 위한 기준은 일반적으로 약 20% 수준이다. 이번에 개발된 소자는 17.4%의 EQE를 기록했으며, 휘도(luminance) 또한 스마트폰 OLED 화면의 최대 밝기인 2,000nit를 크게 웃도는 29,000nit로, 10배 이상의 높은 밝기를 구현했다. 또한, 연구팀은 이 소자가 어떻게 정보를 빛으로 바꾸는지를 더 정확히 이해하기 위해, ‘과도 전계 발광 분석’이라는 방법을 사용하여, 아주 짧은 시간(수백 나노초 = 10억 분의 1초 단위) 동안 전압을 순간적으로 인가했을 때, 소자에서 발생하는 발광 특성을 분석했다. 이 분석을 통해 수백 나노초 단위에서 소자 내 전하들의 이동을 분석해 단일 소자 내에서 구현되는 이중채널 광변조의 작동 메커니즘을 규명했다. KAIST 조힘찬 교수는 “이번 연구는 기존의 광통신 소자의 한계를 뛰어넘어 송신 속도를 높이면서도 보안능력을 향상할 수 있는 새로운 통신 플랫폼을 제시했다”라고 언급했다. 이어 “추가 장비 없이도 보안을 강화하면서, 암호화와 송신을 동시에 구현하는 이번 기술은 향후 보안이 중요한 다양한 분야에서 폭넓게 응용될 수 있을 것”이라고 덧붙였다. KAIST 신소재공학과 신승민 박사과정이 제1 저자로 참여하고, 조힘찬 교수, KRISS 임경근 박사가 공동 교신 저자로 참여한 이번 연구는 국제학술지 `어드밴스드 머터리얼즈(Advanced Materials)'에 5월 30일 자 출판됐으며, inside front cover 논문으로 선정됐다. ※ 논문명: High-Efficiency Quantum Dot Permeable electrode Light-Emitting Triodes for Visible-Light Communications and On-Device Data Encryption ※ DOI: https://doi.org/10.1002/adma.202503189 한편, 이번 연구는 한국연구재단, 국가과학기술연구회(NST) 및 한국산업기술진흥원의 지원을 받아 수행됐다.
2025.06.24
조회수 874
AI가 여론 조작? 한국어 'AI 생성 댓글' 탐지 기술 개발
생성형 AI 기술이 발전하면서 이를 악용한 온라인 여론 조작 우려가 커지고 있다. 이에 따른 AI 생성글 탐지 기술도 개발되었는데 대부분 영어로 된 장문의 정형화된 글을 기반으로 개발돼, 짧고(평균 51자), 구어체 표현이 많은 한국어 뉴스 댓글에는 적용이 어려웠다. 우리 연구진이 한국어 AI 생성 댓글을 탐지하는 기술을 개발해서 화제다. 우리 대학 전기및전자공학부 김용대 교수 연구팀이 국가보안기술연구소(국보연)와 협력해, 한국어 AI 생성 댓글을 탐지하는 기술 'XDAC'를 세계 최초로 개발했다고 23일 밝혔다. 최근 생성형 AI는 뉴스 기사 맥락에 맞춰 감정과 논조까지 조절할 수 있으며, 몇 시간 만에 수십만 개의 댓글을 자동 생성할 수 있어 여론 조작에 악용될 수 있다. OpenAI의 GPT-4o API를 기준으로 하면 댓글 1개 생성 비용은 약 1원 수준이며, 국내 주요 뉴스 플랫폼의 하루 평균 댓글 수인 20만 개를 생성하는 데 단 20만 원이면 가능할 정도다. 공개 LLM은 자체 GPU 인프라만 갖추면 사실상 무상으로도 대량의 댓글 생성을 수행할 수 있다. 연구팀은 AI 생성 댓글과 사람 작성 댓글을 사람이 구별할 수 있는지 실험했다. 총 210개의 댓글을 평가한 결과, AI 생성 댓글의 67%를 사람이 작성한 것으로 착각했고, 실제 사람 작성 댓글도 73%만 정확히 구분해냈다. 즉, 사람조차 AI 생성 댓글을 정확히 구별하기 어려운 수준에 이르렀다는 의미다. AI 생성 댓글은 오히려 기사 맥락 관련성(95% vs 87%), 문장 유창성(71% vs 45%), 편향성 인식(33% vs 50%)에서 사람 작성 댓글보다 높은 평가를 받았다. 그동안 AI 생성글 탐지 기술은 대부분 영어로 된 장문의 정형화된 글을 기반으로 개발되어 한국어의 짧은 댓글에는 적용이 어려웠다. 짧은 댓글은 통계적 특징이 불충분하고, 이모지·비속어·반복 문자 등 비정형 구어 표현이 많아 기존 탐지 모델이 효과적으로 작동하지 않는다. 또한, 현실적인 한국어 AI 생성 댓글 데이터셋이 부족하고, 기존의 단순한 프롬프팅 방식으로는 다양하고 실제적인 댓글을 생성하는 데 한계가 있었다. 이에 연구팀은 ▲14종의 다양한 LLM 활용 ▲자연스러움 강화 ▲세밀한 감정 제어 ▲참조자료를 통한 증강 생성의 네 가지 전략을 적용한 AI 댓글 생성 프레임워크를 개발해, 실제 이용자 스타일을 모방한 한국어 AI 생성 댓글 데이터셋을 구축하고 이 중 일부를 벤치마크 데이터셋으로 공개했다. 또 설명 가능한 AI(XAI) 기법을 적용해 언어 표현을 정밀 분석한 결과, AI 생성 댓글에는 사람과 다른 고유한 말투 패턴이 있음을 확인했다. 예를 들어, AI는 "것 같다", "에 대해" 등 형식적 표현과 높은 접속어 사용률을 보였고, 사람은 반복 문자(ㅋㅋㅋㅋ), 감정 표현, 줄바꿈, 특수기호 등 자유로운 구어체 표현을 즐겨 사용했다. 특수문자 사용에서도 AI는 전 세계적으로 통용되는 표준화된 이모지를 주로 사용하는 반면, 사람은 한국어 자음(ㅋ, ㅠ, ㅜ 등)이나 특수 기호(ㆍ, ♡, ★, • 등) 등 문화적 특수성이 담긴 다양한 문자를 활용했다. 특히, 서식 문자(줄바꿈, 여러 칸 띄어쓰기 등) 사용에서 사람 작성 댓글의 26%는 이런 서식 문자를 포함했지만, AI 생성 댓글은 단 1%만 사용했다. 반복 문자(예: ㅋㅋㅋㅋ, ㅎㅎㅎㅎ 등) 사용 비율도 사람 작성 댓글이 52%로, AI 생성 댓글(12%)보다 훨씬 높았다. XDAC는 이러한 차이를 정교하게 반영해 탐지 성능을 높였다. 줄바꿈, 공백 등 서식 문자를 변환하고, 반복 문자 패턴을 기계가 이해할 수 있도록 변환하는 방식이 적용됐다. 또 각 LLM의 고유 말투 특징을 파악해 어떤 AI 모델이 댓글을 생성했는지도 식별 가능하게 설계됐다. 이러한 최적화로 XDAC는 AI 생성 댓글 탐지에서 98.5% F1 점수로 기존 연구 대비 68% 성능을 향상시켰으며, 댓글 생성 LLM 식별에서도 84.3% F1 성능을 기록했다. 고우영 선임연구원은 "이번 연구는 생성형 AI가 작성한 짧은 댓글을 높은 정확도로 탐지하고, 생성 모델까지 식별할 수 있는 세계 최초 기술"이라며 "AI 기반 여론 조작 대응의 기술적 기반을 마련한 데 큰 의의가 있다"고 강조했다. 연구팀은 XDAC의 탐지 기술이 단순 판별을 넘어 심리적 억제 장치로도 작용할 수 있다고 설명했다. 마치 음주단속, 마약 검사, CCTV 설치 등이 범죄 억제 효과를 가지듯, 정밀 탐지 기술의 존재 자체가 AI 악용 시도를 줄일 수 있다는 것이다. XDAC는 플랫폼 사업자가 의심스러운 계정이나 조직적 여론 조작 시도를 정밀 감시·대응하는 데 활용될 수 있으며, 향후 실시간 감시 시스템이나 자동 대응 알고리즘으로 확장 가능성이 크다. 이번 연구는 설명가능 인공지능(XAI) 기반 탐지 프레임워크를 제안한 것이 핵심이며, 인공지능 자연어처리 분야 최고 권위 학술대회인 7월 27일부터 개최되는 'ACL 2025' 메인 콘퍼런스에 채택되며 기술력을 인정받았다. ※논문 제목: XDAC: XAI-Driven Detection and Attribution of LLM-Generated News Comments in Korean ※논문원본: https://github.com/airobotlab/XDAC/blob/main/paper/250611_XDAC_ACL2025_camera_ready.pdf 이번 연구는 우리 대학 김용대 교수의 지도 아래 국보연 소속이자 우리 대학 박사과정인 고우영 선임연구원이 제1 저자로 참여했으며, 성균관대학교 김형식 교수와 우리 대학 오혜연 교수가 공동 연구자로 참여했다.
2025.06.24
조회수 1373
가벼운 숨결·압력·소리까지 감지, 맞춤형 촉각 센서 개발
로봇이 물체를 잡을 때나, 의료기기가 몸의 맥박을 감지할 때 촉각 센서는 손끝처럼 ‘눌림’을 느끼는 기술이다. 기존 센서들은 반응이 느리거나 여러 번 쓰면 정확도가 떨어지는 단점이 있었는데, 한국 연구진이 가벼운 숨결, 압력, 소리까지 정확하고 빠르게 감지할 수 있어, 일상적인 움직임부터 의료용 진단까지 폭넓게 사용할 수 있는 센서를 개발하는데 성공했다. 우리 대학 기계공학과 박인규 교수 연구팀이 국가과학기술연구회(NST, 이사장 김영식) 산하 한국전자통신연구원(ETRI, 원장 방승찬)과의 공동연구를 통해 기존 촉각 센서 기술의 구조적 한계를 극복한 혁신적 기술을 개발했다고 23일 밝혔다. 이번 공동연구의 핵심은 ‘열성형 기반 3차원 전자 구조(Thermoformed 3D Electronics, T3DE)’를 적용해 유연성과 정밀성, 반복 내구성을 동시에 확보한 맞춤형 촉각 센서를 구현한 것이다. 특히, 소프트 엘라스토머(고무, 실리콘 등 쭉 늘렸다가 놓으면 다시 원래 모양으로 돌아오는 재료) 기반 센서가 갖는 느린 응답속도, 높은 히스테리시스*, 크립(오랫동안 힘을 가했을 때 재료가 천천히 변형되는 현상) 오차 등 구조적 문제를 극복하면서도 다양한 환경에서 정밀하게 작동하는 플랫폼으로 주목받고 있다. * 히스테리시스(Hysteresis): 한 번 받았던 힘이나 변화가 기억처럼 남아서, 똑같은 자극을 주더라도 항상 같은 결과가 나오지 않는 현상 T3DE 센서는 2차원 필름 위에 정밀하게 전극을 형성한 후, 열과 압력을 가해 3차원 구조로 성형하는 과정을 통해 제작된다. 특히 센서 상부의 전극과 지지 다리 구조는 목적에 따라 기계적 물성을 조절할 수 있도록 설계되어 있으며, 지지 다리의 두께, 길이, 개수 등 미세한 구조 매개변수를 조정함으로써 센서의 영률(Young’s modulus)*을 10Pa에서 1MPa까지 폭넓게 설정할 수 있다. 이 수치는 피부, 근육, 힘줄 등의 생체조직과 유사한 수준으로, 실제 생체 인터페이스용 센서로도 유용하다. * 영률(Young’s modulus): 재료의 강성을 나타내는 지표로, 이번 연구에서는 다양한 생체조직과 일치하는 수준까지 조절 가능함 이번에 개발된 T3DE 센서는 공기를 유전체로 활용해 전력 소비를 줄이는 동시에, 민감도, 응답속도, 온도 안정성, 반복 정밀도 측면에서도 우수한 성능을 보였다. 실험 결과, 해당 센서는 △민감도 5,884 kPa⁻¹ △응답속도 0.1ms(1,000분의 1초보다 짧은 시간) △히스테리시스 0.5% 이하 △5,000회 반복 측정에서도 정밀도 99.9% 이상을 유지하는 내구성을 입증했다. 연구팀은 이 센서를 활용해 고해상도 40×70 배열하여, 총 2,800개의 센서를 촘촘히 구성, 운동 중 발바닥의 압력 분포를 실시간 시각화하고, 손목 맥박 측정을 통한 혈관 건강 상태 평가 가능성도 확인했다. 또한, 상용 음향 센서 수준의 소리 감지 실험에서도 성공적인 결과를 얻었다. 즉, 이 센서는 발바닥 압력, 맥박, 소리까지 매우 정확하고 빠르게 측정할 수 있어서 운동, 건강, 소리 감지 등 다양한 분야에 활용될 수 있다. T3DE 기술은 증강현실(AR) 기반 외과 수술 훈련 시스템에도 적용됐다. 각 센서 요소마다 서로 다른 영률을 부여해 실제 생체조직과 유사한 강성을 구현했으며, 수술 절개 시 가해지는 압력 강도에 따라 시각·촉각 피드백을 동시에 제공하고, 너무 깊이 베거나, 위험한 부위를 건드리면 실시간 위험 경고 기능까지 갖춘 시스템이 구현되었다. 이는 의료 교육의 몰입도와 정확성을 획기적으로 향상할 수 있는 기술로 평가된다. 우리 대학 박인규 교수는 “이 센서는 설계 단계에서부터 정밀하게 조절할 수 있어 다양한 환경에서도 안정적으로 작동한다”며, “일상생활은 물론 의료, 재활, 가상현실 등 다양한 분야에서 쓸 수 있을 것”이라고 밝혔다. 본 연구는 ETRI 최중락 박사, KAIST 한찬규 석사, 이돈호 박사과정이 공동 제1저자로 참여했으며, 박인규 교수가 전체 연구를 총괄했다. 연구 결과는 세계적 권위의 학술지 ‘사이언스 어드밴시스(Science Advances)’ 2025년 5월호에 게재됐으며, 해당 논문은 사이언스 어드밴시스 공식 SNS 채널(Facebook, Twitter)을 통해 전 세계에 소개되기도 했다. ※ 논문명: Thermoforming 2D films into 3D electronics for high-performance, customizable tactile sensing ※ DOI: 10.1126/sciadv.adv0057 이번 연구는 산업통상자원부, 한국연구재단, 한국산업기술평가관리원의 지원을 받아 수행됐다.
2025.06.23
조회수 755
‘뻔하지 않은 창의적인 의자’그리는 AI 기술 개발
최근 텍스트 기반 이미지 생성 모델은 자연어로 제공된 설명만으로도 고해상도·고품질 이미지를 자동 생성할 수 있다. 하지만, 대표적인 예인 스테이블 디퓨전(Stable Diffusion) 모델에서 ‘창의적인’이라는 텍스트를 입력했을 경우, 창의적인 이미지 생성은 아직은 제한적인 수준이다. KAIST 연구진이 스테이블 디퓨전(Stable Diffusion) 등 텍스트 기반 이미지 생성 모델에 별도 학습 없이 창의성을 강화할 수 있는 기술을 개발해, 예컨대 뻔하지 않은 창의적인 의자 디자인도 인공지능이 스스로 그려낼 수 있게 됐다. 우리 대학 김재철AI대학원 최재식 교수 연구팀이 네이버(NAVER) AI Lab과 공동 연구를 통해, 추가적 학습 없이 인공지능(AI) 생성 모델의 창의적 생성을 강화하는 기술을 개발했다. 최 교수 연구팀은 텍스트 기반 이미지 생성 모델의 내부 특징 맵을 증폭해 창의적 생성을 강화하는 기술을 개발했다. 또한, 모델 내부의 얕은 블록들이 창의적 생성에 중요한 역할을 한다는 것을 발견하고, 특징 맵을 주파수 영역으로 변환 후, 높은 주파수 영역에 해당하는 부분의 값을 증폭하면 노이즈나 작게 조각난 색깔 패턴의 형태를 유발하는 것을 확인했다. 이에 따라, 연구팀은 얕은 블록의 낮은 주파수 영역을 증폭함으로써 효과적으로 창의적 생성을 강화할 수 있음을 보였다. 연구팀은 창의성을 정의하는 두 가지 핵심 요소인 독창성과 유용성을 모두 고려해, 생성 모델 내부의 각 블록 별로 최적의 증폭 값을 자동으로 선택하는 알고리즘을 제시했다. 개발된 알고리즘을 통해 사전 학습된 스테이블 디퓨전 모델의 내부 특징 맵을 적절히 증폭해 추가적인 분류 데이터나 학습 없이 창의적 생성을 강화할 수 있었다. 연구팀은 개발된 알고리즘을 사용하면 기존 모델 대비 더욱 참신하면서도 유용성이 크게 저하되지 않은 이미지를 생성할 수 있음을 다양한 측정치를 활용해 정량적으로 입증했다. 특히, 스테이블 디퓨전 XL(SDXL) 모델의 이미지 생성 속도를 대폭 향상하기 위해 개발된 SDXL-Turbo 모델에서 발생하는 모드 붕괴 문제를 완화함으로써 이미지 다양성이 증가한 것을 확인했다. 나아가, 사용자 연구를 통해 사람이 직접 평가했을 때도 기존 방법에 비해 유용성 대비 참신성이 크게 향상됨을 입증했다. 공동 제1 저자인 KAIST 한지연, 권다희 박사과정은 "생성 모델을 새로 학습하거나 미세조정 학습하지 않고 생성 모델의 창의적인 생성을 강화하는 최초의 방법론ˮ이라며 "학습된 인공지능 생성 모델 내부에 잠재된 창의성을 특징 맵 조작을 통해 강화할 수 있음을 보였다ˮ 라고 말했다. 이어 “이번 연구는 기존 학습된 모델에서도 텍스트만으로 창의적 이미지를 손쉽게 생성할 수 있게 됐으며, 이를 통해 창의적인 상품 디자인 등 다양한 분야에서 새로운 영감을 제공하고, 인공지능 모델이 창의적 생태계에서 실질적으로 유용하게 활용될 수 있도록 기여할 것으로 기대된다”라고 밝혔다. KAIST 김재철AI대학원 한지연 박사과정과 권다희 박사과정이 공동 제1 저자로 참여한 이번 연구는 국제 학술지 `국제 컴퓨터 비전 및 패턴인식 학술대회 (IEEE Conference on Computer Vision and Pattern Recognition, CVPR)’에서 6월 15일 발표됐다. ※논문명 : Enhancing Creative Generation on Stable Diffusion-based Models ※DOI: https://doi.org/10.48550/arXiv.2503.23538 한편 이번 연구는 KAIST-네이버 초창의적 AI 연구센터, 과학기술정보통신부의 재원으로 정보통신기획평가원의 지원을 받은 혁신성장동력프로젝트 설명가능인공지능, AI 연구거점 프로젝트, 점차 강화되고 있는 윤리 정책에 발맞춰 유연하게 진화하는 인공지능 기술 개발 연구 및 KAIST 인공지능 대학원 프로그램과제의 지원을 받았고 방위사업청과 국방과학연구소의 지원으로 KAIST 미래 국방 인공지능 특화연구센터에서 수행됐다.
2025.06.19
조회수 808
세계 최고 권위 컴퓨터학회서 연구 역량과 위상 입증
우리 대학은 6월 18일부터 20일까지 서울에서 개최되는 세계 최대 컴퓨터학회인 ACM(Association for Computing Machinery)이 주관하는 프로그래밍 언어 분야 최고 권위의 국제 학술대회인 ‘PLDI (Programming Language Design and Implementation) 2025’에서 기조 강연과 탁월한 연구 성과를 발표하며 KAIST의 세계적 위상을 다시 한 번 입증했다고 18일 밝혔다. 학술대회 첫날 기조강연자로 초대된 전산학부 류석영 교수는 “기술 및 사회적 공익을 위한 프로그래밍 언어 연구: 프로그래밍 언어는 공익을 위해 무엇을 할 수 있을까요?(Programming Language Research for Technical and Social Good: What PL Can Do for Good?)”라는 제목으로 강연을 진행한다. 이번 강연에서 류 교수는 자바스크립트와 같은 언어의 정형화(formalization)를 통한 소프트웨어 안전성 향상뿐 아니라, 프로그래밍 언어 연구가 사회적으로도 다양성(Diversity), 형평성(Equity), 포용성(Inclusion) 확산에 기여할 수 있는 방식을 사례를 통해 제시할 예정이다. 류석영 교수는 “프로그래밍 언어는 기술을 넘어서 공익을 실현하는 수단이 될 수 있다”며 “KAIST 연구진의 이러한 노력이 국내외 연구자들에게도 영감을 줄 수 있기를 기대한다”고 말했다. PLDI는 지난 46년간 전산학 전체에 깊은 영향을 미치는 중요한 논문이 다수 발표된 유서 깊은 학술대회다. 프로그래밍 언어와 컴파일러 등 소프트웨어 전반의 기초가 되는 핵심 기술을 발표하고 있다. 전산학부의 강지훈 교수, 양홍석 교수, 허기홍 교수 연구팀은 이번 PLDI 2025에서 총 5편의 논문을 발표하며, 전체 채택 논문 89편 중 6.7%에 해당하는 비중을 차지했다. 이는 한국 내 대학 중 가장 높은 수치로, 포항공대가 2편을 발표했다. 특히 강지훈 교수는 지난해에 이어 올해도 단독으로 3편의 논문을 발표하며 국내 연구자의 지속적인 두각을 나타냈다. 강 교수는 “학생들이 수년간 공들여 연구한 결과가 세계 최고 학회에서 인정받아 기쁘다”며, “현실 문제 해결에 밀착된 연구를 통해 산업계의 난제를 풀어나가고 있다”고 밝혔다. 다섯 편의 논문은 멀티코어 컴퓨팅 시스템에서의 병렬 자료구조 성능 향상 및 검증, 컴파일러의 신뢰성 확보, 프로그래밍 언어 의미론 연구 등을 중심으로, 운영체제·데이터베이스 등 고성능 시스템 소프트웨어의 품질 향상에 기여할 것으로 기대된다. 이번 학회에 발표되는 5개의 논문은 아래와 같다: 1. 멀티코어 컴퓨팅 시스템에서 동작하는 고성능 병렬 자료구조의 효율 향상(강지훈 교수) 2. 읽기-복사-쓰기(RCU) 방식의 올바름을 현실적인 조건에서 처음으로 검증(강지훈 교수) 3. 고성능 병렬 자료구조인 순회 자료구조의 올바름을 쉽게 증명할 수 있는 방법론 개발(강지훈 교수) 4. 컴파일러의 올바름을 저비용, 고효율로 검사하는 새로운 기술 제시(허기홍 교수) 5. 특이 함수(singular function)를 지원하는 프로그래밍 언어의 첫 번째 의미론 제시(양홍석 교수) 류석영 학부장은 “KAIST 전산학부는 학문적 깊이와 사회적 책임을 동시에 지향하는 연구를 꾸준히 이어가고 있으며, 이번 PLDI 2025에서 그 성과를 세계와 공유할 수 있어 매우 뜻깊다”라고 밝혔다. 해당 논문들은 ACM 공식 저널 형식의 PACMPL(Proceedings of the ACM on Programming Languages)에 게재됐으며, PLDI 2025 학술대회 현장에서 발표될 예정이다. 한편 이번 연구는 한국연구재단 선도연구센터, 우수신진연구자지원사업, 정보통신기획평가원(IITP) 정보통신·방송 기술개발사업, 인공지능반도체 고급인재 양성사업, 대학ICT연구센터, 삼성전자 미래기술육성센터, Amazon의 지원을 받아 수행됐다.
2025.06.18
조회수 979
빛 공해 제로·열 차감 ‘스마트 윈도우’ 개발..건물·차량 적용 가능
전 세계 에너지 소비의 약 40%를 차지하는 건물 부문에서, 특히 창호를 통한 열 유입은 냉․난방 에너지 낭비의 주요 원인으로 지적돼왔다. 우리 연구진이 도시 건축물의 냉난방 에너지 절감뿐 아니라, 도심 생활 속 꾸준히 제기돼 온 ‘빛 공해’ 문제를 해결할 수 있는 ‘보행자 친화형 스마트 윈도우’기술을 개발하는데 성공했다. 우리 대학 생명화학공학과 문홍철 교수 연구팀이 사용자의 의도에 따라 창문을 통해 들어오는 빛과 열을 조절하고, 외부로부터의 눈부심까지 효과적으로 상쇄하는 ‘스마트 윈도우 기술’을 개발했다고 17일 밝혔다. 최근에는 사용자의 조작에 따라 빛과 열을 자유롭게 조절할 수 있는 ‘능동형 스마트 윈도우’ 기술이 주목받고 있다. 이는 기존의 온도나 빛 변화에 수동적으로 반응하는 창호와 달리, 전기 신호를 통해 실시간으로 조절이 가능한 차세대 창호 시스템이다. 연구팀이 개발한 차세대 스마트 윈도우 기술인 RECM (Reversible Electrodeposition and Electrochromic Mirror)은 단일 구조의 *전기변색 소자를 기반으로, 가시광선(빛)과 근적외선(열)의 투과율을 능동적으로 조절할 수 있는 스마트 윈도우 시스템이다. *전기변색 소자: 전기 신호에 따라 광학적 특성이 변하는 특성을 가진 장치 특히, 기존 금속 *증착 방식의 스마트 윈도우에서 문제로 지적돼 온 외부 반사광에 의한 눈부심 현상을 변색 소재를 함께 적용해 효과적으로 억제함으로써, 건물 외벽에 활용 가능한 ‘보행자 친화형 스마트 윈도우’를 구현했다. *증착: 전기화학 반응을 이용해 Ag+와 같은 금속 이온을 전극 표면에 고체 형태로 입히는 과정 이번 연구에서 개발된 RECM 시스템은 전압 조절에 따라 세 가지 모드로 작동된다. 모드 I(투명 모드)는 일반 유리처럼 빛과 열을 모두 통과시켜 겨울철 햇빛을 실내로 유입시키는 데 유리하다. 모드 II(변색 모드)에서는 레독스 반응(산화-환원 반응)을 통해 *프러시안 블루(PB)와 **DHV+⦁ 화학종이 형성되며 창이 짙은 파란 색으로 변한다. 이 상태에서는 빛은 흡수되고 열은 일부만 투과돼, 프라이버시 확보와 동시에 적절한 실내 온도 조절이 가능하다. *프러시안 블루: 전기 자극에 따라 무색과 파란색으로 전환되는 전기변색 물질 **DHV+⦁: 전기 자극 시 생성되는 라디칼 상태의 변색 분자 모드 III(변색 및 증착 모드)는 은(Ag+)이온이 환원 반응을 통해 전극 표면에 증착돼 빛과 열을 반사하는 동시에, 변색 물질이 반사광을 흡수함으로써 외부 보행자의 눈부심까지 효과적으로 차단할 수 있다. 연구팀은 미니어처 모델 하우스를 활용한 실험을 통해 RECM 기술의 실질적인 실내 온도 저감 효과를 검증했다. 일반 유리창을 적용한 경우, 실내 온도는 45분 만에 58.7℃까지 상승했다. 반면, RECM을 모드 III로 작동시킨 결과 31.5℃에 도달해 약 27.2℃의 온도 저감 효과를 나타냈다. 또한, 전기 신호만으로 각 상태 전환이 가능해 계절, 시간, 사용 목적에 따라 즉각적으로 대응할 수 있는 능동형 스마트 기술로 평가받고 있다. 이번 연구의 교신저자인 우리 대학 문홍철 교수는 “이번 연구는 가시광 조절에 국한된 기존 스마트 윈도우 기술에서 더 나아가 능동적 실내 열 제어는 물론 보행자의 시야 안전까지 종합적으로 고려한 진정한 스마트 윈도우 플랫폼을 제시한 것”이라며, “도심 건물부터 차량, 기차 등 다양한 응용 가능성이 기대된다”고 밝혔다. 이번 연구 결과는 에너지 분야 국제 저명 학술지인 ‘에이시에스 에너지 레터스(ACS Energy Letters)’ 10권 6호 지에 2025년 6월 13일 자로 게재됐다. ※ 논문명: Glare-Free, Energy-Efficient Smart Windows: A Pedestrian-Friendly System with Dynamically Tunable Light and Heat Regulation ※ DOI: 10.1021/acsenergylett.5c00637 한편 이번 연구는 한국연구재단의 나노 및 소재기술개발사업 (나노커넥트) 및 한국기계연구원 기본사업의 지원을 받아 수행됐다.
2025.06.17
조회수 1124
이제 고해상도 분광기가 스마트폰에 쏙 들어간다
색은 빛의 파장이 인간의 눈에 인식되는 방식으로, 단순한 미적 요소를 넘어 물질의 성분이나 상태 같은 중요한 과학적 정보를 담고 있다. 분광기는 빛을 파장별로 분해해 물성을 분석하는 광학 장비로, 재료 분석, 화학 성분 검출, 생명과학 연구 등 다양한 과학 및 산업 분야에서 폭넓게 사용되고 있다. 기존의 고분해능 분광기는 크고 복잡해 일상 전반에 사용이 어려웠으나, 우리 연구진이 개발한 초소형 고해상도 분광기 덕분에 앞으로는 스마트폰이나 웨어러블 기기 속에서도 빛의 색 정보를 활용할 수 있을 전망이다. 우리 대학 바이오및뇌공학과 장무석 교수 연구팀이 이중층 무질서 메타표면*을 이용한 복원 기반 분광기 기술을 개발하는 데 성공했다고 13일 밝혔다. *이중충 메타표면: 두 겹의 무질서한 나노 구조층을 통해 빛을 복잡하게 산란시켜, 파장별로 고유하고 예측 가능한 스페클 패턴을 만들어내는 혁신적 광학 소자 기존의 고분해능 분광기는 수십 센티미터 수준으로 폼 팩터가 크고, 정확도를 유지하기 위한 복잡한 교정 과정이 필요하다. 이는 근본적으로 무지개가 색을 분리하듯 빛의 파장을 빛의 진행 방향으로 분리하는 전통적인 분산 부품의 작동 원리에서 기인한다. 이 때문에, 빛의 색 정보가 일상 전반에 유용하게 활용될 수 있음에도 분광 기술은 실험실이나 산업 제조 현장 수준으로 그 활용성이 제한되고 있다. 연구팀은 빛의 색 정보를 빛의 진행 방향으로 일대일 대응시키는 회절격자나 프리즘을 사용하는 기존의 분광 패러다임에서 벗어나 설계된 무질서 구조를 광학 부품으로 활용하는 방식을 고안했다. 이때, ‘복잡한 무작위적 패턴(스페클*)’을 정확하게 구현하기 위해 수십-수백 나노미터 크기의 구조체를 활용해 빛의 전파 과정을 자유롭게 조절할 수 있는 메타표면을 활용하였다. * 스페클: 여러 파면의 빛이 간섭해 만들어지는 불규칙한 밝기의 광 패턴 구체적으로, 이중층 무질서 메타표면을 구현해 파장 특이적인 방식으로 스페클 패턴을 생성하고, 카메라로 측정된 무작위 패턴을 보고 그 빛의 정밀한 색 정보(파장)를 복원 해내는 방식을 개발했다. 그 결과, 단 한 장의 영상 촬영만으로 손톱보다 작은(1cm 미만) 장치에서 1 나노미터(nm) 수준의 고해상도로 가시광-적외선 (440~1,300nm) 범대역의 빛을 정확하게 측정하는 신개념 분광기 기술을 개발하는 데 성공했다. 이번 연구에 제1 저자로 참여한 이동구 연구원은 “이번 기술은 상용 이미지 센서에 직접 통합된 방식으로 구현돼, 앞으로는 모바일 기기에 내장된 형태로 일상에서도 빛의 파장 정보를 손쉽게 취득하고 이용할 수 있을 것으로 기대된다”라고 밝혔다. 장무석 교수는 “R(빨강), G(초록), B(파랑) 3가지 색 성분으로만 구분해서 인식되는 기존 RGB 삼색 기반 머신 비전 분야에서 한계를 뛰어넘는 기술로 활용 분야도 다양하다”며, “음식 성분 분석, 농작물 상태 진단, 피부 건강 측정, 환경 오염 감지, 바이오·의료 진단 등 실험실 수준의 기술을 일상 수준의 머신 비전 기술로 지평을 넓힌 기술로 다양한 활용 연구가 기대된다” 라고 말했다. 이어 “또한, 파장과 공간 정보를 고해상도로 동시에 기록하는 초분광 영상이나, 여러 파장의 빛들을 정밀하게 원하는 형태로 제어하는 3D 광집속 기술, 아주 짧은 시간 동안 일어나는 현상을 포착하는 초고속 이미징 기술 등 다양한 첨단 광학 기술로 확장도 가능하다”라고 밝혔다. 해당 연구 결과는 KAIST 바이오및뇌공학과 이동구 박사과정, 송국호 박사과정이 공동 제1 저자, 장무석 교수가 교신저자로 참여했으며 국제 학술지 `사이언스 어드밴시스 (Science Advances)' 2025년 5월 28일 온라인판에 게재됐다. ※논문명 : Reconstructive spectrometer using double-layer disordered metasurfaces ※DOI: 10.1126/sciadv.adv2376 이번 연구는 삼성미래기술육성사업과 과학기술정보통신부 한국연구재단이 주관하는 우수신진연구자사업, 선도연구센터지원사업(ERC), 바이오·의료기술개발사업 사업의 지원을 받아 수행됐다.
2025.06.13
조회수 1353
백금 없이도 되는 고성능 수전해 성공..수소경제 성큼
수소는 탄소를 배출하지 않는 청정 에너지원으로 주목받고 있다. 이 가운데 물을 전기로 분해하는 수전해(water electrolysis) 기술은 친환경 수소 생산 방식으로 주목받으며, 특히 양이온 교환막 수전해(PEMWE)는 고순도 수소를 고압으로 생산할 수 있어 차세대 수소 생산 기술로 평가받는다. 그러나 기존 PEMWE 기술은 고가의 귀금속 촉매와 코팅재에 대한 의존도가 높아, 상용화에 한계를 안고 있었다. 우리 연구진이 이러한 기술적·경제적 병목을 해결할 새로운 해법을 제시했다. 우리 대학 생명화학공학과 김희탁 교수 연구팀이 한국에너지기술연구원(원장 이창근) 두기수 박사와의 공동연구를 통해, 고가의 백금(Pt) 코팅 없이도 고성능을 구현할 수 있는 차세대 수전해 기술을 개발했다고 11일 밝혔다. 연구팀은 수전해 전극에서 고활성 촉매로 주목받는 ‘이리듐 산화물(IrOx)’이 제 성능을 발휘하지 못하는 주된 원인에 집중하였다. 그 이유는 전자 전달이 비효율적으로 일어나기 때문이고 그 해결책으로 단순한 촉매 입자 크기 조절만으로도 성능을 극대화할 수 있음을 세계 최초로 입증했다. 이번 연구에서 이리듐 산화물 촉매가 백금 코팅 없이도 우수한 성능을 내지 못하는 이유가 수전해 전극에서 본래부터 함께 사용되는 핵심 구성 요소인 촉매–이온전도체(이하 이오노머)–Ti(티타늄) 기판 사이에서 발생하는 ‘전자 이동 저항’때문이라는 것을 밝혀냈다. 특히, 촉매–이오노머–티타늄 기판 사이에서 전자 통로가 차단되는 ‘핀치 오프(pinch-off)’ 현상이 전도성 저하의 핵심 원인임을 규명했다. 이오노머는 전자 절연체에 가까운 특성을 갖고 있어, 촉매 입자 주위를 감쌀 경우 전자 흐름을 방해한다. 특히 이오노머가 티타늄 기판과 맞닿은 경우 티타늄 기판의 표면산화층에 전자 장벽이 형성되어 저항을 더욱 높이는 것으로 나타났다. 이에 연구팀은 다양한 입자 크기의 촉매를 제작·비교하고, 단일 셀 평가 및 다중 물리 시뮬레이션을 통해 이리듐 산화물 입자의 크기를 20 나노미터(nm) 이상 크기의 촉매 입자를 사용할 경우, 이오노머 혼합 영역이 줄어들어 전자 통로가 확보되고 전도성이 회복된다는 사실을 세계 최초로 실험적으로 입증했다. 또한, 정밀한 계면 구조 설계를 통해 반응성을 확보하면서도 전자 이동을 동시에 보장하는 계면 구조 최적화에 성공했다. 이를 통해 기존에 불가피하다고 여겨졌던 촉매 활성도와 전도도 사이의 상충 관계를 정밀한 계면 설계로 극복할 수 있음을 보여주었다. 이번 성과는 고성능 촉매 소재 개발은 물론, 향후 귀금속 사용량을 획기적으로 줄이면서도 고효율을 달성할 수 있는 양이온 교환막 수전해 시스템 상용화에 중요한 이정표가 될 것으로 기대된다. 김희탁 교수는 “이번 연구는 고성능 수전해 기술의 병목현상이었던 계면 전도성 문제를 해소할 수 있는 새로운 인터페이스 설계 전략을 제시한 것”이라며, “백금 등 고가 소재 없이도 고성능을 확보할 수 있어, 수소 경제 실현에 한 걸음 더 가까워진 계기가 될 것”이라고 밝혔다. 우리 대학 생명화학공학과 박지수 박사과정 학생이 제1 저자로 참여한 본 연구 성과는 에너지 및 환경 분야 최고 권위 국제 학술지인 ‘에너지 및 환경과학(Energy & Environmental Science, IF: 32.4, 2025년)’에 6월 7일 자로 게재됐으며 그 혁신성과 파급력을 인정받았다. (논문 제목: On the interface electron transport problem of highly active IrOx catalysts, DOI: 10.1039/D4EE05816J) 한편, 이번 연구는 산업통상자원부 신재생에너지핵심기술개발사업의 지원을 받아 수행됐다.
2025.06.11
조회수 1489
<<
첫번째페이지
<
이전 페이지
1
2
3
4
5
6
7
8
9
10
>
다음 페이지
>>
마지막 페이지 91