본문 바로가기
대메뉴 바로가기
KAIST
연구뉴스
유틸열기
홈페이지 통합검색
-
검색
메뉴 열기
%EB%82%98%EB%85%B8%EA%B3%BC%ED%95%99%EA%B8%B0%EC%88%A0%EB%8C%80%ED%95%99%EC%9B%90
최신순
조회순
윤동기 교수, 카이랄 물질 육안으로 검출 방법 개발
우리 대학 화학과/나노과학기술대학원 윤동기 교수 연구팀이 나선 나노 구조체를 만드는 액정 물질을 이용해 광결정(photonic crystal) 필름을 제작하고, 이를 이용해 식품이나 약물 등에 함유된 카이랄 물질을 별다른 기기 없이 눈으로 검출하는 데 성공했다. 이번 연구를 통해 기존의 광 식각공정(photolithography)으로 제작이 어려웠던 나노미터 크기의 카이랄 광결정 제작에 성공했으며, 이를 기반으로 액정기반의 나노 재료를 활용해 디스플레이, 광학 및 화학 센서 등의 응용기술에 다양하게 이바지할 것으로 기대된다. 박원기 박사과정이 1 저자로 참여한 이번 연구는 국제 학술지 ‘NPG 아시아 머티리얼즈(NPG Asia Materials)’ 8월 16일 자 온라인판과 ‘어드밴스드 옵티컬 머티리얼즈(Advanced Optical Materials)’ 12월 4일 자 표지논문에 게재됐다. (논문명 : Directed self-assembly of a helical nanofilament liquid crystal phase for use as structural color reflectors/Direct visualization of optical activity in chiral substances using a helical nanofilament (B4) liquid crystal phase) 잘 정렬된 나선형 나노 구조체를 만드는 일은 산업적 및 학문적으로 수요가 높은 기술로 여겨져 디스플레이 산업 및 광학 분야에서 꾸준히 연구되고 있다. 바나나 모양의 굽은형 액정분자는 고온에서 서서히 냉각될 때 무작위로 배향된 나선형 구조체를 형성한다. 이들을 잘 정렬할 수 있다면 카이랄 광결정으로 이용할 수 있으나, LCD용 액정 재료와는 달리 굽은형 액정분자를 정렬할 방법이 존재하지 않았다. 복잡한 분자구조의 액정 재료를 활용하기 위해선 극한으로 분자들의 거동을 제어하고 균일한 배향을 유도하는 기술이 필요하지만, 관련 기술의 부재로 응용되지 못했다. 연구팀은 LCD의 핵심 재료로 사용되는 일반형 액정분자보다 분자구조가 더 복잡한 굽은 형태의 액정분자가 형성하는 200~300나노미터의 나선 주기를 갖는 나선형 나노 구조체를 대면적에서 배향하는 데 성공했다. 이를 통해 빛을 반사하는 광결정을 제작했다. 다음으로 연구팀은 이들 분자를 제어하고 응용하기 위해, 빛에 의해 분자의 모양 및 배향이 바뀌는 현상인 광이성질체화(photoisomerization)를 유도할 수 있는 광 반응성 굽은형 액정분자를 설계했다. 연구팀은 이 액정분자들이 마치 해바라기가 빛을 따라가듯이 빛에 나란히 배향한다는 점에 착안해, 이들이 형성하는 나선 나노 구조체도 빛의 방향에 따라 매우 균일하게 세워질 수 있도록 제작했다. 이렇게 방향이 제어된 나선 나노 구조체는 분자의 길이에 따라 다양한 색을 보여 푸른색에서 초록색의 빛을 선택적으로 반사하는 일종의 카이랄 색상 거울로 활용할 수 있었다. 이러한 거울을 이용하면 왼쪽 혹은 오른쪽의 카이랄성을 갖는 일상생활 속의 다양한 화학물질, 한 예로 설탕을 이루는 과당과 포도당의 경우 별다른 도구 없이 왼쪽 혹은 오른쪽의 카이랄성을 갖는다는 점을 관찰할 수 있었다. 윤동기 교수는 “의약품 및 관련 화학산업에서 물질의 카이랄성은 독성 및 부작용과 밀접한 관련이 있다. 예를 들어, 60여 년 전에 임산부 입덧 방지용으로 쓰이던 탈리도마이드(thalidomide)라는 약은 카이랄성이 다를 경우 기형아를 유발할 수 있다는 점 때문에 금지된 바가 있는데, 이번 연구를 통해 카이랄성에 따라 부작용을 갖는 화학약품들을 제조단계에서부터 실시간으로 검출할 수 있게 될 것이다”라고 말했다. 이번 연구는 과학기술정보통신부-한국연구재단의 멀티스케일 카이랄 구조체 연구센터, 전략과제, 미래유망 융합기술 파이오니아사업과 교육부의 글로벌연구네트워크 사업의 지원을 받아 수행됐다. □ 그림 설명 그림1. 어드밴스드 옵티컬 머티리얼즈 표지 그림2. 배향된 액정필름을 이용하여 카이랄 시료를 검출하는 모식도
2019.12.05
조회수 11720
윤동기 , 김형수 교수, DNA 마이크로패치 제작 기술 개발
〈 윤동기 교수, 김형수 교수, 박순모 연구원 〉 우리 대학 화학과/나노과학기술대학원 윤동기, 기계공학과 김형수 교수 공동 연구팀이 마이크로 크기의 DNA 2차원 마이크로패치 구조체를 제작하고 이를 제어, 응용하는 기술을 개발했다. 윤 교수 연구팀은 커피가 종이에 떨어지고 물이 마르면 동그랗게 환 모양이 생기는 이른바 ‘커피링 효과’라 불리는 현상을 DNA 수용액에 적용해 세계 최초로 DNA 기반의 마이크로패치를 제작했다. 차윤정 박사, 박순모 박사과정 학생이 공동 1 저자로 참여한 이번 연구는 국제 학술지 ‘네이처 커뮤니케이션즈(Nature Communications)’ 6월 7일 자 온라인판에 게재됐다. (논문명 : Microstructure arrays of DNA using topographic control) 유전 정보를 저장하는 기능을 하는 DNA는 이중나선 구조와 나노미터 주기의 규칙적인 모양을 가져 소재 분야에서 일반적인 합성방법으로는 구현하기 힘든 정밀한 구조재료이다. 정밀한 DNA 합성과 오리가미(Origami) 기술을 이용해 스마일 패치(smile patch) 등의 재미있는 모양을 구현해 왔지만, 재료의 가격이 높아 실제 응용에 어려움을 겪었다. 윤 교수 연구팀은 이를 극복하기 위해 연어에서 추출한 DNA 물질을 이용해 기존보다 1천 배 이상 저렴한 비용으로 잘 정렬된 뜨개질(knit) 혹은 아이스크림콘 모양의 기존에 없던 마이크로패치 구조체를 대면적에서 구현했다. 연구팀은 DNA가 물에 녹으면 마치 물풀과 끈적끈적해지면서 서로 적당한 힘으로 끌어당기며 일정한 방향으로 정렬하는 액정상(liquid crystal phase)을 보인다는 점에 주목했다. 액정 표시장치(LC display 혹은 LCD)에서 액정분자들이 전기장을 통해 방향성이 제어되는 것처럼 수용액 상태의 DNA 액정상이 두 기판 사이에서 문질러지며 물의 증발이 이뤄질 때 DNA 나노 구조체들이 원하는 방향으로 정렬하게 된다. 과일 잼을 식빵에 바르면 과일 알맹이(pulp)가 한 방향으로 잘 펴 발라지면서 마르는 현상과 유사하다. 연구팀은 DNA가 한 방향으로 문질러져서 마를 때 바닥에 평평한 기판 대신 일정한 모양을 갖는 수 마이크론 크기의 기둥(혹은 요철)들이 있는 기판을 사용하면 2차원의 뜨개질 모양, 아이스크림콘 모양 등 좀 더 흥미로운 들을 제작할 수 있음을 확인했다. 또한, 금 나노막대와 같은 플라즈몬 공명(plasmon resonance)을 나타내는 소재와 결합해 디스플레이 소자에 응용을 시도했다. 플라스몬 공명은 금속으로 만들어진 기판에 빛을 쪼일 때 그 표면 위에서 전자가 일정하게 진동하면서 자신의 에너지와 일치하는 빛에만 반응하는 현상으로 특정한 색만 반사하여 선명도와 표현력을 높이는 데 사용된다. 이 방식에서 가장 중요한 점은 어떤 방향으로 금 나노막대가 정렬하는지를 나타내는 배향(orientation)이다. 즉 막대들이 한 방향으로 나란히 정렬될 때 광학·전기 특성이 극대화된다. 윤 교수 연구팀은 이러한 점에 착안해 DNA 마이크로패치를 일종의 틀로 삼아 금 나노막대들을 독특한 형태로 배향하고 플라즈몬 컬러 기판을 제작하는 데 성공했다. 연구팀이 개발한 DNA 2차원 마이크로패치 제작 기술은 DNA를 구조재료 및 전자소재로써 활용할 수 있는 단서를 마련했을 뿐 아니라 증발 현상과 DNA 액정물질이 접목될 때 나타나는 독특한 형태의 복잡한 분자 거동 해석에 대한 단서를 제공할 것으로 기대된다. 윤 교수는 “연구를 통해 밝힌 것처럼 DNA가 금 나노막대와 같은 광학 소재와 복합체를 쉽게 만들 수 있는 만큼, 자연계에 무한히 존재하는 DNA를 디스플레이 관련 분야의 신소재로서 응용할 수 있을 것으로 기대한다”라고 말했다. 이번 연구는 과학기술정보통신부-한국연구재단의 전략과제, 멀티스케일 카이랄 구조체 연구센터, 미래유망 융합기술 파이오니아사업과 신진연구 과제의 지원을 받아 수행됐다. □ 그림 설명 그림1. DNA 분자 배향 모식도 그림2. DNA-금 막대 입자 복합체의 배향 양상과 나타나는 플라즈모닉 광학 현상
2019.06.18
조회수 17258
김필한 교수, 패혈증 환자의 폐 손상 원인 밝혀
〈 김필한 교수 〉 우리 대학 의과학대학원/나노과학기술대학원 김필한 교수 연구팀이 3차원 생체현미경 기술을 통해 패혈증 폐에서 모세혈관과 혈액 내 순환 세포를 고해상도 촬영하는 데 성공했다. 연구팀은 패혈증 폐의 모세혈관 내부에서 백혈구의 일종인 호중구(好中球, neutrophil)들이 서로 응집하며 혈액 미세순환의 저해를 유발하고, 나아가 피가 통하지 않는 사강(死腔, dead space)을 형성함을 규명했다. 연구팀은 이 현상이 패혈증 모델의 폐손상으로 이어지는 조직 저산소증 유발의 원인이 되며, 호중구 응집을 해소하면 미세순환이 개선되며 저산소증도 함께 호전됨을 증명했다. 박인원 박사(현 분당서울대학교병원 응급의학과)가 주도한 이번 연구결과는 의학 분야 국제 학술지 ‘유럽호흡기학회지(European Respiratory Journal)’에 3월 28일 자에 게재됐다. 폐는 호흡을 통해 생명 유지의 필수 작용인 산소와 이산화탄소 간 가스 교환을 하는 기관으로 이는 적혈구들이 순환하는 수많은 모세혈관으로 둘러싸인 폐포(肺胞)에서 이뤄진다. 폐포의 미세순환 관찰을 위해 연구자들이 지속적인 노력을 하고 있으나 호흡을 위해 항상 움직이는 폐 안의 모세혈관과 적혈구의 미세순환을 고해상도로 촬영하는 것은 매우 어려웠다. 연구팀은 자체 개발한 초고속 레이저 스캐닝 공초점 현미경과 폐의 호흡 상태를 보존하면서 움직임을 최소화할 수 있는 영상 챔버를 새롭게 제작했다. 이를 통해 패혈증 동물모델의 폐에서 모세혈관 내부의 적혈구 순환 촬영에 성공했다. 이 과정에서 패혈증 모델의 폐에서 적혈구들이 순환하지 않는 공간인 사강이 증가하며 이곳에서 저산소증이 유발되는 것을 발견했다. 이는 혈액 내부의 호중구들이 모세혈관과 세동맥 내부에서 서로 응집하며 갇히는 현상으로 인해 발생함을 밝혔다. 갇힌 호중구들은 미세순환 저해, 활성산소의 다량 생산 등 패혈증 모델의 폐 조직 손상을 유발하는 것도 확인했다. 연구팀은 추가 연구를 통해 폐혈관 내부의 응집한 호중구가 전신을 순환하는 호중구에 비해 세포 간 부착에 관여하는 Mac-1 수용체(CD11b/CD18)가 높게 발현함을 증명했다. 이어 Mac-1 저해제를 패혈증 모델에 사용하여 호중구 응집으로 저해된 미세순환을 개선하고 저산소증의 호전과 폐부종 감소를 증명했다. 연구팀이 독자 개발한 최첨단 고해상도 3차원 생체현미경 기술은 살아있는 폐 안 세포들의 실시간 영상촬영이 가능해 패혈증을 포함한 여러 폐 질환의 연구에 다양하게 활용될 것으로 기대된다. 연구팀의 폐 미세순환 영상촬영 및 정밀 분석 기법은 향후 미세순환과 연관된 다양한 질환들의 연구뿐 아니라 새로운 진단기술 개발 및 치료제의 평가를 위한 원천기술로 활용될 것으로 보인다. 김 교수 연구팀의 3차원 생체현미경 기술은 KAIST 교원창업기업인 아이빔테크놀로지(IVIM Technology, Inc)를 통해 상용화돼 올인원 생체현미경 모델 ‘IVM-CM’과 ‘IVM-C’로 출시됐으며 여러 인간 질환의 복잡한 발생 과정을 밝히기 위한 기초 의․생명 연구의 차세대 첨단 영상장비로서 미래 글로벌 바이오헬스 시장에 핵심 장비로 활용될 예정이다. 김 교수는 “패혈증으로 인한 급성 폐손상 모델에서 폐 미세순환의 저해가 호중구로 인하여 발생하며, 이를 제어하면 미세순환 개선을 통해 저산소증 및 폐부종을 해소할 수 있어 패혈증 환자를 치료하는 새로운 전략이 될 수 있음을 새롭게 밝혀냈다.”고 말했다. 이번 연구는 의과학대학원 졸업생 박인원 박사가 1저자로 참여했고 유한재단 보건장학회, 교육부 글로벌박사펠로우쉽사업, 과학기술정보통신부의 글로벌프론티어사업과 이공분야기초연구사업, 그리고 보건복지부의 질환극복기술개발사업의 지원을 받아 수행됐다. □ 그림 설명 그림1. 초고속 레이저주사 3차원 생체현미경 시스템 그림2. 생체 내 폐 이미징 기술 개념도 및 사진
2019.04.01
조회수 17524
윤동기 교수, 공기로 대면적의 모자이크만화경 패턴 구현
〈 윤동기 교수 〉 우리 대학 나노과학기술대학원/화학과 윤동기 교수 연구팀이 액정의 결함을 이용해 마이크론 크기의 공기 기둥을 만들고, 이를 이용해 모자이크 만화경(kaleidoscope) 패턴을 구현하는 데 성공했다. 이번 연구는 향후 자연계에서 존재하는 다양한 형태의 반복적 모자이크 구조의 형성에 대한 이해를 도울 수 있는 기초연구가 될 수 있을 것으로 기대된다. 이를 기반으로 액정기반의 나노 재료를 활용해 디스플레이, 광학 및 화학 센서 등의 응용기술에 다양하게 기여할 것으로 기대된다. 김대석 박사가 1저자로 참여하고 슬로베니아 루블라냐 대학(University of Ljubljana)의 우로스 트칼렉(Uros Tkalec) 교수와의 국제 공동 연구로 수행된 이번 연구는 국제 학술지 사이언스의 자매지 ‘사이언스 어드밴시스(Science Advances)’ 11월 23일 자 온라인판에 게재됐다. (논문명: (영문)Mosaics of topological defects in micropatterned liquid crystal textures, (국문)마이크로 패턴이 형성된 액정의 위상 결함 모자이크 패터닝) 액정 재료는 손쉬운 배향 제어, 빠른 반응 속도, 이방적(anisotropic)인 광학 특성으로 인해 액정표시장치(LCD), 광학 센서 등에 활용되는 대표적 유기 소재이다. 이때 액정의 결함을 최소화하는 것이 성능 유지를 위해 유리한 것으로 알려졌지만 물질의 특성상 액정의 결함은 불가피하게 발생한다. 그러나 최근 액정의 결함이 오히려 광학적, 구조적 및 탄성적 기능을 가진 것으로 주목받으면서 액정물질은 더 이상 LCD 광학 소재의 전유물이 아닌 전기광학 및 센서 분야를 포함한 다양한 분야에서 용용 가능성이 매우 큰 것으로 평가받고 있다. 하지만 액정물질은 물풀처럼 흐르는 특성과 마치 도미노처럼 한 부분의 영향으로 전 영역이 변하는 장범위 규칙(long range order)을 갖는 탄성 때문에 결함 구조를 대면적에 규칙적, 일관성 있게 패터닝 하는 것은 매우 어렵다. 연구팀은 문제 해결을 위해 대기 상태의 공기층이 액정물질을 만났을 때 수직 배향을 유도한다는 사실에 주목했다. 이를 효과적으로 이용하기 위해 마이크로 크기 패턴의 기판과 유리기판 사이에 액정을 주입해 공기주머니를 자발적으로 형성함으로써 수십 마이크론 내에서 액정분자들을 사방으로 잡아주는(anchoring) 시스템을 개발했다. 이를 통해 효과적으로 액정의 결함 구조를 대면적에서 제어해 모자이크 문양의 패터닝에 성공했다. 이번 연구의 핵심기술은 액정물질이 공기층 패턴 내에서 온도에 따라 변하는 상전이(phase transition) 속도에 있다. 상전이 속도가 빠르면 빠를수록 액정이 급속으로 성장하며 더욱 균일한 패턴을 형성한다. 반면 느린 상전이 속도에서는 액정물질의 탄성과 공기층의 고정 에너지(anchoring anergy)의 균형이 비대칭적으로 전개되며 불균일한 결함 구조를 만든다. 연구팀은 이런 상전이 속도에 따른 비대칭 및 비가역적 결함 구조 형성은 다양한 비 평형적 자연현상에서도 유사한 패턴으로 관찰된다는 점에 착안해 물리적 경제적으로 거의 불가능한 자연현상에 대한 실험 모델로 이번 연구를 접목할 수 있다고 밝혔다. 예를 들어 반도체 물질의 결정 성장에서 형성되는 결함 구조, 블랙홀을 포함한 특이점(singularity)을 형성하는 중력 점 간의 형성 원리, 응집물리(condensed matter)에서 원자들 간 상호작용 등 넓은 범위의 자연현상에 대해 유사성을 표현할 수 있는 실험적 모델을 정립할 수 있을 것으로 기대된다. 윤 교수 연구팀은 위상결함(topological defect)의 밀도 조절을 통해 복잡하고 다양한 2차원 모자이크 패턴을 형성하는 기술도 선보였다. 위상학적 결함 구조는 마치 전기의 음양 전하처럼 위상학적 전하(topological charge)를 갖는 음양 결함으로 정의할 수 있다. 이때 항상 음과 양이 짝을 이루어 위상학적 중립을 가지려는 규칙을 갖는다. 연구팀은 이러한 액정결함의 물리적 현상을 바탕으로 상기 공기층과 기판의 화학처리를 결합해 규칙적인 배열을 유지하는 동시에 위상결함의 밀도를 조절해 기술을 완성했다. 이러한 면적분할(tiling) 기반의 모자이크 패턴은 다양한 산업 및 실용 디자인에 적용할 수 있는 예술적 가치를 가지고 있을 뿐 아니라 세포막의 이중구조, 유기탄화시료 및 다양한 무기 결정구조면 등에 활용 가능할 것으로 보인다. 윤 교수는 “우리나라가 액정 디스플레이 산업의 강국이지만 액정 기초연구는 세계적 수준에 비해 높지 않다”라며 “이번 연구를 계기로 국내 관련 기초연구 관심도가 높아지는 계기가 되길 바란다”라고 말했다. 이번 연구는 미래창조과학부와 더불어 한국연구재단이 추진하는 미래유망융합기술파이오니어 사업과 전략연구과제의 일환으로 수행됐다. □ 그림 설명 그림1. 공기 층의 사각 및 다이아몬드 패턴에서 형성 된 네마틱 액정의 편광현미경 사진 그림2. 액정패턴이 형성되는 편광현미경 이미지들
2018.11.26
조회수 10569
김필한 교수 교원창업기업, 3차원 생체현미경 IVM-CM 출시
〈김필한 교수, 아이빔테크놀로지 김인선 CEO〉 우리 대학 나노과학기술대학원/의과학대학원 김필한 교수 연구팀이 소속된 교원창업기업 아이빔테크놀로지(IVIM Technology, Inc)가 3차원 올인원 생체 현미경 ‘IVM-CM’과 ‘IVM-C’를 개발했다. 이는 김필한 교수 연구팀의 혁신적 생체현미경(IntraVital Microscopy, IVM) 원천기술을 토대로 개발한 것으로 미래 글로벌 바이오헬스 시장에 활용될 예정이다. 세계적 현미경 제조사들의 기술을 넘어 혁신적 원천 기술을 기반으로 개발된 ‘IVM-C’와 ‘IVM-CM’은 여러 인간 질환의 복잡한 발생 과정을 밝히기 위한 기초 의․생명 연구의 차세대 첨단 영상장비가 될 것으로 기대된다. 생체현미경은 바이오제약 분야에서 크게 주목받고 있다. 최근 바이오제약 산업은 단순 합성약물개발보다 생체의 미세 구성단위인 세포 수준에서 복합적으로 작용하는 면역치료제, 세포치료제, 유전자치료제, 항체치료제 등 새로운 개념의 바이오의약품 개발에 집중하고 있기 때문이다. 인체는 수없이 많은 세포들이 복잡한 상호작용을 통해 동작한다. 그러나 현재 신약개발 전임상 단계에서는 시험관 내(in-vitro)와 생체 외(ex-vivo) 실험처럼 상호작용이 일어나지 않는 방식의 연구가 주로 수행되고 있다. 이러한 실험 결과들로만 얻은 결과로 임상시험에 진입한다면 오류와 실패의 가능성이 높아진다. 따라서 신약개발을 위한 임상시험 전 마지막 단계에서 반드시 살아있는 동물에서의 생체 내(in-vivo) 실험으로 효능 분석이 진행돼야 한다. 생체현미경 기술은 바로 이 과정에서 살아있는 동물 내부의 목표로 하는 세포, 단백질과 주입된 물질의 움직임을 동시에 3차원 고해상도 영상으로 직접 관찰할 수 있어 시험 결과의 오류, 시간, 비용을 현저히 줄일 수 있다. 기존 현미경 기술을 살아있는 생체에 적용하려면 영상획득 과정 동안 생체를 유지하기 위한 여러 추가적인 장비가 필요하다. 또한 영상 속도와 해상도의 한계로 인해 생체 내부의 세포를 직접 관찰하기 어려웠다. 아이빔테크놀로지의 ‘IVM-C’와 ‘IVM-CM’모델은 최초의 올인원 3차원 생체현미경 제품으로 살아있는 생체 내부조직을 구성하는 세포들을 고해상도로 직접 관찰할 수 있다. 기존 MRI나 CT 등으로 불가능했던 신체의 다양한 장기 내부에서 움직이는 세포들을 하나하나 구별해 관찰하는 것이 가능하다. 이를 통해 다양한 질병이 몸속에서 발생하는 과정에 대해 자세한 세포단위 영상 정보를 제공할 수 있다. 특히 ‘IVM-C’와 ‘IVM-CM’모델은 독보적인 초고속 레이저스캐닝 기술을 이용해 기존 기술수준을 크게 뛰어넘는 고해상도와 정밀도로 살아있는 생체 내부의 다양한 세포 및 주변 미세 환경과 단백질 등의 분자를 동시에 영상화하는 것이 가능하다. ‘IVM-C’모델은 살아있는 생체 내부의 고해상도 공초점 영상을 총 4가지 색으로 동시에 획득할 수 있으며, ‘IVM-CM’모델은 공초점 영상과 더불어 고속펄스레이저를 이용한 다중광자 영상까지 획득할 수 있다. 최고기술책임자(CTO) 김필한 교수는 “‘IVM-C’와 ‘IVM-CM’은 세포치료제, 면역치료제, 신약 및 선도물질 효능 분석 시 다양한 세포들이 존재하는 생체 내 환경에서 단일 세포 단위의 정밀한 효능 분석이 가능한 유일한 장비로 생명 현상을 보다 정밀하게 종합 분석하기 위한 혁신적 원천 기술로 급성장할 글로벌 바이오헬스 시장을 개척할 수 있는 차세대 의료, 의약 기술 발전을 가속화할 핵심 기술이 될 것이다”고 말했다. 아이빔테크놀로지는 시장성과 성장 가능성을 높게 평가받아 창업 후 3개월 만인 작년 9월 30억 원의 투자 유치를 달성한 바 있다. 대표이사는 김인선 전 제넥신 경영지원본부장, 최고기술책임자는 김필한 교수, 영업 및 마케팅 총괄은 독일 광학 기업인 칼자이스에서 14년간 경험을 쌓은 박수진 이사가 맡고 있다. 또한 우리 대학 박사 출신들로 구성된 기술개발팀과 연구서비스팀이 차세대 후속 장비 개발과 글로벌 바이오헬스 시장 활성화를 위해 노력하고 있다. 김필한 교수 연구팀은 창업원 엔드-런(End-Run) 사업화도약과제에 참여했으며, 아이빔테크놀로지는 창업원의 지원을 받아 설립됐다. □ 사진 설명 사진1. IVM-CM 장비사진 사진2. IVM-CM 생체영상결과 사진 사진3. IVM-CM 생체 내부 세포 추적 사진
2018.09.05
조회수 12796
김필한 교수, 초고속 레이저 생체현미경 개발
〈 김 필 한 교수 〉 우리 대학 나노과학기술대학원 김필한 교수 연구팀이 개발한 초고속 생체현미경(IVM: IntraVital Microscopy)을 통해 미래 글로벌 바이오헬스 시장을 겨냥한 상용화에 나선다. 김 교수는 (재)의약바이오컨버젼스연구단, 서울대학교 김성훈 교수와의 공동 연구를 통해 개발한 최첨단 초고속 레이저스캐닝 3차원 생체현미경 기술을 토대로 아이빔테크놀로지(주)(IVIM Technology, Inc)를 창업했다. 이 생체현미경(IntraVital Microscopy : IVM)은 수많은 세포들 간 상호작용을 통해 나타나는 생명 현상을 탐구하고 여러 질환의 복잡한 발생 과정을 밝힘으로써 기초 의생명 연구의 차세대 첨단 영상장비가 될 것으로 기대된다. 연구팀의 기술은 살아있는 생체 내부조직을 구성하는 세포의 움직임을 직접 관찰할 수 있다. MRI나 CT 등 기존 생체영상 기술로는 불가능한 신체 다양한 장기 내부의 수많은 세포 하나하나를 구별하고 각 세포들의 움직임을 3차원으로 즉시 확인 가능하다. 이를 통해 다양한 질병이 몸속에서 발생하는 과정에 대해 자세한 세포단위 영상 정보를 제공할 수 있다. 특히 초고속 생체현미경 기술은 여러 색의 레이저 빔을 이용해 기존의 조직분석 기술로는 불가능했던 살아있는 생체 내부의 다양한 세포 및 주변 미세 환경과 단백질 등의 분자를 동시에 영상화할 수 있다. 이를 활용하면 생체 외부에서 수집한 데이터로 수립한 가정을 실제 살아있는 생체 내 환경에서 세포 단위로 검증하고 분석할 수 있다. 생체현미경은 바이오제약 분야에서도 주목받고 있다. 최근 바이오제약 산업은 단순 합성약물개발보다 생체의 미세 구성단위인 세포 수준에서 복합적으로 작용하는 면역치료제, 세포치료제, 유전자치료제, 항체치료제 등 새로운 개념의 바이오의약품 개발에 집중하고 있기 때문이다. 연구팀의 생체현미경은 동물실험에서 목표로 하는 세포, 단백질과 주입된 물질의 움직임을 동시에 3차원 동영상으로 관찰할 수 있다. 현재 (재)의약바이오컨버젼스연구단과 함께 차세대 신약개발을 위한 핵심기술로 발전시키기 위해 노력 중이다. 김 교수가 창업한 회사는 시장성과 성장가능성을 높게 평가받아 벤처기업으로서는 이례적으로 빠르게 창업 3개월 만에 LB인베스트먼트와 에이티넘인베스트먼트로부터 총 30억 원의 투자를 유치했다. 김 교수는 “이 기술은 다양한 생명 현상을 보다 정밀하게 종합 분석하기 위한 원천기술이다”며 “고령화 사회의 도래와 함께 급성장할 글로벌 바이오헬스 시장을 개척할 수 있는 차세대 의료, 의약 기술의 발전을 가속화할 핵심 기술이 될 것으로 확신한다”고 말했다. 김 교수 연구팀의 연구는 창업원의 엔드런(End-Run) 사업과 과학기술정보통신부가 추진하는 글로벌프론티어사업의 혁신형의약바이오컨버전스사업의 지원을 받아 수행됐다. □ 사진 설명 사진1. 초고속 레이저 생체현미경 (IVM) 사진1 사진2. 초고속 레이저 생체현미경 (IVM) 사진2 사진3. 생체 내부 세포수준 변화의 IVM 영상 결과 사진4. 생체 내부 다양한 장기의 세포수준 IVM 영상 결과
2017.11.21
조회수 20117
윤동기 교수, 액정 결함의 변이 과정 관찰에 성공
우리 대학 나노과학기술대학원 윤동기 교수 연구팀이 액정의 결함이 온도에 따라 변화하는 과정을 규명했다. 액정 결함에 관한 연구는 20세기 초반부터 약 100여 년 간 위상기하학을 연구하는 물리, 수학자들에 의해 연구됐지만 결함의 형태 전이를 세밀하게 직접적으로 관찰한 것은 이번 연구가 처음이다. 이 액정에서의 결함은 위상학적(topology)으로 우주에서 발생하는 블랙홀과 같은 위상학적 현상과 비슷한 구조를 갖기 때문에 우주의 원리를 연구하는 데 도움이 될 것으로 기대된다. 김민준 박사가 1저자로 참여한 이번 연구 결과는 국제 학술지 ‘네이처 커뮤니케이션즈(Nature Communications) 5월 30일자 온라인 판에 게재됐다. (논문명 : Morphogenesis of liquid crystal topological defects during the nematic-smectic A phase transition) 일반적으로 액정 재료는 손쉬운 배향 제어, 빠른 반응속도, 이방적(anisotropic)인 광학 특성을 갖고 있어 액정표시장치(LCD)나 광학 센서 등에 사용된다. 이 때 액정의 결함을 최소화하는 것이 성능 측면에서 유리한 것으로 알려져 있으나 물질 특성 상 액정의 결함은 불가피하게 발생한다. 윤 교수 연구팀은 이 결함을 단순히 없애는 데만 집중하지 않고 결함의 구조를 이해하고 형성 원리를 명확하게 규명하는 기초연구에 집중했다. 이러한 노력을 바탕으로 액정재료의 위상학적 결함이 안정적으로 발생하는 플랫폼을 구성해 온도 변화에 따른 상전이(phase transition)를 직접적으로 관찰했다. 위상학적 결함의 상전이는 2016년도 노벨물리학상의 주제이기도 할 만큼 기초과학 분야에서 중요하다. 우주 은하의 위상학적 구조적 원리도 이에 바탕하고 있어 많은 연구자들이 집중하고 있는 분야이다. 우주 은하의 위상학적 결함을 관찰하기에는 너무 범위가 크고 시간이 오래 걸린다. 하지만 윤 교수팀이 고안한 플랫폼의 위상학적 결함 구조는 광학 현미경으로 관찰이 가능한 수준의 크기이다. 또한 결함의 상전이가 일어나는 시간도 수초에서 수분 단위이기 때문에 관찰이 용이하다. 여기서 액정 재료들이 형성하는 결함 구조는 하나의 특이점(singularity)을 중심으로 방사형, 원형, 나선형 등의 형태를 갖는다. 특이점은 영화 ‘인터스텔라’에서도 나온 것처럼 우주의 블랙홀의 중심부 부분에 해당한다. 이 액정 재료는 일반적으로 딱딱한 두 유리판 사이에 모세관 현상을 통해 주입해 그 시료를 준비하게 된다. 그러나 이 과정에서 유리판처럼 단단한 기판은 표면효과 때문에 액정 물질의 움직임을 제한시키고 이는 결함의 상전이를 관찰하는 장애물이었다. 연구팀은 물 위에 기름이 떠다니는 현상을 이용해 물 위에 얇은 액정재료 막을 형성함으로써 액정 분자들의 움직임이 제한적이지 않은 환경을 조성했다. 이런 환경에서 온도를 변화시키면 그 구조체를 구성하는 분자와 분자 사이의 미세한 상호작용이 기판에 의한 표면효과보다 훨씬 크기 때문에 위상학적 결함의 상전이를 연속적, 직접적으로 관찰할 수 있다. 이 연구 방식은 온도 변화를 통해 위상학적 결함의 형성과정을 순서대로 혹은 역으로 조절할 수 있다. 따라서 전이과정을 면밀하게 관찰하면 중간 상태의 결함구조를 통해 최초의 그 결함 형태와 구성 분자들의 배열을 정확히 역추적 할 수 있다. 이는 위상학적 결함의 형성 원리를 근본적으로 이해할 수 있는 연구 수단이 될 것으로 기대된다. 윤 교수는 이번 연구에 대해 “연구에 대한 발상의 전환을 통해 남들이 보지 못한 것을 볼 수 있었다”며 “액정 결함에 대한 이번 연구 결과는 산업적 측면 뿐 아니라 기초 학문에 세계적 공헌을 할 수 있을 것이다”고 말했다. 또한 “우리나라가 액정 디스플레이 산업의 강국이지만 액정에 대한 기초연구는 세계적 수준에 비해 높지 않다”며 “이번 연구를 계기로 국내 관련 기초연구에 대한 관심을 촉발시키는 계기가 되길 바란다”고 말했다. 이번 연구는 미래창조과학부와 한국연구재단이 추진하는 미래유망융합기술파이오니어사업과 신진연구지원사업의 지원으로 수행됐다. □ 그림 설명 그림1. 물 위에 형성된 액정 결함의 냉각에 의한 위상학적 결함의 상전이 현상의 편광현미경 사진 그림 2. 액정 분자들이 모이는 위상학적 결함의 편광현미경 이미지와 그에 대한 모식도와 액정 분자들이 퍼지는 위상학적 결함의 편광현미경 이미지와 그에 대한 모식도
2017.06.01
조회수 16686
윤동기 교수, 금속에 버금가는 정렬도 갖는 액정 개발
우리 대학 나노과학기술대학원 윤동기 교수 연구팀이 유동적으로 움직이는 액정 재료들을 금속과 같이 단단한 결정처럼 움직이지 않게 만드는 3차원 나노패터닝 기술을 개발했다. 이 기술은 수십 나노미터 수준의 제한된 공간에서 액정 분자들의 자기조립(self-assembly) 현상을 유도해 이뤄진다. 이는 승강기 안에 적은 수의 사람들이 있다가 많은 사람이 탑승하면서 빽빽하게 자리를 차지하는 현상과 비슷하다. 김한임 박사가 1저자로 참여한 이번 연구 결과는 국제 학술지 사이언스의 자매지인 ‘사이언스 어드밴스(Science advances)’ 2월 10일자 온라인 판에 게재됐다. 이번 연구는 향후 유기 분자 기반의 나노재료를 활용하는 기술에 다양하게 기여할 수 있을 것으로 기대된다. 액정 재료는 손쉬운 배향 제어, 빠른 반응 속도, 이방적(anisotropic)인 광학 특성 등으로 인해 액정표시장치(LCD), 광학 센서 등에 이용되는 대표적인 유기 소재이다. 그러나 액정 재료는 물풀과 같이 유동적으로 흐르기 때문에 구조의 제어가 어렵고 안정적이지 않아 활용 범위가 제한됐다. 연구팀은 문제 해결을 위해 액정 재료가 들어 있는 수십 나노미터크기의 2차원의 한정된 공간을 위아래 옆, 사방에서 눌러주는 시스템을 개발했다. 게스트(guest) 역할의 액정물질과 상호작용하는 호스트(host) 물질을 3차원적 나선형의 나노구조체로 제작함으로써 효과적으로 게스트 액정물질을 제어하는데 성공했다. 이렇게 공간 자체를 줄이게 되면 유동적으로 흐르는 액정 물질조차 마치 고체처럼 단단해지는 효과가 발생한다. 기존 연구가 단순히 2차원의 고정된 공간을 한정적으로 이용했다면 이번 연구는 고정된 공간을 인위적으로 조절함으로써 그동안 존재하지 않던 좁은 공간을 3차원적으로 구현한 것이다. 이 기술을 이용하면 냉각이나 건조 등의 추가 공정 없이도 유기액정재료를 금속 결정상에 버금가는 배열로 3차원 공간에 균일하게 제어할 수 있다. 이를 통해 새로운 개념의 액정 기반 3차원 나노패터닝 기법을 개발할 수 있고, 전기 및 자기장에 민감하게 반응하는 액정 소재의 고유 성질과 융합하면 고효율의 광전자 소자 개발에 기여할 수 있다. 또한 현재 디스플레이 및 반도체에 사용되는 단순한 선과 면 형태의 2차원 패터닝을 탈피해 고차원 구조 중 가장 구현이 어렵다는 나선 형태도 쉽게 제조가 가능하다. 이를 통해 향후 카이랄 센서, 차광소재, 분리막 등 광범위한 분야에 응용할 수 있다. 연구팀은 이번 연구에 대해 “유동적인 액정소재의 배향, 배열 정보를 3차원 공간에 완벽하게 제어하는 데 성공했다”며 “액정 물질 뿐 아니라 다양한 유기 분자로 구성된 나노 구조체를 한정된 공간과 재료의 상호작용을 이용해 손쉽게 제어할 수 있는 기술이다”고 말했다. 윤 교수는 “이번에 개발한 원천기술을 이용하면 현재 사용되는 2차원적 광식각 공정(Photolithography)에 비해 10배 이상 제작 과정을 간소화시킬 수 있다”며 “현재 기술로 구현이 어려웠던 복잡한 구조를 최초로 만듦으로써 반도체, LCD 등 관련 분야에서 신 성장 동력을 창출할 수 있을 것이다”고 말했다. 이번 연구는 미래창조과학부, 교육부와 더불어 한국연구재단이 추진하는 미래유망융합기술파이오니어 사업과 글로벌연구네트워크 지원사업의 일환으로 수행됐다. □ 그림 설명 그림1. 게스트 액정 도입 전 후 사진 및 모식도 그림2. 결정화된 액정구조체 형성 원리 모식도
2017.02.14
조회수 14691
윤동기 교수, 붓으로 DNA의 모양을 조절하는 기술 개발
우리 대학 나노과학기술대학원 윤동기 교수 연구팀이 일상생활에서 흔히 쓰이는 화장용 붓을 이용해 일정한 지그재그 형태를 갖는 DNA 기반의 나노 구조체 제작 기술을 개발했다. 차윤정 박사과정 학생이 1저자로 참여한 이번 연구 성과는 재료분야 저명 학술지 ‘어드밴스드 머티리얼즈(Advanced materials)’ 11월 15일자 온라인 판에 게재됐고 액정(liquid crystal) 분야 핫 토픽으로 선정됐다. 기존에도 DNA를 빌딩블록으로 사용해 다양한 나노 구조체를 만드는 기술은 많이 존재했다. 그러나 이 방식은 복잡한 설계과정이 필요하고 특히 염기서열이 조절된 값비싼 DNA를 이용해야 하는 단점이 있다. 연구팀은 연어에서 추출한 DNA 물질을 이용해 기존보다 1천 배 이상 저렴한 비용으로 잘 정렬된 지그재그 형태의 나노 구조체를 구현했다. 연구팀은 화장품 가게에서 구매한 화장용 붓으로 연어에서 추출한 DNA를 물감처럼 이용해 그림 그리듯 기판에 한 방향으로 문질렀다. 수 센티미터 크기의 붓을 이용해 지름이 약 2 나노미터인 DNA 분자들을 붓질 방향으로 나란히 정렬시켰다. 얇게 퍼진 진한 상태의 DNA 필름이 공기 중에 노출돼 건조되며 이 때 기판의 바닥에서 잡아주는 힘 때문에 팽창력이 작용한다. 이 팽창력은 DNA의 탄성력과 상호작용해 일렬로 향하던 DNA의 분자에 파도모양의 기복이 생기면서 일정한 지그재그 패턴이 형성된다. 형성된 DNA 지그재그 패턴은 생물체에서 추출한 저렴한 DNA를 사용했기 때문에 그 내부정보(sequence)까지는 조절되지 않았지만, DNA 물질의 구조적 정교함은 변하지 않아 아주 일정한 구조체가 된다. 이렇게 정밀하게 구조가 조절된 DNA 막 위에 다른 물질을 바르면 DNA 구조에 따라 정밀하게 그 물질이 정렬하기 때문에 다양한 분야에 이용 가능하다. 예를 들어 액정 디스플레이에 사용되는 다른 액정을 정렬시킬 수 있고 금속 입자, 반도체 물질 역시 정렬이 가능하다. 이러한 기능을 통해 새로운 개념의 광전자 소자로의 응용에 기여할 수 있을 것으로 기대된다. 윤 교수는 “DNA 뿐 아니라 자연계에 존재하는 단백질, 근육 세포, 뼈의 구성물질 등 다양한 생체 물질을 광전자 분야에 사용할 수 있다는 점에서 큰 의의를 갖는다”고 말했다. 이번 연구는 한국연구재단의 나노소재 원천기술개발사업 및 미래유망융합기술 파이오니아 사업을 통해 수행됐다. □ 그림 설명 그림1. 규칙적인 DNA 지그재그 구조체의 이미지와 내부 분자의 배향을 설명하는 모식도 그림2. 정렬되지 않던 DNA(좌)가 붓질 및 건조시킨 후 정렬된 과정(우) 그림3. 마이크로 채널 기판을 이용한 DNA 지그재그 구조체의 제어 그림4. DNA 지그재그 구조체 표면 위에 형성된 액정 물질의 배향제어 모식도 및 편광 현미경 이미지
2016.12.01
조회수 15159
나노미터 크기의 우담바라 꽃 모양 제작
〈윤 동 기 교수〉 우리 대학 나노과학기술대학원 윤동기 교수 연구팀이 액정의 승화현상을 이용해 정교한 3차원 액정나노구조를 제작할 수 있는 기술을 개발했다. 이는 액정이 승화할 때 열처리 조건에 따라 여러 모습의 3차원 나노구조가 형성되는 특성을 이용한 기술이다. 간단한 온도조절만으로도 다양한 3차원 나노패터닝이 가능해 차세대 소자 개발에 기여할 것으로 기대된다. 특히 연구팀은 우담바라 꽃, 찐빵 모양 등을 나노미터 크기 수준에서 정교하게 제작하는 데 성공했다. 이번 연구는 ‘네이처 커뮤니케이션즈(Nature Communications)’ 1월 4일자 온라인 판에 게재됐다. 나노 및 마이크로 패터닝을 위해 가장 많이 쓰이는 기술은 빛을 이용한 광 식각 기술이다. 하지만 이 방식은 2차원 식각공정에 특화돼 있고 비싼 공정설비, 복잡한 과정 등의 한계를 갖는다. 특히 3차원 구조 제작을 위해서는 2차원 구조를 계속 적층해야 하는 과정이 포함되기 때문에 정교한 구현이 어려웠다. 연구팀은 문제 해결을 위해 액정의 온도를 높여 분자들을 기체로 승화시켰다. 기체로 승화된 액정분자들은 공기 중으로 날아가게 되는데 그 중 일부는 무게, 분자수준에서의 친화도 등의 원인으로 다시 되돌아와 남아있던 액정 상 구조와 다시 재결합하게 된다. 이는 동굴의 종유석, 석순의 생성 원리나 유황온천에서 승화돼 날아가던 유황 성분이 바위나 돌에 붙어 유황 바위가 되는 것과 비슷한 원리이다. 연구팀은 승화 및 재결합 현상을 통해 온도 및 시간 조절로 수 나노미터 수준의 액정 판상구조를 정교하게 한 겹씩 벗겨낸 뒤, 다양한 3차원 나노 구조체를 제작하는 데 성공했다. 온도나 시간을 조절함으로써 나노 구조체는 다양해진다. 온도를 조금만 상승시킬 때는 우담바라 꽃 모양이 되고, 온도를 매우 높일 때는 액정 분자가 순식간에 날아가 찐빵과 같은 모양이 되기도 한다. 이 기술을 이용하면 차세대 기술로 불리는 수직 트랜지스터 등을 기존 2차원 식각 공정에 비해 약 1천 배 저렴하고 간단하게 제작할 수 있다. 일일이 적층할 필요 없이 3차원으로 패터닝이 순식간에 가능해지기 때문이다. 윤 교수는 “전자기장에 민감하게 반응하는 액정의 고유 성질과 이번 승화 및 재결합 현상을 융합할 수 있다”며 “이를 통해 고효율의 광전자 소자 개발에 많은 도움이 될 것이다”고 말했다. 나노과학기술대학원 김대석 박사과정 학생이 주도하고 美 켄트 주립대학 올레그 라브렌토비치(Oleg D. Lavrentovich) 교수가 참여한 이번 연구는 미래창조과학부의 미래유망기술 융합파이오니아 사업을 통해 수행됐다. □ 그림 설명 그림1. 우담바라 나노구조체 그림2. 우담바라 나노구조체(확대) 그림3. 다양한 조건의 승화-재조합 공정 후의 초분자 액정 구조체의 모양
2016.01.11
조회수 12600
소장 내 지방 흡수과정의 비밀 밝혀
김 필 한 교수 우리 대학 나노과학기술대학원 김필한 교수와 의과학대학원 고규영 교수 공동 연구팀이 소장에서 지방이 흡수되는 과정의 고해상도 촬영에 성공했다. 이번 연구는 나노과학기술대학원 최기백 박사과정 학생, 의과학대학원 장전엽 박사, 박인태 박사과정 학생이 1저자로 참여했다. 이를 통해 소장의 융모로 흡수된 지방의 전달 통로인 암죽관의 수축현상을 최초로 발견했다. 이번 연구결과는 의생명과학 분야 국제 학술지인 ‘임상연구(The Journal of Clinical Investigation, Impact Factor 13.261)’ 10월 5일자 온라인판에 게재됐다. 또한 11월에는 이달의 주목할 만한 연구로 ‘JCI This month’에도 소개될 예정이다. (논문명 : Intravital imaging of intestinal lacteals unveils lipid drainage through contractility) 소장은 영양분을 흡수하는 기관이다. 소장의 관찰을 위해 많은 학자들이 노력했지만 소장은 항상 쉬지 않고 움직이기 때문에 고해상도 촬영에 한계가 있었다. 연구팀은 자체 개발한 초고속 레이저 스캐닝 공초점 현미경과 소장 의 상태를 보존하고 내벽을 고정할 수 있는 영상 챔버를 이용해 동물 모델의 소장 내벽에서 지방산이 흡수되는 과정을 촬영했다. 이 과정에서 지방의 흡수 통로인 암죽관이 일정 주기로 수축 및 이완하는 현상을 발견했다. 또한 암죽관의 수축 정도가 소장에서의 지방산 흡수 속도에 영향을 미치는 것을 발견했다. 연구팀은 이 암죽관의 움직임이 융모 내부에 다량 존재하는 민무늬근세포에 의해 발생하고, 이는 체내에 분포된 자율신경계를 통해 조절됨을 밝혔다. 이번 연구를 통해 개발된 최첨단 고해상도 생체영상기술로 소장 내 다양한 물질 흡수 과정의 실시간 모니터링이 가능해질 것으로 예상된다. 또한 이 기술은 신약개발 과정에서 지용성 약물이 소장 내 암죽관으로 흡수되게 해 간 독성을 최소화하는 새로운 약물전달 방법 확립에 기여할 것으로 기대된다. 김 교수는 “우리가 섭취하는 다량의 지용성 영양소가 체내로 흡수되는 과정에서 자율신경계로 조절되는 융모 내부의 암죽관 제어 메커니즘이 존재함을 새롭게 밝혀냈다”고 말했다. 이번 연구는 미래창조과학부의 글로벌프론티어사업 및 신기술융합형 성장동력사업의 지원을 받아 수행됐다. 그림 설명 그림1. 소장 내벽에 존재하는 융모에서 지방산이 흡수되는 과정을 광학현미경으로 영상화하는 과정 모식도 그림2. 소장 융모에서 지방산(적색)이 암죽관(녹색)을 통해 흡수되는 과정 그림3. 암죽관(녹색)의 반복적인 이완과 수축 운동. 0초, 2.7초에 이완. 1.6초, 4초에 암죽관의 수축
2015.10.14
조회수 15674
휘어지는 물질에서 증폭된 광전기 효과 발견
양 찬 호 교수 우리 대학 물리학과 양찬호 교수 연구팀이 물질이 휘어질 때 광전기(光電氣) 효과가 증폭되는 것을 발견하고 그 원인을 규명했다. 이번 연구결과는 나노과학기술 분야 학술지 ‘네이처 나노테크놀로지(Nature Nanotechnology)’ 8월 31자 온라인 판에 게재됐다. 광전기 효과는 빛 에너지가 전기 에너지로 전환되는 현상으로 이 효과를 이용하면 온실가스 배출 없이 전기를 만들 수 있다. 따라서 전 세계적으로 안정적이고 저렴하며 효율이 높은 광전기 효과를 발생시키는 물질 및 구조를 찾는 연구가 활발히 진행되고 있다. 기존 태양광 소자들은 다른 물질을 붙이거나 P형-N형 반도체를 접합하는 등 두 개 이상의 물질을 이용하는 방식으로 광전기 효과를 일으켰다. 하지만 연구팀은 단일 물질에서도 휘어지는 변형이 발생했을 때 마치 두 물질의 경계면에서 광전기 효과가 일어나는 것과 흡사한 현상을 발견했다. P형-N형 반도체 접합에서만 가능했던 전기장 생성이 단일 물질의 휘어짐으로도 가능함을 확인해 좀 더 효율적인 광전기 소자 제작이 기대된다. 물질의 일반적인 휘어짐으로는 얻을 수 있는 광전기 효과가 크지 않아 실용성이 없었다. 하지만 연구팀은 나노미터 크기의 구조까지 관찰해 물질이 자발적으로 매우 크게 휘는 구간을 발견했다. 그리고 수십 나노미터(1억분의 1미터)의 곡률(曲律)로 크게 휘어진 이 물질이 통상적인 물질에 비해 100배 증폭된 광전기 효과를 생성함을 규명했다. 광전기 효과가 증폭된 원인은 물질이 휘어질 때 발생하는 전기장에 있다. 물질이 빛을 받으면 원자에 묶여있던 전자가 잠깐 움직일 수 있는 상태가 되는데 일반적으로는 원자에 다시 속박된다. 하지만 물질이 휘어지는 구간에서는 전기장이 유의미한 강도로 세게 발생해 전자가 원자의 속박을 벗어나 외부로 빠져나와 전류가 흐를 수 있는 것이다. 특히 나노미터 규모의 미시적 구조에서는 물질이 크게 휘어진 상태가 흔하게 존재하기 때문에 연구팀의 규명은 작은 나노소자 연구에 유용할 것으로 예상된다. 또한 연구팀은 물질 표면의 전기기계적 성질을 10나노미터의 해상도로 이미지화할 수 있는 기술을 개발했다. 이 기술은 전기장 분포를 유추할 수 있어 다양한 나노스케일 연구에 활용할 수 있을 것으로 기대된다. 양 교수는 “휘어진 정도가 큰 경우에 플렉소전기 현상의 비선형 움직임이 중요함을 제안했다.”며 “이러한 비선형 거동은 전기기계적 성질의 계보를 잇는 새로운 현상으로 학술적 가치가 높다”고 말했다. 이번 연구는 우리 대학 김용현 교수, 포항공대 조문호 교수, 오상호 교수, 포항 가속기연구소 구태영 박사, 재료연구소 최시영 박사 등과 공동으로 진행됐고, 한국연구재단의 중견연구자지원사업을 통해 수행됐다. □ 그림 설명 그림1. 물질이 휘어질 때 광전기 효과가 발생함을 나타낸 개념도
2015.09.15
조회수 11431
<<
첫번째페이지
<
이전 페이지
1
2
>
다음 페이지
>>
마지막 페이지 2