본문 바로가기
대메뉴 바로가기
KAIST
연구뉴스
유틸열기
홈페이지 통합검색
-
검색
메뉴 열기
%ED%99%98%EA%B2%BD%EA%B3%B5%ED%95%99%EA%B3%BC
최신순
조회순
이제 전자제품도 완전히 생분해될 수 있다
전자폐기물이 발생하지 않는 안전한 전자제품을 구현할 수 있을까? 국제공동연구진은 갑오징어에서 추출한 미래 전자 소재로 주목받는 세피아 멜라닌으로 만든 친환경 필름이 85일 만에 약 97% 생분해됨을 밝혀 지속가능한 친환경 전자제품의 새로운 가능성을 열어 화제다. 우리 대학 건설및환경공학과 명재욱 교수 연구팀이 몬트리올 공과대학 클라라 산타토(Clara Santato) 교수 연구팀과 국제 공동연구를 통해 완전히 생분해되는 세피아 멜라닌 기반 전기 활성 필름을 개발했다고 25일 밝혔다. 해마다 전자제품에 대한 수요가 급격하게 증가함에 따라 매년 약 6천만 톤에 이르는 전자폐기물이 발생하고 있다. 전자폐기물은 자연에서 쉽게 분해되지 않고 납(Pb), 카드뮴(Cd)과 같은 중금속이나 폴리염화비닐(PCB) 등 유해 화학물질을 자연에 유출해 생태계를 오염시킬 수 있다. 한편 생분해성 *유기전자소재는 기존 전자제품에 대한 패러다임을 전환할 수 있는 새로운 소재로 떠오르고 있다. 특히 갑오징어에서 추출할 수 있는 세피아 멜라닌은 생분해성, 저독성으로 지속가능한 미래 전자 소재로 주목받고 있다. *유기전자소재(organic electronic material): 멜라닌, 타닌, 이모딘, 리그닌, 도파민 등 화학 구조상 전자공액계(electron conjugation)를 특징으로 하는 물질들을 뜻한다. 연구팀은 완전한 분해가 가능한 전기 활성 필름을 구현하기 위해 천연 바이오 소재인 세피아 멜라닌-셸락 잉크 복합체를 플렉소그래피 인쇄 기술을 활용해 은 전극 패턴의 종이 위에 인쇄했다. 인쇄된 필름이 이산화탄소(CO2)로 전환되는 정도(광물화도)를 기반으로 퇴비화 조건에서 생분해 거동을 분석한 결과, 85일 만에 약 97% 생분해됨을 연구팀은 확인했다. 인쇄 필름은 육안으로 봤을 때 20일 이내에 완전히 분해됐으며, 주사전자 현미경 분석을 통해 박테리아가 인쇄 필름의 생분해에 관여하여 퇴비 미생물 군집이 표면에 형성됨을 관찰했다. 한편, 인쇄 필름의 생분해 산물이 생태독성을 띠는지 조사하기 위해 두 가지 식물 쥐보리(Lolium multiflorum)와 메리골드(Tagetes erecta)를 대상으로 발아 실험을 진행한 결과, 인쇄 필름과 그 개별 구성 성분(세피아 멜라닌, 셸락, 셀룰로오스 등)은 식물에 대한 독성이 미미한 것으로 나타났다. 전기적 특성을 분석한 결과 세피아 멜라닌-셸락 인쇄 필름은 10-4 S/cm의 전기전도도를 나타냈다. 해당 전기전도도는 일반 금속이나 고성능 전자 재료에 비해 낮지만, 생분해성 및 친환경 특성 덕분에 환경 센서, 생체 디바이스, 일회용 전자제품 등 특정 응용 분야에서 경쟁력 있는 대안이 될 수 있다. 이번 국제 공동 연구를 이끈 건설및환경공학과 명재욱 교수는 “세피아 멜라닌, 셸락과 같은 널리 쓰이지 않는 바이오 기반 물질을 활용해 완전히 생분해되는 전기활성 필름을 구현한 최초 사례이며, 후속 연구를 통해 지속가능한 전자 디바이스 구현을 위한 여러 대안을 제시할 계획”이라고 밝혔다. 건설및환경공학과 최신형 박사과정과 몬트리올 공과대학 앤써니 카뮈(Anthony Camus) 박사과정이 공동 제1 저자로 참여한 이번 연구는 지난 8월 29일 국제 학술지 Communications Materials에 출판됐다. ※ 논문명: Electrical response and biodegradation of Sepia melanin-shellac films printed on paper (저자 정보 : Anthony Camus*, 최신형*(공동 제1 저자*), Camille Bour-Cardinal1(몬트리올 공과대), Joaquin Isasmendi(몬트리올 공과대학), 조용준(KAIST), 김영주(KAIST), Cristian Vlad Irimia(요한케플러대), Cigdem Yumusak(요한케플러대), Mihai Irimia-Vladu(요한케플러대), Denis Rho(캐나다국립연구위원회)**, 명재욱(KAIST)**, Clara Santato(몬트리올 공과대)** (공동 교신저자**), 총 12명) 한편, 이번 연구는 KAIST 공과대학 석·박사 모험연구 및 창의도전사업(C2연구), 한국연구재단 과학기술국제화사업-한국 이공계 대학원생 캐나다 연수 프로그램 사업 등의 지원으로 수행됐다.
2024.09.28
조회수 1341
홍정욱 교수, Elsevier ADES 저널 수석편집장 선임
건설및환경공학과 홍정욱 교수가 세계 최대의 저널 출판사인 Elsevier에서 출간하는 전산역학 분야 권위 학술지인 ‘Advances in Engineering Software’의 수석편집장(Editor-in-Chief)으로 2024년 1월 3일자로 선임됐다. ADES 저널은 JCR의 공학(Engineering)분야 Q1으로 분류되는 우수한 저널로서 홍정욱 교수는 수석편집장 임무를 통해 투고된 논문의 우수성을 심사하고 다양한 국제적인 활동을 통하여 해당 저널의 수준을 향상시키는 역할을 수행한다.
2024.02.07
조회수 3113
한빛원전의 시공 불량 문제를 해결하기 위한 시뮬레이션 개발
후쿠시마 사고 이후 원전 안전 및 관리에 대한 관심이 집중되고 있다. 한국에서는 2017년 6월경 한빛원전의 원자로 격납건물의 콘크리트 벽 속에서 대규모 공극이 발견되었다. 원자로 격납건물은 원전 사고 발생 시 방사능 유출을 막아주는 최후의 보루이기 때문에, 이러한 콘크리트 공극으로 인한 원전의 안전상 우려가 큰 상황이다. 국내 연구진들은 원자로 격납건물 시공시 콘크리트 다짐 및 채움 불량으로 인하여 격납로 내 콘크리트에 공극이 발생한 것으로 추정하고 있다. 원자로 격납건물은 일반 콘크리트 구조물과 달리 매우 높은 밀도의 철근 보강이 필요하기 때문에, 콘크리트 타설 시 진동 다짐기가 진입하지 못하는 구역이 존재할 가능성이 높아서 콘크리트 공동에 대한 위험성이 높다. 하지만 돔 형태의 벽체 내부를 감싼 6 mm 두께의 철판(콘크리트 라이너 플레이트, CLP)이 영구 거푸집으로 활용되기 때문에 내부 공동에 대한 육안 검사가 불가능하다는 점에서 공극 발생 여부의 발견에 대한 어려움이 있다. 우리 대학 건설및환경공학과 김재홍 교수 연구팀은 이러한 문제를 해결하기 위하여 콘크리트의 유동성과 다짐 불량으로 인해 발생하는 공동을 억제할 수 있는 시공 시뮬레이션 기법을 개발했다. 연구팀에서 제안한 콘크리트 유동 시뮬레이션 기법은 콘크리트의 레올로지와 진동다짐의 영향 반경을 고려하여 콘크리트 공동 발생 예상 부위를 예측하는 기술이다. 연구팀은 이번 연구를 통해 콘크리트 진동다짐의 영향 반경(감쇠계수)을 직접 측정하여 굳지 않은 콘크리트 내부의 진동 에너지 밀도 분포를 제시했다. 이어서, 진동 에너지에 따른 콘크리트의 Vibrorheology를 정량적으로 측정하여, 굳지 않은 콘크리트의 항복응력 감소를 정량적으로 모델링하여 시공 시뮬레이션을 가능하게 하였다. 새로 제안된 시공 시뮬레이션 기법은 기존 콘크리트 유동해석으로는 고려할 수 없었던 격납건물 내부 보강재의 형상과 크기, 콘크리트 레올로지, 그리고 진동다짐의 진폭과 진동수까지 고려하여 콘크리트의 채움성을 평가할 수 있게 되었다. 연구팀은 향후 보강 연구를 진행해 3D 프린팅 콘크리트의 레올로지 제어, 프리캐스트 콘크리트의 품질 관리 등에도 해당 기술을 활용할 계획이다. 이번 연구는 한국수력원자력(주)와 한국연구재단의 과학기술분야 기초연구사업의 지원으로 수행되었으며, 건설공학 분야에서 권위 있는 학술지인 ACI Materials Journal, Cement and Concrete Research 등에 출판되었다. (논문명: (1) Quantitative evaluation of energy transfer of a concrete vibrator. (2) Flow simulation of fresh concrete accounting for vibrating compaction.)
2023.10.24
조회수 4137
일산화질소로부터 암모니아 생산하는 고효율 전기화학 기술 개발
발전소, 산업 시설 등에서 배출되는 배기가스 내 주요 대기오염 물질인 일산화질소(NO)로부터 암모니아를 생산하는 기술이 국내 연구진에 의해 개발됐다. 대기 중에서 초미세먼지를 유발하는 골칫거리인 일산화질소를 사용해 최근 수소 저장체로 주목받는 암모니아를 생산한 것이다. 우리 대학 건설및환경공학과 한종인 교수 연구팀이 UNIST(총장 이용훈) 에너지화학공학과 권영국 교수팀, 한국화학연구원(원장 이미혜) 환경자원연구센터 김동연 박사와 함께 일산화질소로부터 암모니아를 생산하는 고효율 전기화학 시스템을 개발했다고 23일 밝혔다. 개발된 시스템은 비싼 귀금속 촉매 대신 값싼 철 촉매를 이용해 상온 및 상압 조건에서 세계 최고 수준의 전기화학적 암모니아 생산 속도를 기록했다. 일산화질소는 발전소, 산업용 보일러, 제철소 등 연소시설에서 배출되는 질소산화물(NOx)의 대부분(95% 이상)을 차지하고 있는 유해 가스로, 호흡기 질환을 유발할 뿐만 아니라 산성비 및 대기 중 오존을 생성해 배출량이 엄격히 규제되고 있다. 현재 대부분의 처리 기술은 일산화질소의 단순 제거에만 초점을 맞추고 있지만 한 교수팀은 버려지는 일산화질소의 가치에 주목했다. 일산화질소의 높은 반응성을 이용해 적은 에너지만으로 유용 자원인 암모니아 생산의 가능성을 본 것이다. 연구팀은 물에 잘 녹지 않는 일산화질소의 한계를 극복하기 위해 기존의철-킬레이트를 포함한 일산화질소 흡수제를 사용하는 방식 대신 기체를 직접적으로 전극에 주입하는 기체 확산 전극을 사용해 물질전달 속도를 획기적으로 늘렸다. 이로써 공정에 소모되는 화학약품 비용을 줄이고 전기화학 셀 운전 시 발생하는 폐수 처리를 간편화했다. 나노 크기의 철 촉매를 전극에 도포해 부반응을 억제하고 암모니아에 대한 생성물의 선택도를 확보했으며, 전기화학적 암모니아 생산 성능을 결정하는 중요한 지표인 암모니아 생산 속도는 1,236μmolcm-2h-1를 기록했다. 이는 기존의 질소 기체(N2)를 활용한 전기화학적 암모니아 생산 속도 범위인 10μmolcm-2h-1을 100배 이상 넘어선 수준이다. 이러한 접근법은 대부분의 전기화학 반응에서 100%의 순수한 원료 기체를 필요로 하는 것과 달리 사용되는 일산화질소 가스의 농도를 1~10%까지 낮출 수 있어 해당 기술의 현장 적용성을 높일 수 있을 것으로 기대된다. 또한 기존의 암모니아 생산 공정인 하버-보쉬법이 섭씨 400도, 200기압 이상의 고에너지 조건을 요구하는 데 반해, 연구팀이 개발한 전기화학 시스템은 상온 및 상압 조건에서 암모니아 생산이 가능해 공정 설비와 비용 부담을 크게 줄일 수 있을 전망이다. 이번 연구를 주도적으로 진행한 한 교수 연구팀의 천선정 박사과정 학생은 "최근 대기오염, 탄소 중립 등의 이슈가 꾸준히 확산하는 가운데 지속할 수 있는 기술 개발에 대한 중요성이 커지고 있다ˮ며 "대기오염의 원인을 효과적으로 제거하는 동시에 탄소배출이 없는 암모니아 연료를 생산해 새로운 관점으로 환경문제를 해결하고자 했다ˮ고 말했다. 우리 대학 천선정 박사과정, 창원대학교 김원준 교수가 공동 제1 저자로 참여한 이번 연구성과는 저명 국제 학술지인 `ACS 에너지 레터스(Energy Letters)'에 3월 11일 자로 출판됐으며, 속표지논문으로 선정됐다. (논문명: Electro-synthesis of ammonia from dilute nitric oxide on a gas diffusion electrode). 한편 이번 연구는 한국에너지기술평가원, 한국연구재단 등의 지원을 받아 수행됐다.
2022.03.24
조회수 10320
박태형 박사과정, 권태혁 교수, 해저 점토질에서 불타는 얼음 생성원리 규명
우리 대학 건설및환경공학과 권태혁 교수 연구팀이 일명 불타는 얼음으로 불리는 천연가스 하이드레이트가 바다 속 점토질 퇴적토에서 다량으로 생성되는 원리를 규명했다. 이번 연구는 점토 광물이 하이드레이트 생성을 촉진한다는 것을 실험적으로 규명하고 점토질 퇴적층에서 하이드레이트의 존재에 대한 새로운 원리를 제시했다는 의의를 갖는다. 박태형 박사과정이 1저자로 참여한 이번 연구는 환경 분야 국제 학술지 ‘인바이러멘탈 사이언스&테크놀로지(Environmental Science & Technology)’ 2월 3일자 온라인 판에 게재됐다. 해저의 퇴적토나 영구동토층(2년 이상의 기간 동안 토양이 얼어있는 지대)에서 주로 발견되는 천연가스 하이드레이트는 메탄 등의 천연가스가 물 분자로 이뤄진 얼음과 비슷한 결정구조에 갇혀있는 고체물질이다. 흔히 불타는 얼음으로 불리는 이 물질은 막대한 매장량으로 인해 차세대 대체 에너지로 주목받고 있다. 점토질 퇴적토에서는 가스 하이드레이트 생성이 어렵다는 것이 일반적인 이론이다. 그러나 최근에는 전 세계적으로 해저 점토질 퇴적층에서 다량의 가스 하이드레이트가 발견되고 있어 기존 이론과 상반된 현상에 대한 원인을 규명하는 것이 과제로 남아 있다. 특히 점토광물 표면은 음전하를 띄고 있는데 이 전하들이 점토표면에 흡착된 물 분자에 상당한 전기적 힘을 가해 분극화시킨다. 또한 점토 표면의 음전하를 상쇄하기 위해 주변에 많은 양이온들이 존재한다. 따라서 보통 조건의 물 분자와 분극화된 조건의 물 분자들의 하이드레이트 결정 생성 양상을 비교하는 것이 연구의 핵심이다. 그러나 점토 주변에 자연적으로 존재하는 양이온들로 인해 실험 연구를 수행할 수 없었다. 연구팀은 기존 연구의 한계 극복을 위해 물에 전기장을 가해 점토 표면과 같이 물 분자들의 분극화를 구현한 뒤 물 분자들의 가스 하이드레이트 결정 생성 속도를 측정했다. 그 결과 점토 표면과 비슷한 크기의 전기장(10kV/m)을 물에 적용했을 때 가스 하이드레이트 결정핵 생성 속도가 약 6배 이상 빨라지는 것을 관찰했다. 이는 물 분자가 전기장에 의해 분극화되면 분자 간 수소 결합이 부분적으로 약해지고 내부에너지가 감소되기 때문인 것으로 밝혀졌다. 연구팀은 전기장이 하이드레이트 생성을 촉진함을 실험적으로 규명하는데 성공함으로써 점토광물의 존재가 하이드레이트 생성을 방해하는 것이 아니라 특정 조건에서는 오히려 하이드레이트 생성을 촉진함을 밝혔다. 권 교수는 “이번 연구를 통해 점토질 퇴적토에서 가스 하이드레이트가 많이 발견되는 이유에 대해 좀 더 이해할 수 있게 됐다”며 “멀지 않은 미래에 인류는 가스 하이드레이트를 에너지 자원으로 생산하고 소비할 수 있을 것으로 기대한다”고 말했다. □ 그림 설명 그림1. 물 분자의 가스 하이드레이트 결정 생성 실험과 촉진 모식도 그림2. 가스 하이드레이트 생성 촉진(좌)과 억제(우) 반응
2018.03.05
조회수 9832
명현 교수, 해파리 퇴치용 군집 로봇 개발
- 3대의 군집 로봇으로 현장 시연 완료 - 우리 학교 건설 및 환경공학과 명현 교수 연구팀이 해파리 퇴치용 로봇 제로스 (JEROS)를 이용한 협업 군집 로봇 개발을 완료하고 이를 현장에서 시험했다. 최근 우리나라 연근해에 해파리 떼가 출몰하면서 해파리로 인한 인명 사고와 조업 손실(연간 3,000억원 정도 추산됨)이 큰 문제가 되고 있는 가운데, 명현 교수 연구팀은 4년 전 해파리를 제거할 수 있는 무인 자동화 시스템인 ‘제로스’ 개발에 착수했으며, 작년에 1대로 현장 시험을 완료한 바 있다. 올해에는 제로스의 속도 및 퇴치 성능을 향상시키고 3대를 제작하여, 편대를 지으며 협동으로 해파리를 퇴치하는 군집 로봇을 개발, 현장에서 시험을 진행했다. 무인 수상 로봇의 일종인 ‘제로스’는 길이 1.5m, 폭 1m, 높이 1m이고, 폭 1.2m, 높이 1.2m 크기의 분쇄부를 탈부착 가능하다. 원기둥 형태의 두 개의 동체가 부력을 유지하며, 동체에 붙어 있는 두 개의 추진 모터를 이용해서 전・후진 및 회전이 가능하다. 또한 GIS (지리정보시스템) 기반 맵 데이터를 이용하여 해파리 퇴치 작업 영역을 지정하면 작업 경로를 자동으로 계산을 하며 GPS(위성항법장치) 수신기 및 IMU(관성항법장치)를 이용하여 자율 운항을 한다. 군집 로봇은 삼각 편대, 일렬 편대와 같이 정해진 패턴을 유지하는 동시에, 계산된 경로를 따라가며 해파리 퇴치 작업을 수행하게 된다. 이때 선도(리더) 로봇만 주어진 경로를 알면 되고, 다른 로봇들은 무선통신(지그비 방식) 을 이용하여 서로의 위치를 주고 받으며 편대를 유지하게 되므로, 개별적인 제어가 필요하지 않다는 장점이 있다. 제로스는 무인 항법을 통해 스스로 이동하며, 추진 속도를 이용하여 아래에 부착된 분쇄부 쪽으로 해파리가 미끄러져 들어오게 하고, 분쇄부 중앙의 고속 회전하는 프로펠러가 흡입하여 해파리를 완전 분쇄하게 된다. 현장 시험 결과에 따르면, 3대의 군집 로봇이 4노트(시속 7.2km) 의 속도로 진행하였을 때 처리 용량은 시간당 약 900kg인 것으로 나타났다. 연구팀은 현재 경남 마산만에서 보름달물해파리 제거 시험을 완료하였으며, 추후 다양한 장소 및 환경에서 성능 보완을 완료할 예정이다. 군집 제로스 기술은 해파리 제거 외에도 해양 순찰 및 경계, 원유 유출 방지, 부유 쓰레기 제거 등 다양한 목적으로도 활용될 수 있다. 한편, 이번 연구는 미래창조과학부의 ‘신진연구지원사업’ 및 산업통상자원부의 ‘융복합 로봇 전문인력 양성 사업’을 통해 수행됐다.
2013.08.19
조회수 15114
장성주 교수 휴머노이드형 플라워봇 개발
장성주 교수 휴머노이드형 플라워봇 개발 KAIST 건설 및 환경 공학과의 장성주 교수가 개발한 세계 최초의 휴머노이드형 플라워봇 ‘로히니’가 파주 신도시 유비파크(http://www.ubi-park.co.kr/index_0.asp) 체험관에 설치되어 큰 관심을 불러 일으키고 있다. 로히니는 고개를 들거나 떨구는 동작, 꽃잎이 피고 지는 동작, 두 개의 가지를 이용해서 제스처를 구사하는 일이 가능하고 꽃잎과 줄기의 색깔을 바꾸어 감정을 표현할 수 있으며 RFID 태그를 통해 식별된 대화상대의 정보를 토대로 상황인지형 대화를 구사할 수 있다. 로히니는 유비쿼터스 홈 환경에서 지능형 디바이스들과 거주자를 연결하여 주거 내 상황의 모니터링과 제어를 매개하는 직관적이고 새로운 유형의 로봇형 이용자 인터페이스이다. 개발을 주도한 장성주 교수는 MIT 미디어랩에서 객원 연구원으로 근무하던 중 ‘지능형 건축 벽체(Smart Architectural Surface)’ 라는 다기능 첨단 디지털 벽체를 MIT와 공동 개발한 바 있고 현재 지능형 환경 디자인 연구실을 운영하면서 KAIST 미래도시 연구소(KIUSS) 유-스페이스 연구센터 디렉터를 겸하고 있다. ROHINI를 개발한 건설 및 환경공학과 장성주 교수 파주 Ubi-Park 체험관 u-House에 전시된 ‘ROHINI’ 로봇
2007.11.14
조회수 18677
<<
첫번째페이지
<
이전 페이지
1
>
다음 페이지
>>
마지막 페이지 1