본문 바로가기
대메뉴 바로가기
KAIST
연구뉴스
유틸열기
홈페이지 통합검색
-
검색
메뉴 열기
%EA%B0%95%EB%8F%84-%EC%97%B0%EC%84%B1+%EB%94%9C%EB%A0%88%EB%A7%88
최신순
조회순
적층 제조된 티타늄 합금의 강도-연성 딜레마 AI 기술로 극복
우리 대학 기계공학과 이승철 교수 연구팀이 POSTECH 신소재공학과 김형섭 교수 연구팀과 함께 인공지능 기술을 활용해 Ti-6Al-4V 합금의 강도-연성 딜레마를 극복하고 고강도·고연신 금속 제품을 생산해 내는 데 성공했다고 밝혔다. 연구팀이 개발한 인공지능은 3D프린팅 공정변수에 따른 기계적 물성을 정확히 예측하는 동시에 예측의 불확실성 정보를 제공하며 이 두 정보를 활용해 실제 3D프린팅을 진행할 가치가 높은 공정변수를 추천한다. 3D프린팅 기술 중에서도 레이저 분말 베드 융합은 뛰어난 강도 및 생체 적합성으로 유명한 Ti-6Al-4V 합금을 제조하기 위한 혁신적인 기술이다. 그러나 3D프린팅으로 제작된 이 합금은 강도와 연성을 동시에 높이기 어렵다는 문제점이 있다. 3D프린팅의 공정변수와 열처리 조건을 조절해 이를 해결하고자 하는 연구들이 있었지만, 방대한 공정변수 조합들을 실험 및 시뮬레이션으로 탐색하기에는 한계가 있었다. 연구팀이 개발한 능동 학습(Active Learning) 프레임워크는 다양한 3D프린팅 공정변수 및 열처리 조건들을 빠르게 탐색하여 그 중 합금의 강도와 연성을 동시에 높일 수 있다고 예상되는 것을 추천한다. 이런 추천은 인공지능 모델이 각 공정변수 및 열처리 조건에 대해 예측한 극한 인장 강도와 전연신율을 비롯해 예측의 불확실성 정보도 활용해 진행되며 추천된 것에 대해선 3D프린팅 및 인장 실험을 통해 실제 물성값을 얻게 된다. 새롭게 얻어낸 물성값을 인공지능 모델 학습에 추가로 활용하여 반복적으로 공정변수 및 열처리 조건들을 탐색하였으며 단 5번만의 시도로 고성능 합금을 생산해 낼 수 있는 공정변수 및 열처리 조건들을 도출하였다. 이를 적용해 3D프린팅한 Ti-6Al-4V 합금은 극한 인장 강도 1190MPa, 전연신율 16.5%를 기록하며 강도-연성 딜레마를 극복해 냈다. 이승철 교수는 “이번 연구에서 3D프린팅 공정변수와 열처리 조건을 최적화하여 고강도·고연신 Ti-6Al-4V 합금을 최소한의 실험만으로 도출해 낼 수 있었으며, 기존 연구들과 비교해 비슷한 극한 인장 강도를 가지지만 더 큰 전연신율을 가진 합금을 그리고 비슷한 전연신율을 가지지만 더 큰 극한 인장 강도를 가진 합금을 제작할 수 있었다.”라고 말했다. “또한, 기계적 물성뿐만 아니라 열전도도 및 열팽창과 같은 다른 물성에 관해서도 본 연구 방법이 적용되면 3D프린팅 공정변수와 열처리 조건에 대한 효율적인 탐색이 가능할 것으로 예상된다”라고 덧붙였다. 이번 연구 결과는 국제 학술지 ‘Nature Communications’에 지난 1월 22일에 출판되었으며 (https://doi.org/10.1038/s41467-025-56267-1), 이 연구는 한국연구재단 나노·소재기술개발사업 및 선도연구센터사업의 지원을 받아 진행됐다.
2025.02.21
조회수 873
<<
첫번째페이지
<
이전 페이지
1
>
다음 페이지
>>
마지막 페이지 1