-
초투과성 분리막을 이용한 이산화탄소 전환 시스템 개발에 성공
우리 대학 생명화학공학과 고동연 교수 연구팀이 에너지 집약 산업체의 이산화탄소 배출량을 줄이는 동시에 산업 부산물을 유용한 자원으로 전환하는 신개념 고체 탄산화 시스템을 개발했다고 23일 밝혔다.
연구팀이 개발한 이 시스템은 *중공사막 형태의 `초투과성 분리막'을 이용해 연속적으로 이산화탄소 포집과 전환이 가능하기 때문에 탄소 배출량을 대량으로 줄일 수 있다.
☞ 중공사막: 가운데가 비어있는 형태의 막. 인공 신장 투석기나 정수기 따위의 여과재로 사용된다.
생명화학공학과 황영은 박사과정이 제1 저자로 참여한 이번 연구 결과는 국제 학술지 `ACS 서스테이너블 케미스트리 앤드 엔지니어링(ACS Sustainable Chemistry & Engineering)' 10월호에 실렸는데 연구의 파급력을 인정받아 표지논문으로 선정됐다. (논문명 : Solid Carbonation via Ultrapermeable PIM-1 Hollow Fiber Membranes for Scalable CO2 Utilization).
최근 탄소배출권 가격이 오르면서 산업계의 이산화탄소 배출 비용에 대한 절감도 절실히 요구되고 있다. 또한 에너지 집약 산업체의 부산물(석탄회 및 철강 슬래그 등)에 대한 처리비용도 날로 증가하고 있어 이산화탄소를 산업 부산물과 반응시켜 부가가치가 있는 물질로 전환하는 데 관심이 쏠리고 있다.
특히, 이산화탄소를 탄산칼슘 등의 고체 탄산염으로 전환해 건설 소재로 이용하는 기술은 전 세계 시장에서 2030년까지 연간 약 1조 달러의 수익을 창출할 것으로 예상되며, 배출되는 이산화탄소를 연간 약 30~60억 톤 감축할 수 있는 기술로 주목받고 있다.
고동연 교수팀이 개발한 고체 탄산화 기술은 이산화탄소와 알칼리 금속(칼슘, 마그네슘)의 자발적 결정화 반응을 이용하는 일종의 자연모방 기술이다. 이 기술은 이산화탄소를 열역학적으로 가장 안정된 탄소 저장체인 고체 탄산염(CaCO3, MgCO3)으로 전환하는 기술이다. 고체 탄산염은 고품위 물성 제어를 통해 건설·토목 소재, 제지산업, 고분자, 의약, 식품, 정밀화학 분야에 활용할 수 있다.
결과적으로 고 교수팀이 개발한 기술을 활용하면 이산화탄소 배출량을 대폭 줄여 탄소배출권의 절약은 물론 고부가가치 생산물을 통해 추가적인 경제성을 확보할 수 있다는 게 큰 장점이다.
고 교수팀은 우선 미세다공성 고분자로 이뤄진 초투과성 분리막 기술을 통해 기존 공정 유닛보다 5~20배가량 작은 부피로 기존 공정 대비 50% 이상 뛰어난 물질전달 효율을 갖는 고체 탄산화 시스템을 구현하는 데 성공했다.
미세다공성 고분자는 회전할 수 없는 단단한 부분과 고분자 사슬이 뒤틀리는 지점이 반복적으로 나타나는 독특한 구조를 가지는데 기체 분자를 빠른 속도로 투과시킬 수 있어 가스 분리 분야에서 유망한 소재로 주목받고 있다.
연구팀은 이와 함께 미세다공성 고분자를 속이 빈 실과 같은 중공사막 형태로 가공해 모듈화할 수 있는 기술을 확보했다. 이렇게 제조된 초투과성 중공사막 모듈에 이산화탄소/질소 혼합 기체를 흘려보내면 이산화탄소만 선택적으로 빠르게 분리막을 가로질러 중공사막 외부의 알칼리 이온과 반응해 순간적으로 탄산염을 생성하는 원리를 연속식 모듈로 구현했다.
고 교수팀이 개발한 기술은 부피 대비 표면적이 기존 시스템보다 수 배 이상 높아 매우 높은 공간 효율성을 갖는 분리막 모듈의 특성을 이용해 장시간의 연속 공정이 가능한 게 특징이자 장점이다. 이 때문에 이산화탄소 전환 공정의 에너지 및 비용 대비 효율성을 높일 수 있어 고체 탄산염을 활용하는데 높은 경제성뿐만 아니라 이산화탄소 포집 및 전환(CCU) 기술 활성화에도 기여할 것으로 기대가 크다.
이번 연구를 주도한 고동연 교수는 "신기술을 적용해 이번에 새로 개발한 고체 탄산화 시스템은 온실가스 배출량이 많은 발전소나 제철소, 시멘트 제조업체 등 관련 산업계의 탄소배출권 구매량을 줄일 수 있고 동시에 자원 재순환을 통해 경쟁력을 증대시킬 수 있을 것으로 기대된다ˮ고 설명했다.
한편 이번 연구는 산업통상자원부 에너지국제공동연구사업의 지원을 받아 수행됐다.
2020.11.23
조회수 36051
-
정우철 교수, 5분 코팅만으로 연료전지 전극반응성 1천배 향상 기술 개발
〈 정 우 철 교수, 서 한 길 박사과정 〉
우리 대학 신소재공학과 정우철 교수 연구팀이 5분 이내의 산화물 코팅만으로 연료전지의 수명과 성능을 획기적으로 향상시킬 수 있는 전극 코팅 기술을 개발했다.
서한길 박사과정이 1저자로 참여한 이번 연구는 국제 학술지 ‘어드밴스드 에너지 머티리얼즈(Advanced Energy Materials)’ 7월 5일자 표지 논문(Inside Front Cover)에 게재됐다. (논문명 : Exceptionally Enhanced Electrode Activity of (Pr,Ce)O2-δ-Based Cathodes for Thin-Film Solid Oxide Fuel Cells, 박막 고체산화물연료전지용 (Pr,Ce)O2-δ 기반 공기극의 향상된 전극 활성)
연료전지는 대기오염 물질을 배출하지 않는 친환경 발전장치로 특히 고체산화물 연료전지는 다른 연료전지에 비해 발전효율이 높고 값비싼 수소 이외에 다양한 연료를 직접 사용할 수 있다는 장점을 가져 세계적으로 큰 주목을 받고 있다.
하지만 고체산화물 연료전지를 구동하기 위해서는 700℃ 이상의 높은 작동온도가 필요하며 이는 소재 및 시스템 비용의 증가, 장시간 구동 시 성능 저하 등의 문제를 일으켜 연료전지의 상용화에 걸림돌이 되고 있다.
최근에는 박막 공정을 도입해 전해질의 두께를 수백 나노미터 크기로 줄임으로써 작동온도를 600℃ 이하로 크게 낮추고 가격 경쟁력을 확보하려는 박막형 고체산화물연료전지가 새로운 해결책으로 제시되고 있지만, 낮은 작동온도에서 급격히 떨어지는 전극 성능의 한계를 극복하지 못하고 있다.
연구팀은 공기극으로 사용되는 백금 박막의 산소환원반응 활성점을 극대화하고, 백금 전극이 고온에서 응집되는 현상을 막기 위해 산화물 코팅 기술을 개발했다.
연구팀은 전자와 산소이온 모두에 대한 높은 전도성과 산소환원 반응에 대한 뛰어난 촉매 특성을 가진 ‘프라세오디뮴이 도핑된 세리아((Pr,Ce)O2-δ)라는 새로운 코팅 소재를 전기화학도금을 통해 백금 표면에 코팅하는 데 성공했다. 이를 통해 기존 백금 박막 전극에 비해 1천 배 이상의 성능을 향상시켰다.
추가적으로 연구팀은 백금을 전혀 사용하지 않고 (Pr,Ce)O2-δ의 나노구조화를 제어하는 것만으로도 고성능의 박막형 고체산화물연료전지 공기극을 구현하는데 성공했다.
정 교수는“이번 연구에서 사용된 전극 코팅 기술은 쉽고 대량생산이 가능한 전기화학도금을 활용했기 때문에 그 기술적 가치가 매우 뛰어나다”며 “향후 박막형 고체산화물연료전지의 백금 전극을 대체할 수 있어 가격 저감을 통한 시장경쟁력 제고가 기대된다.”고 말했다.
이번 연구는 한국에너지기술평가원과 한국전력공사의 지원을 받아 수행됐다.
□ 그림 설명
그림1. 어드밴스드 에너지 머티리얼즈 표지(Inside Front Cover)
그림2. 코팅된 (Pr,Ce)O2-δ 나노구조체 유무에 따른 전극성능 변화
2018.07.09
조회수 15142