-
날숨 속 황화수소 가스 검출을 통한 구취 센서 개발
우리 대학 신소재공학과 김일두 교수 연구팀이 삼성전자 종합기술원과 공동연구를 통해 극소량의 나트륨과 백금 촉매를 금속산화물에 기능화하여 호흡으로 질병을 진단할 수 있는 가스 센서 플랫폼을 개발했다고 28일 밝혔다.
이 가스 센서 플랫폼은 사람의 날숨에 포함된 다양한 질병과 관련된 미량의 생체지표(biomarker) 가스를 선택적으로 감지해 관련된 특정 질병을 실시간 모니터링할 수 있는 기술이다.
혈액 채취나 영상 촬영 없이 내뱉는 숨(호기)만으로 각종 질병 여부를 파악하는 비침습적 호흡 지문 센서 기술은 핵심 미래 기술이다. 호기 속 특정 가스들의 농도변화를 검사해 건강 이상 여부를 판단할 수 있다.
이번 기술은 구취의 생체지표 가스인 황화수소 가스와 높은 반응성을 갖는 나트륨 촉매를 금속산화물 나노섬유 감지 소재 층에 도입해 가스 선택성을 극도로 향상하고, 활성도가 좋은 백금 촉매를 추가로 기능화해 세계 최고 수준의 황화수소 감지 성능을 구현한 기술이다.
호기 가스의 성분에는 수분 외에도 아세톤, 톨루엔, 암모니아, 수소뿐만 아니라 구취의 생체지표 가스인 황화수소(hydrogen sulfide), 메틸머캅탄(methyl mercaptan), 디메틸설파이드(dimethyl sulfide)의 3종 황 화합물이 포함된다. 그중에서 황화수소 가스는 구취 환자에게서 높은 농도로 배출되는 생체지표 가스로서 상기 3종 황화합물 가스 중에서 선택적으로 감지하는 것이 매우 중요하다.
호흡을 이용한 질병 진단은 테들라(Tedlar) 백에 포집된 날숨 가스를 소형 센서 장치로 주입한 후 수분 이내의 빠른 속도로 분석할 수 있는 비침습 진단 방법으로 최근 조명을 받고 있다. 또한, 질병 대사가 일어나는 시점에서 검출할 수 있어 조기 진단이 용이하다.
하지만 생체지표 가스들은 매우 미량의 농도인 10억분의 1(ppb)에서 100만분의 1(ppm) 수준으로 호흡 속에서 배출되기 때문에 정확한 분석을 위해서는 기술의 진보가 필요하다. 호기 속 수백 종 이상의 방해 가스들 속에서 목표 가스만을 선택적으로 분석하는 것은 저항 변화식 센서의 취약점으로 남아있다.
기존 가스 센서는 산화물 감지 소재 표면에 백금, 팔라듐 등 특정 촉매를 결합하거나 n-형 반도체식 금속산화물과 p-형 반도체식 금속산화물의 헤테로 접합 구조를 도입해 감지 특성을 높이려는 등의 시도가 있었으나 여전히 ppb 농도에서 생체지표 가스 감지 특성이 높지 않다는 한계가 있다.
연구팀은 미량의 염화 나트륨(NaCl)과 백금 촉매를 전기방사를 통해 넓은 비표면적과 다공성 구조를 갖는 금속산화물 나노섬유에 결착시켜 특정 생체지표 가스에 선택적으로 반응하는 감지 소재를 개발했다. 나트륨과 백금의 복합촉매가 결착된 나노섬유 센서는 백금 촉매만 결착되거나 촉매가 결착되지 않은 센서 대비 각각 10배 및 200배 이상 감지 특성이 향상됨을 확인했다.
특히 1 ppm의 황화수소 가스에 대해 감도가 780배 수준으로 바뀌는 세계 최고 수준의 감도 특성을 확인했고, 호기 속 방해 가스 중 반응성이 좋다고 알려진 에탄올 가스 대비 약 277배 수준의 선택도가 관찰됐다.
연구팀은 기존에도 호흡으로 질병을 진단하는 센서를 개발했으나 이번 기술은 가스 감지 성능 및 정확도와 신뢰도가 큰 폭으로 향상됐다는 특징이 있다. 또한, 연구팀은 이번에 개발한 초고성능의 가스 센서를 상용화된 압력센서, 온도센서, 습도센서와 결합해 간단하게 날숨을 불어넣는 것(호기 가스 직접 측정)만으로도 개개인의 호흡을 분석해 일반인도 쉽게 건강 이상을 판별할 수 있는 휴대용 복합센서 디바이스 플랫폼을 개발했다.
연구팀은 가스 크로마토그래피-질량분석법 기반 상용 구취 진단기를 활용한 호기 가스의 정성적 정량적 비교분석을 바탕으로 80건의 날숨 분석을 진행한 결과, 이번 복합센서 플랫폼이 86.3%의 정확도로 구취 유무를 판별할 수 있음을 확인했다. 이번 기술은 구취 유무를 지속적으로 모니터링하는 헬스케어 기기에 손쉽게 적용할 수 있다.
김일두 교수는 "기존 센서에 사용되지 않은 알칼리 금속 기반 촉매를 잘 알려진 백금 촉매와 함께 도입함으로써, 질병과 연관된 생체지표 가스에 초고감도 및 고 선택성으로 반응하는 센서 소재를 구현할 수 있었다ˮ며 "감지 소재 개발에 머물지 않고 실제 센서 디바이스 구현 및 호기 가스 임상시험을 통해 높은 정확도로 구취 유무를 판별할 수 있다는 측면에서 매우 의미가 있는 연구 결과다. 누구나 손쉽게 스스로 진단할 수 있는 자가 진단 기기의 진보는 의료비 지출 상승을 막고 지속적인 건강관리에 큰 도움이 될 것이다ˮ고 밝혔다.
이번 연구는 공동 제1 저자인 신하민, 김동하 박사과정(KAIST 신소재)과 정원종 전문연구원(삼성전자 종합기술원)의 주도하에 진행됐으며, 남궁각 전문연구원(삼성전자 종합기술원)과 김일두 교수(KAIST 신소재)가 교신저자로 참여했다.
연구 결과는 나노과학 분야의 권위적인 학술지 `에이씨에스 나노(ACS Nano)' 8월호 표지 논문으로 발행될 예정이며, `미국화학학회(ACS) 위클리 프레스팩(Weekly PressPac)'에 7월 21일 자로 소개되어 전 세계 수천 명의 기자단에게 홍보됐다. 또한, 관련 기술은 국내를 포함해 유럽, 미국, 중국에 특허로 출원됐다.
2021.07.29
조회수 11301
-
하동수 교수, 양 날개를 개별 제어할 수 있는 드론 개발
〈 이 상 민 학생, 하 동 수 교수〉
우리 대학 조천식녹색교통대학원 하동수 교수 연구팀이 양 날개(주익[主翼], 비행기 몸체 중앙에서 양쪽으로 뻗은 날개)를 각각 분리시켜 개별적으로 제어할 수 있는 드론을 개발했다.
하 교수 연구팀이 개발한 분리형 주익 개별제어 비행체는 주익을 두 개로 완전히 분리해 별개로 제어할 수 있기 때문에 높은 에너지 효율, 기민한 운행, 작은 반경의 회전 운행이 가능하다.
우리에게 익숙한 일반항공기는 일체형 주익을 사용한다. 이는 공기 양력을 이용한 비행체이기 때문에 에너지 효율은 높지만 회전반경이 커 기민한 동작이 어렵다.
반면 여러 개의 프로펠러를 회전시켜 양력을 얻는 기존 방식은 회전반경이 작아 기민하게 동작할 수 있지만 공기 양력을 이용하지 못해 에너지 효율이 낮다.
하 교수 연구팀은 이러한 한계를 극복하기 위해 주익이 분리된 개별 제어형 비행체를 개발했다. 이는 분리된 주익의 회전을 개별적으로 제어하고 꼬리에 달린 모터의 추진방향을 바꾸는 방식으로 이를 통해 수직비행 및 수평비행의 전환을 구현했다.
주익을 분리하는 방법에는 두 가지가 있다. 몸체와 주익을 동시에 지지하는 지지대와 분리된 주익을 개별적으로 지지하는 지지대를 따로 사용하는 방식, 몸체의 측면을 주익 제어용 기기의 일부로 활용하며 개별적 지지대를 이용하는 방식이 있다.
이번에 개발한 드론은 몸체와 주익을 동시에 지지하는 지지대와 분리된 주익을 개별적으로 지지하는 지지대를 이용하는 방식으로 제작됐다.
연구팀의 기술은 원하는 운행방식에 따라 분리된 주익의 개별제어를 실행하며 제어결과는 비행체에 장착된 센서를 통해 다시 조정되는 과정을 거친다. 이러한 운행방식으로 일반 항공기가 만들 수 없는 다양한 동작이 가능해진다.
연구팀의 기술은 지난 11월 미국 우버와 나사가 발표한 도심지역 근거리 항공택시처럼 점차 보급될 중, 단거리 지역의 항공 교통에 속도, 기민성, 에너지 효율을 갖춘 비행체로 쓰일 것으로 기대된다.
하 교수는 “개발한 비행체는 민수용 항공교통, 군용 항공무기체계, 일반 안전관리 등 다양한 분야에 폭넓게 활용 가능하다”며 “주익 분리 및 독립제어는 비행 방식의 다양하고 효과적인 구현에 영향을 미친다. 2016년 설계 시점부터 한국, 미국, 중국등에 다양한 분리제어 구현방식에 대한 관련 특허를 출원했다”고 말했다.
이번 연구는 정보통신기술진흥센터의 ITRC 사업의 지원을 받아 수행됐다.
□ 그림 설명
그림1. 수직 이착륙, 수직 및 수평비행이 가능한 분리형 주익(主翼) 독립제어기술
2018.01.04
조회수 9682
-
호흡 분석해 질병 진단한다!
- 나노섬유 형상 120ppb급 당뇨병 진단센서 개발 -- 음주 측정하듯 후~ 불면 질병 진단할 수 있어 -
우리 학교 신소재공학과 김일두 교수 연구팀이 인간이 호흡하면서 배출하는 아세톤 가스를 분석해 당뇨병 여부를 파악할 수 있는 날숨진단센서를 개발했다.
연구 결과는 신소재 응용분야 세계적 학술지 ‘어드밴스드 펑셔널 머티리얼스(Advanced Functional Materials)’ 5월 20일자 표지논문으로 게재됐다.
인간이 숨을 쉬면서 내뿜는 아세톤, 톨루엔, 일산화질소 및 암모니아와 같은 휘발성 유기화합물 가스는 각각 당뇨병, 폐암, 천식 및 신장병의 생체표식인자(바이오마커)로 알려져 있다.
당뇨병의 경우 일반적으로 정상인은 900ppb(parts per billion), 당뇨환자는 1800ppb의 아세톤 가스를 날숨으로 내뿜는다. 따라서 날숨 속 아세톤 가스의 농도 차이를 정밀하게 분석하면 당뇨병을 조기에 진단할 수 있고 발병 후 관리를 쉽게 할 수 있다.
연구팀은 얇은 껍질이 겹겹이 둘러싸인 다공성 산화주석(SnO2) 센서소재에 백금 나노입자 촉매가 균일하게 도포된 1차원 나노섬유를 대량 제조하는 기술을 개발했다. 이 소재의 표면에 아세톤 가스가 흡착될 때 전기저항 값이 변화하는 120ppb급 아세톤 농도 검출용 센서에 적용해 날숨진단센서를 개발했다. 개발한 나노섬유 센서는 1000ppb급 아세톤 농도에서 소재의 저항 값이 최대 6배 증가해 당뇨병을 진단할 수 있음이 입증됐다.
이와 함께 7.6초의 매우 빠른 아세톤 센서 반응속도를 나타내 실시간 모니터링이 가능해져 상용화에 대한 기대를 높였으며, 전기방사 기술로 제조해 나노섬유형상을 쉽게 빠르게 대량생산할 수 있는 게 큰 장점이다.
연구팀이 개발한 날숨진단센서는 사람의 호흡가스 속에 포함된 다양한 휘발성 유기화합물의 농도를 정밀하게 분석할 수 있다. 따라서 당뇨병은 물론 향후 폐암, 신장병 등의 질병을 조기에 진단하는데 활용될 수 있을 것으로 기대된다.
김일두 교수는 이번 연구에 대해 “ppb급 농도의 날숨 휘발성 유기화합물 가스를 실시간으로 정밀하게 진단하는 나노섬유 센서를 당뇨병 또는 폐암 진단용 감지소재로 이용하면 다양한 질병을 조기에 검출하고 관리하는 일이 가능해질 것”이라고 말했다.
김 교수는 향후 다양한 촉매와 금속산화물 나노섬유의 조합을 통해 많은 종류의 날숨가스를 동시에 정확하게 진단하는 센서 어레이(array)를 개발해 상용화를 앞당길 계획이다.
미래창조과학부 글로벌프린티어사업 스마트 IT 융합시스템 연구단의 지원을 받은 이번 연구는 KAIST 신소재공학과 신정우 학부생(2월 졸업), 최선진 박사과정 학생, 박종욱 교수, 고려대학교 신소재공학과 이종흔 교수가 참여했다.
그림1. 날숨진단센서 어레이(우측)와 날숨진단센서 크기 비교(좌측 상단)
그림2. 나노섬유 센서들이 어레이로 구성된 당뇨진단 센서 이미지
그림3. 날숨 가스들을 분석하는 질병진단 분석기의 소형화 및 실시간 분석
그림4. 주석산화물 나노섬유를 이용한 당뇨진단 센서 이미지
2013.05.30
조회수 20642
-
간단하고 저렴한 유전자 진단 기술 개발
- “유전자 진단의 시간과 비용을 획기적으로 절감할 수 있어”- 분석화학분야 세계적 학술지‘아날리스트’4월호 표지논문 선정
우리학교 박현규 생명화학공학과 교수가 전기화학적 활성을 가진 핵산 결합 분자인 메틸렌 블루(Methylene Blue)를 이용해 전기화학적 실시간 중합효소 연쇄 반응(Real-Time PCR) 기술을 개발했다.
현재 유전자 분석 분야에서 가장 널리 사용되고 있는 Real-Time PCR(Polymerase Chain Reaction) 방법은 형광 신호를 이용하기 때문에 고가의 장비와 시약이 사용되는 분석 기술이다.
이에 반해 전기화학적 방법은 사용이 간편하고 가격이 저렴하며, 무엇보다 분석 장치를 소형화 할 수 있는 이점이 있다.
박 교수 연구팀은 산화/환원을 통해 전기화학적인 신호를 발생하는 물질인 메틸렌 블루가 핵산과 결합하면 전기화학적 신호가 감소하는 현상에 착안, 이를 PCR에 적용해 핵산의 증폭 과정을 전기화학적 신호를 통해 실시간으로 검출할 수 있는 전기화학적 Real-Time PCR을 구현하는 데 성공했다.
또한, 이 신호 변화 현상이 메틸렌 블루의 확산 계수와 관련된 것임을 규명해 향후 다양한 방법으로 응용될 수 있는 신호 발생을 기반으로 한 기술도 확립했다.
연구팀은 이를 기반으로 전극이 인쇄된 작은 칩을 제작해 성병 유발 병원균인 클라미디아 트라코마티스(Chlamydia trachomatis)의 유전자를 대상으로 연구를 수행했다.
그 결과 기존 형광 기반의 Real-Time PCR과 거의 동일한 성능을 보였다. 따라서 다양한 질병 진단을 비롯해 다양한 유전자 연구 분야에 적용할 수 있음을 입증했다.
박현규 교수는 “Real-Time PCR 기술이 현재 유전자 진단 분야에서 가장 확실한 분석 방법임에도 불구하고 형광 기반의 분석 방법이다 보니 고가의 검출 장비 및 분석 시약을 필요로 한다”며 “이번 연구 결과로 유전자 진단에 소요되는 시간과 비용을 획기적으로 절감할 수 있다”라고 설명했다.
한편, 이번 연구는 한국연구재단(이사장 오세정)이 시행하는 ‘중견연구자 지원 사업(도약연구)’으로 수행됐으며, 연구의 중요성을 인정받아 분석화학 분야의 세계적인 학술지인 ‘아날리스트(The Analyst)’ 4월호(4월 21일자) 표지논문으로 선정됐다.(끝)
<그림설명>신호 분자 결합에 의한 전기화학적 Real-Time PCR 모식도 (아날리스트 표지)
<용어설명>○ Real-Time PCR (실시간 중합효소연쇄반응): 중합효소연쇄 반응을 통해 증폭되는 핵산을 실시간으로 모니터링을 하고 해석하는 기술
○ PCR: (Polymerase Chain Reaction, 중합효소 연쇄 반응): 현재 유전물질을 조작해 실험하는 거의 모든 과정에 사용되는 검사법으로, 검출을 원하는 특정 표적 유전물질을 증폭하는 방법이다. 1985년에 캐리 멀리스(Kary B. Mullis)에 의해 개발됐다.
○ Chlamydia Trachomatis: 클라미디아 트라코마티스(chlamydia trachomatis)라는 병원균에 의한 성병으로 성적 접촉으로 점염되어 비뇨생식계에 질병을 일으키는 감염증의 가장 흔한 원인균.
2011.04.21
조회수 16821
-
KAIST, 미국 TI社 지원받아 미래 CPU개발
- 전기 및 전자공학과 유회준교수 연구실, 공식 TI Lab 지정 -
우리학교 전기및전자공학과 유회준 교수 연구실이 공식 TI Lab(Texas Instruments Lab.)으로 선정돼 연구비와 3억원 상당의 연구장비를 지원받는다.
미국의 종합 반도체 생산업체인 Texas Instruments社(이하 TI社)는 유회준 교수 연구실과 ‘사람의 뇌를 모방한 매니코어 프로세서 칩(Many-core Processor Chip) 개발’을 위한 협약을 7월초 가진 바 있다.
21일에는 박현욱 KAIST 전기및전자공학과장, 유회준 전기및전자공학과 교수와 유혜경 TI사 한국지부 반도체영업부장은 유회준 교수 연구실에서 TI Lab 선정 현판식을 가졌다.
최근 하나의 칩상에 수십 개 이상의 프로세서를 집적하는 미래형 CPU가 미국 인텔사 등을 중심으로 활발하게 연구되고 있다. KAIST 전기 및 전자공학과 유회준 교수팀은 인텔 기술을 뛰어 넘는 새로운 CPU기술을 개발해오고 있다.
TI사 관계자는 “KAIST와의 연구 협력을 통해 미래 세계를 이끌어갈 지능형 컴퓨터의 핵심 기술인 매니코어 프로세서개발에 새로운 전기를 마련할 계획”이라며 “유회준 교수 연구실과의 기술 교류를 통해 차세대 기술 개발을 선도할 수 있을 것으로 기대 한다”고 밝혔다.
유 교수는 “이번 기회로 미래 CPU를 국내 기술이 선도할 수 있는 계기로 삼고 싶다”고 말했다.
유 교수는 면적을 적게 소모하며 계산 속도가 뛰어난 아날로그 회로와 전력 소모가 낮고 정밀도가 높은 디지털 회로를 한 칩으로 하는 혼합형 회로를 통해 인체의 뇌를 모방하는 신경회로망을 설계하였으며, 이를 Many-core Processor에 일부분으로 삽입하여 인간의 뇌의 종합적인 지능을 단순처리에 능한 종래의 프로세서에 접목시키는 연구를 해오고 있다. 특히 이를 이용해 지능형 감시 카메라, 로봇 및 자동차 등의 ‘눈’을 한층 더 똑똑하게 만들어 2008년부터 매년 미국 샌프란시스코에서 발표해오고 있다.
국제 전기전자공학자학회(IEEE) 석학회원이며 세계 최고 권위의 국제 고체회로학회(ISSCC)의 아시아 지역 회장이기도 한 유 교수는 미국의 국제적인 출판사인 Wiley사에서 올해 ‘Mobile 3D Graphics SoC’라는 책을 출간했으며 2년전에는 미국 CRC 출판사에서 ‘Low-Power NoC for High Performance SoC Design’이라는 책을 펴낸 바 있다.(끝)
<용어설명>
○ Texas Instruments社 : 인텔, 삼성, 도시바와 함께 세계 4대 반도체 엔진 생산업체 중 하나
○ Many-core Processor : 10개 이상의 코어를 탑재하여 만든 프로세서, 싱글코어에 비해 처리 속도가 빠르고 전력 소모량이 적다.
○ 신경회로망 : 인간의 뇌가 물체를 인식하는 방법을 모사하여 설계한 칩으로 기존의 복잡한 연산과정을 거치지 않기 때문에 컴퓨터의 물체 인식 처리 시간을 20배 이상 빨라지게 하였으며 전력 소모량도 크게 줄였다.
2010.07.22
조회수 18319