-
페트병 대체할 미생물 플라스틱 생산 성공하다
현재, 전 세계는 플라스틱 폐기물로 인한 환경 문제로 인해 큰 골머리를 앓고 있다. KAIST 연구진이 생분해성을 가지면서 기존 페트병을 대체할 미생물 기반의 플라스틱 생산에 성공해서 화제다.
우리 대학은 생명화학공학과 이상엽 특훈교수 연구팀이 시스템 대사공학을 이용해 PET(페트병) 대체 유사 방향족 폴리에스터 단량체를 고효율로 생산하는 미생물 균주 개발에 성공했다고 7일 밝혔다.
유사 방향족 다이카복실산은 고분자로 합성시 방향족 폴리에스터(PET)보다 나은 물성 및 높은 생분해성을 가지고 있어 친환경적인 고분자 단량체*로서 주목받고 있다. 화학적인 방법을 통한 유사 방향족 다이카복실산 생산은 낮은 수율과 선택성, 복잡한 반응 조건과 유해 폐기물 생성이라는 문제점을 지니고 있다.
*단량체: 고분자를 만드는 재료로 단량체를 서로 연결해 고분자를 합성함
이를 해결하기 위해 이상엽 특훈교수 연구팀은 대사공학을 활용, 아미노산 생산에 주로 사용되는 세균인 코리네박테리움에서 2-피론-4,6-다이카복실산과 4종의 피리딘 다이카복실산 (2,3-, 2,4-, 2,5-, 2,6-피리딘 다이카복실산)을 포함한 5종의 유사 방향족 다이카복실산을 고효율로 생산하는 미생물 균주를 개발했다.
연구팀은 대사공학 기법을 통해 여러 유사 방향족 다이카복실산의 전구체로 사용되는 프로토카테츄산의 대사 흐름을 강화하고 전구체의 손실을 방지하는 플랫폼 미생물 균주를 구축했다.
이를 기반으로 전사체 분석을 통해 유전자 조작 타겟을 발굴해 76.17g/L의 2-피론-4,6-다이카복실산을 생산하였고, 3종의 피리딘 다이카복실산 생산 대사회로를 신규 발굴 및 구축하여 2.79g/L의 2,3-피리딘 다이카복실산, 0.49g/L의 2,4-피리딘 다이카복실산, 1.42g/L의 2,5-피리딘 다이카복실산을 생산하는 데 성공했다.
또한, 연구팀은 2,6-피리딘 다이카복실산 생합성 경로 구축 및 강화를 통해 15.01g/L의 생산을 확인하며 총 5종의 유사 방향족 다이카복실산을 고효율로 생산하는 데 성공했다.
결론적으로, 2,4-, 2,5-, 2,6-피리딘 다이카복실산을 세계 최고 농도로 생산하는 데 성공하였다. 특히 2,4-, 2,5-피리딘 다이카복실산은 기존에 극미량 (mg/L) 생산되던 것을 g/L 규모의 생산까지 달성하였다.
이번 연구를 기반으로 다양한 폴리에스터 생산 산업공정으로의 응용이 기대되며, 유사 방향족 폴리에스터 생산에 관한 연구에도 적극 활용될 수 있으리라 기대된다.
교신저자인 이상엽 특훈교수는 “미생물을 기반으로 유사 방향족 폴리에스터 단량체를 고효율로 생산하는 친환경 기술을 개발했다는 점에 의의가 있다”며 “이번 연구가 앞으로 미생물 기반의 바이오 단량체 산업이 석유 화학 기반의 화학산업을 대체하는 데 일조할 것”이라고 밝혔다.
해당 연구 결과는 국제 학술지인 `미국 국립과학원 회보(PNAS)'에 10월 30일 자 게재됐다.
※ 논문명 : Metabolic engineering of Corynebacterium glutamicum for the production of pyrone and pyridine dicarboxylic acids
※ 저자 정보 : 조재성(한국과학기술원, 공동 제1저자), 찌웨이 루오(한국과학기술원, 공동 제1저자), 문천우(한국과학기술원, 공동 제1저자), Cindy Prabowo (한국과학기술원, 공동저자), 이상엽(한국과학기술원, 교신저자) 포함 총 5명
한편, 이번 연구는 과기정통부가 지원하는 석유대체 친환경 화학기술개발사업의 ‘바이오화학산업 선도를 위한 차세대 바이오리파이너리 원천기술 개발’ 과제(과제 책임자 이상엽 특훈교수)의 지원을 받아 수행됐다.
2024.11.07
조회수 824
-
친환경을 위한 숙신산 세계 최고 수준 생산 성공
지구 온난화 등의 심각한 환경 문제로 인해 화석 연료를 대체할 수 있는 친환경 기반 화학물질 생산 기술개발의 필요성이 지속적으로 증가하고 있다. 우리 연구진이 화학적인 공정이 아닌 시스템 대사공학을 활용, 플라스틱의 원료와 식품, 의약품 등의 합성에 사용되는 매우 중요한 산업 기반 화학물질인 숙신산을 세계 최고 수준으로 생산하는 데 성공해 화제다.
우리 대학 생명화학공학과 김지연 박사과정생과 이종언 박사를 포함한 이상엽 특훈교수 연구팀이 마그네슘(Mg2+) 수송 시스템을 최적화함으로써 고효율 숙신산 생산 균주를 개발했다고 11일 밝혔다.
이상엽 특훈교수 연구팀은 한우의 반추위에서 분리한 미생물인 ‘맨하이미아 (Mannheimia)’의 대사회로를 조작하고 마그네슘 수송 시스템을 최적화해 세계 최고 수준의 생산성을 갖는 숙신산 생산 기술을 개발했다.
연구팀은 미생물 발효 과정 중 pH 조절을 위해 사용되는 다양한 알칼리성 중화제가 숙신산 생산에 미치는 영향을 파악하고, 최적화된 중화제를 선정했다. 특히 수산화마그네슘(Mg(OH)2)이 포함된 중화제를 사용, 마그네슘이 미치는 생리학적 영향을 분석해 세포 성장과 숙신산 생산에 중요한 역할을 한다는 사실을 확인했다.
또한, 맨하이미아 내 존재하는 마그네슘 수송체인 corA 유전자를 규명하고, 다양한 마그네슘 수송체를 도입해 마그네슘의 수송을 더욱 향상했다. 그중 살모넬라 엔테리카(Salmonella enterica) 균에서 유래한 고효율 마그네슘 수송체를 도입해 시스템을 최적화한 결과 152.23 g/L의 숙신산을 생산했으며, 최대 생산성은 39.64 g/L/h를 달성했다.
이는 기존 대비 약 2배 향상된, 현재까지 보고된 세계 최고의 숙신산 생산성 수치로, 연구팀은 이 과정에서 계속해서 세계 기록을 세우며 자체 기록을 경신하고 있다. 이는 생물학적 플랫폼을 통해 화학물질 생산을 극대화한 중요한 발전으로 의의를 지닌다.
이번 논문의 공동 제1 저자인 김지연 박사과정생은 “마그네슘 수송 시스템을 최적화해 고농도의 숙신산을 생산했다는 점에 의의가 있다”며, “이 기술이 향후 중요한 화학물질들을 생물학적으로 생산하는 미생물 균주 개발의 전략으로 작용할 것으로 기대된다”고 밝혔다. 또한, 이상엽 특훈교수는 “이번 연구는 숙신산 생산의 새로운 표준을 제시했으며 생물 기반 화학물질의 경제성을 크게 높일 수 있는 잠재력을 가지고 있으며, 지속 가능한 바이오화학 산업의 발전에도 크게 기여할 것으로 기대된다”고 말했다.
해당 연구 결과는 국제 학술지인 `미국 국립과학원 회보(PNAS)'에 9월 6일(현지시간) 자 게재됐다.
※ 논문명 : High-level succinic acid production by overexpressing a magnesium transporter in Mannheimia succiniciproducens
※ 저자 정보 : 김지연(한국과학기술원, 공동 제1 저자), 이종언(한국과학기술원, 공동 제1 저자), 안정호(한국과학기술원), 이상엽(한국과학기술원, 교신저자) 포함 총 4명
한편, 이번 연구는 과기정통부가 지원하는 석유대체 친환경 화학기술개발사업의 ‘바이오화학산업 선도를 위한 차세대 바이오리파이너리 원천기술 개발’ 과제(과제 책임자 KAIST 이상엽 특훈교수)의 지원을 받아 수행됐다.
2024.09.11
조회수 1425
-
미생물 이용한 플라스틱 환경오염 문제 해결 다가가
여러 친환경 고분자 중에서도 폴리하이드록시알카노에이트(이하 PHA)는 생분해성과 생체 적합성이 뛰어나 토양이나 해양 환경에서도 생분해되며, 식품 포장재나 의료용품 등에 사용되고 있다. 하지만 지금까지 생산된 천연 PHA(natural PHA)는 내구성, 열적 안정성 등 다양한 물성을 충족시키기 어렵고, 생산 농도가 낮아 상업적으로 활용하는 데 한계가 있었다. 우리 대학 연구진이 플라스틱으로 인한 환경오염 문제 해결에 중요한 기술을 개발해 화제다.
우리 대학 생명화학공학과 이영준 박사와 강민주 석사과정생을 포함한 이상엽 특훈교수 연구팀이 시스템 대사공학을 이용해 `방향족 폴리에스터*를 고효율로 생산하는 미생물 균주 개발'에 성공했다고 26일 밝혔다.
*방향족 폴리에스터: 방향족 화합물(벤젠과 같은 특별한 형태의 탄소 고리 구조)을 포함하고 에스터 결합을 가지고 있는 고분자
이번 연구에서는 대사공학을 이용해 대장균 내 방향족 단량체인 페닐 젖산(phenyllactate, PhLA) 생합성 회로의 대사 흐름을 강화하고 대사 회로를 조작해 세포 내부에 축적된 고분자의 분율을 높였으며, 컴퓨터 시뮬레이션을 이용해 PHA 합성 효소의 구조를 예측하고 구조와 기능의 상관관계를 바탕으로 효소를 개량했다.
연구팀은 이후 발효 최적화를 통해 세계 최고 농도(12.3±0.1 g/L)로 폴리(PhLA)를 고효율로 생산하고 30L 규모의 유가식 발효로 성공적으로 폴리에스터를 생산해 산업화 수준 생산의 가능성도 보였다. 생산된 방향족 폴리에스터들은 추후 약물 전달체로서의 가능성과 더불어 향상된 열적 물성, 상업화되고 개선된 기계적 물성을 보여주었다.
연구팀은 비천연 PHA 생산에서 외래 파신(phasin) 단백질*이 경제성, 효율성과 직결되는 세포 내 고분자 축적분율 증가에 중요한 역할을 한다는 것을 입증하고 PHA 합성 효소를 합리적 효소 설계 방법으로 개량했다. 효소의 삼차원 입체 구조를 호몰로지 모델링(비슷한 단백질의 구조를 바탕으로 새로운 단백질의 삼차원 입체 구조를 예측하는 방법)을 통해 예측하고, 이를 분자 도킹 시뮬레이션(단량체가 효소에 잘 결합할 수 있는지 예측하는 시뮬레이션)과 분자 동역학 시뮬레이션(분자들이 시간에 따라 어떻게 움직이고 상호작용하는지 예측하는 시뮬레이션)을 이용해 단량체의 중합 효율이 향상된 변이 효소로 개량했다.
*외래 파신 단백질: 파신은 PHA 생산과 관련된 단백질로 작은 입자(granule) 형태의 PHA 표면에서 세포질 환경과 상호작용하며 고분자 축적, granule 수 및 크기 조절 등에 관여한다. 본 연구에서는 다양한 천연 PHA 생산 미생물로부터 유래된 파신 단백질 암호화 유전자를 선별해 도입하였다.
이번 논문의 공동 제1 저자인 이영준 박사는 “친환경적인 원료와 방법으로 미생물 기반의 방향족 폴리에스터를 세계 최고 농도로 생산했다는 점에 의의가 있다”며 “이 기술이 플라스틱으로 인한 환경 오염 문제 해결에 중요한 역할을 할 것으로 기대된다”고 밝혔다. 또한 이상엽 특훈교수는 “시스템 대사공학을 이용해 유용한 고분자를 고효율로 생산하기 위해 다양한 전략을 제시한 이번 연구가 기후 변화 문제와 특히 최근 플라스틱 문제의 해결에 크게 기여할 수 있을 것”이라고 밝혔다.
해당 연구 결과는 국제 학술지인 셀(Cell) 誌가 발행하는 `생물공학 동향(Trends in Biotechnology)'에 8월 21일에 게재됐다.
※ 논문명 : Microbial production of an aromatic homopolyester
※ 저자 정보 : 이영준(한국과학기술원, 공동 제1 저자), 강민주 (한국과학기술원, 공동 제1 저자), 장우대(한국과학기술원, 제2 저자), 최소영(한국과학기술원, 제3 저자), 양정은(한국과학기술원, 제4 저자), 이상엽(한국과학기술원, 교신저자) 포함 총 6명
한편 이번 연구는 과기정통부가 지원하는 석유 대체 친환경 화학기술개발사업의 ‘바이오화학산업 선도를 위한 차세대 바이오리파이너리 원천기술 개발’ 과제 (과제 책임자 KAIST 이상엽 특훈교수)와 ‘미생물 세포공장 기반 신규 방향족 바이오플라스틱의 원스텝-원팟 생산 원천기술 개발 과제 (과제 책임자 이화여대 박시재 교수)’의 지원을 받아 수행됐다.
2024.08.26
조회수 3028
-
지방간 치료제 개발에 최적화된 동물모델 개발
대사이상 지방간 질환은 전 세계 인구의 30%, 비만하지 않은 인구의 19%가 앓고 있으며, 지방간에서 시작해 간암까지 진행되는 심각한 만성질환이다. 현재 FDA에서 승인된 치료제인 레스메티롬(Resmetirom)이 있지만, 치료받은 환자의 70% 이상에서 충분한 효과를 보지 못해 새로운 치료제 개발이 시급하다. 한국 연구진이 지방간염 치료제 개발에 중요한 전환점이 될 사람의 대사이상 지방간 질환을 잘 모사하는 새로운 동물모델을 개발해 주목받고 있다.
우리 대학 의과학대학원 김하일 교수 연구팀과 연세대학교 의과대학 박준용 교수 연구팀, 한미약품 R&D센터(최인영 R&D센터장/전무이사) 및 ㈜제이디바이오사이언스(대표 안진희)와 공동연구를 통해 새로운 대사이상 지방간 질환 동물모델을 개발했다고 19일 밝혔다.
대사이상 지방간 질환의 유병률은 20~30%에 이르고, 지방간염 질환은 전 세계 성인 인구의 5% 이상이 보유하고 있을 정도로 높은 유병률을 보임에도 불구하고 현재까지 제품화된 치료제가 전혀 없다.
대사이상 지방간 질환은 지방간에서 시작해 지방간염, 섬유화, 간경화, 간암으로 진행되는 만성질환이며, 심혈관질환 및 간 관련 합병증 등에 의해 사망률이 증가하므로 발병 초기에 적절한 치료가 필요하다.
하지만 아직까지 사람의 질환을 모사할 수 있는 적절한 동물모델이 없어 병인 기전의 규명과 치료제의 개발에 어려움이 있다. 특히 기존의 동물모델들은 당뇨와 비만과 같은 대사이상이 간경화와 간암의 발병에 유발하는지를 반영하지 못한다는 문제점이 있었다.
김하일 교수 연구팀은 베타세포의 기능이 부족한 아시아인에서 비만과 당뇨병을 동반한 대사이상 지방간 질환의 유병률이 더 높다는 점에 착안했다. 마우스에 약물을 통해 베타세포를 파괴해 당뇨를 유발한 다음 고지방식이를 먹여서 비만과 당뇨를 동반한 지방간 질환이 빠르게 진행하는 동물모델을 개발했다.
이 마우스 모델은 1년 동안 점진적으로 지방간, 지방간염, 간 *섬유화 및 간암이 나타나는데, 해당 마우스의 간의 유전체를 분석한 결과 그 특징이 비만과 제2형 당뇨병을 동반한 대사이상 지방간 질환 환자들과 매우 유사한 것으로 나타났다. 특히 이 모델에서 발생하는 간암은 대사이상 지방간 질환 환자에서 발생하는 간암과 조직학적, 분자생물학적 특성이 유사한 것을 연구팀은 확인했다.
* 섬유화: 간의 일부가 굳는 현상으로, 지방간염 개선의 주요 지표로 쓰임
연구팀은 개발한 동물모델을 사용해, 최근 비만치료효과로 각광을 받고 있는 GLP-1 유사체의 효과를 시험했다. GLP-1 유사체의 투여가 이 마우스 모델에서 지방간, 간염과 간 섬유화의 진행을 억제하는 효과를 확인해, 마우스 모델이 신약 개발을 위한 전임상 모델로 유용하게 활용될 수 있음을 연구팀은 보였다. 또한 GLP-1 유사체의 투여가 간암의 발생을 억제함을 최초로 규명해, 대사이상 지방간 질환의 주요 사망 요인인 간암의 발병 억제를 위한 GLP-1 유사체의 활용 방안을 제시했다.
의과학대학원 김하일 교수는 “현재 대사이상 지방간 질환 동물모델은 대사이상 지방간 질환의 넓은 스펙트럼과 당뇨, 비만과 같은 대사질환을 잘 반영하지 못하는 문제점이 있으나, 우리 연구팀이 개발한 마우스 모델은 만성 대사질환의 특징을 잘 모사해, 대사이상 지방간 질환 동물모델로서 관련 연구에 중요한 전환점을 제시할 수 있을 것이다”고 강조했다.
우리 대학 의과학대학원 정병관 박사, 최원일 교수, 화순전남대학교병원 최원석 교수가 공동 제1 저자로 참여한 이번 연구 논문은 국제 학술지인 ‘네이처 커뮤니케이션즈(Nature Communications)’ 에 2024년 8월 2일 게재됐다.
(논문명: A male mouse model for metabolic dysfunction-associated steatotic liver disease and hepatocellular carcinoma)
한편 이번 연구는 과학기술정보통신부, 보건복지부, 교육부, 및 ㈜제이디바이오사이언스(JD Bioscience Inc.)에서 지원을 받아 수행됐다.
2024.08.19
조회수 1869
-
미래를 위한 대체 불가 바이오 제조 전략 제시
2021년 서울국제포럼과 KAIST가 공동 개최한 “글로벌 복합위기와 4차 산업혁명의 대전환기, 탄력성장의 도전과 기회” 포럼에서 KAIST 이상엽 특훈교수는 우리나라가 미래 국가경쟁력을 확보하기 위해서는 대체 불가 기술 (non-fungible technology; NFT)을 확보해야 한다고 처음으로 제시한 바 있다. 기후 변화의 심각성에 연간 약 1.1억 톤의 식품 폐기물을 포함한 다양한 유기 폐기물들, 그리고 이산화탄소도 바이오 제조를 위한 원료로 사용하도록 대체 불가능한 바이오기술(Bio-NFT)로 활용하는 것이 이제 선택이 아닌 필수가 됐다.
우리 대학 생명화학공학과 이상엽 특훈교수가 기술 혁신, 원료 공급 최적화 및 적절한 인프라를 통해 바이오 제조의 확장을 포함한 경쟁력 확보 전략 수립에 대한 논문을 네이처 화학공학지(Nature Chemical Engineering)에 월드뷰(Worldview)에 7월 22일 자로 제시했다고 24일 밝혔다.
※ 논문명 : Fungible and non-fungible technologies in biomanufacturing scale-up
※ 저자 정보 : 이상엽(한국과학기술원, 제1 저자, 교신저자) 1명
최근 신진 대사 공학과 합성 생물학의 급성장은 전통적인 화석 자원에 의존하는 제조 공정을 바이오 기반 대안으로 전환할 수 있는 잠재력을 보여주고 있다. 미생물 세포 공장을 통해 화학물질과 재료를 생산하는 바이오 기반 기술은 빠르게 발전하고 있으며, 이는 각각 5.7조 달러, 9.2조 달러, 22.5조 달러의 시장규모를 가진 화학, 식품 및 소비재 등 다양한 산업 부문에 혁신적인 변화를 가져오고 있다. 이는 2조 달러 규모의 제약시장 보다도 훨씬 크다.
그러나 이러한 바이오 제조로의 전환은 기술적, 경제적, 사회적 장벽으로 인해 어려움을 겪고 있다. 점점 더 많은 사람들이 지구 온난화의 현실과 그 악화되는 영향을 인식하면서 환경에 덜 해로운 제품에 대한 선호도가 높아지고 있지만, 실제 구매 결정에 있어서는 가격이 중요한 역할을 한다. 따라서, 각국 정부들은 규제 지원뿐만 아니라 대중과의 소통을 통해 지속 가능한 생산과 소비에 대한 이해와 헌신을 촉진해야 한다.
이 교수는 중요하게 떠오른 바이오 제조 확장, 특히 범용화학물질 생산 등 대체 불가능하지 않은 바이오기술 (not non-fungible)을 위해 풀어야 할 세 가지 주요 과제를 제시했다.
첫째, 미생물 세포 공장의 TRY(titer, rate, yield; 농도, 속도 및 수율)를 최대화하는 것으로 기존 대사공학에 데이터 과학, 인공지능 및 로봇 공학의 통합을 통해 이러한 역량을 강화해야 한다.
둘째, 원료 공급 및 물류의 최적화가 필요하다. 약 6억 톤의 바이오매스가 연간 바이오 기반 재료 생산을 위해 사용될 수 있지만, 최적의 분배 및 공급망이 완전히 구축되지 않았다. 다양한 원료의 사용을 가능하게 하는 기술 개발이 필요하다.
셋째, 인프라 및 시설 건설에 필요한 대규모 자본 투자 문제이다. 최근 들어 건설비용이 급격히 증가하여 최첨단 제조 시설을 구축하는 데 드는 높은 비용은 운영 확장의 재정적 실행 가능성을 어렵게 한다. 바이오 제조시설 구축을 위한 정책자금 투입 등 국가적인 인프라 개념에서의 투자가 요구되며, 단기적인 해결책으로는 완전히 유연한 중형 바이오 정제소를 건설하여 시장에 가장 적합한 제품을 생산할 수 있다고 제시했다.
이 교수는 “기술 혁신, 원료 공급 및 인프라 개발에의 집중적인 노력이 필요하다”고 강조하면서 “이를 통해 산업은 보다 지속 가능하고 경제적으로 실행 가능한 바이오 제조 공정으로 전환할 수 있으며, 이는 글로벌 시장에 큰 영향을 미칠 것이다. 지속 가능한 미래에 기여하고 산업에 상당한 경제적 기회를 제공할 것으로 기대된다.”고 밝혔다.
한편 이번 연구는 과기정통부가 지원하는 석유대체 친환경 화학기술개발사업의 ‘바이오화학산업 선도를 위한 차세대 바이오리파이너리 원천기술 개발’ 과제 (과제책임자 KAIST 이상엽 특훈교수)의 지원을 받아 수행됐다.
2024.07.25
조회수 2238
-
지방세포 이용해 체중 감소 가능하다
우리 연구진이 지방세포를 지방세포 전 단계인 줄기세포로 변화(탈분화)시키며 지방조직의 물리적인 크기를 줄이는 등 체중을 감소시키고 지방세포의 활성화를 통해 체내 신진에너지 대사 변화를 통해 비만이나 당뇨 등 대사성 질환의 제어 방법을 제시하여 화제다.
의과학대학원 서재명 교수 연구팀과 생명과학과 임대식 교수 연구팀의 공동연구를 통해 대사성 질환의 새로운 치료 전략을 규명했다고 1일 밝혔다.
지방조직은 식사 후 여분의 칼로리를 지방 형태로 저장하는 저장고 역할과 호르몬을 분비하는 내분비기관의 역할을 한다. 이 두 가지의 역할 중 하나라도 이상이 생기면 우리의 대사 체계는 무너지고 당뇨 혹은 비만과 같은 대사질환이 걸리게 된다. 그러나 우리 몸이 이 두 가지의 기능을 조화롭게 관장하는지 분자 수준에서의 기전이 알려지지 않았다.
연구팀은 히포 신호전달체계*의 얍타즈(YAP/TAZ) 단백질에 주목, 이 단백질의 지방세포 관련 기능을 규명했다. 1) 식사 유무에 따라 지방조직 안에 있는 얍타즈 단백질의 활성상태가 변한다는 점, 2) 동 단백질의 활성이 지방조직의 크기를 직접적으로 조절한다는 점 3) 에너지소비 및 포만감을 관장하는 렙틴이라는 호르몬의 생성에 얍타즈가 직접적으로 관여를 한다는 점을 밝혔다.
*히포 신호전달체계: 다세포 생물의 조직, 신체 기관의 크기를 결정하는 데 중요한 역할을 하는 세포 내 신호전달체계임.
특히 생체 내에서 활성화된 얍타즈의 역할을 규명하기 위해 라츠1/라츠2(LATS1/LATS2) 유전자를 생쥐의 지방세포에서 특이적으로 결손시켰는데, 지방세포 안에 있는 얍타즈의 지속적인 활성은 지방세포를 지방세포의 전구체, 즉 줄기세포와 같은 세포로 변화(탈분화)시키며 지방조직의 물리적인 크기를 줄인다는 점을 확인할 수 있었다.
탈분화를 통한 체지방의 감소는 에너지소비에 집중된 갈색지방의 활성화 혹은 운동과 같은 기존의 방법과 차별되는 방법이다. 또한 렙틴이라는 호르몬은 지방세포에서 만들어져 식욕을 억제하고 에너지 소비를 증가시키는 핵심적인 대사체계 조절 호르몬으로 30년 전에 처음으로 유전자 서열이 밝혀졌지만, 어떻게 생성이 되는지 분자 수준에서의 기전이 알려지지 않았다.
이번 연구는 1994년 렙틴의 유전자의 서열이 밝혀진 후 최초로 렙틴 발현의 전사 조절 기전*을 밝혔다는 점에서 세계의 주목을 받고 있다. 금번 연구는 지방세포의 압타즈의 활성 증가를 통해 혁신적인 비만 대사질환 치료제 개발의 새로운 가능성을 제시하였다.
*전사 조절 기전: DNA로부터 RNA를 만들어내는 과정을 조절하는 기전을 의미한다.
우리 대학 의과학대학원/생명과학과 최성우 박사 (현 버클리 캘리포니아 주립대학) 와 생명과학과 강주경 박사가 공동 제1 저자로 참여한 이번 연구는 세계적인 국제 학술지 `네이처 대사(Nature Metabolism)' 5월 29일 자 온라인판에 출판됐다. (논문명 : Hippo–YAP/TAZ signalling coordinates adipose plasticity and energy balance by uncoupling leptin expression from fat mass).
한편 이번 연구는 과기정통부 리더연구자 지원사업, 중견연구자 지원사업, 바이오·의료기술개발사업, 해외우수과학자 유치사업, 카이스트 국제공동연구지원사업의 지원으로 수행됐다.
2024.07.01
조회수 2384
-
암 유발 물질 컴퓨터로 예측하다
암은 정상세포와 다르게 세포 내 비정상적인 축적을 통해 유발되는 대사 반응을 하며, 암의 치료 및 진단을 목적으로 이런 암 대사반응에 대해 다방면으로 연구되고 있다. 이에 우리 대학 연구진이 컴퓨터를 통해 24개 암종에 해당하는 1,043명의 암 환자에 대한 대사 모델 구축에 성공했다.
우리 대학 생명화학공학과 김현욱 교수, 이상엽 특훈교수 연구팀이 서울대학교병원 고영일 교수, 윤홍석 교수 및 정창욱 교수 연구팀과의 공동연구를 통해, 암 체세포 유전자 돌연변이와 연관된 새로운 대사물질 및 대사경로를 예측하는 컴퓨터 방법론을 개발했다고 18일 밝혔다.
최근 암 유발 대사물질(oncometabolite)*의 발견과 이를 표적으로 하는 신약들이 미국식품의약국(FDA)의 승인을 받으며 주목받고 있는데, 이에는 급성 골수성 백혈병의 치료제로 사용되고 있는 ‘팁소보(성분명: 아이보시데닙)’ 및 약물 ‘아이드하이파(성분명: 에나시데닙)’가 포함된다.
*암 유발 대사물질 (oncometabolite): 세포 내 비정상적인 축적을 통해 암을 유발하는 대사물질. 이러한 대사물질들은 특정 유전자 돌연변이의 영향으로 대사 과정 중에 비정상적으로 높은 농도로 축적되며, 이러한 축적은 암세포의 성장과 생존을 촉진함. 기존 연구에서 확인된 주요 암 유발 대사물질로는 2-하이드록시글루타레이트(2-hydroxyglutarate), 숙시네이트(succinate), 푸마레이트(fumarate) 등이 보고됨.
하지만, 암 대사 연구와 새로운 암 유발 대사물질 발굴에는 대사체학 등의 방법론이 필요하며, 이를 대규모 환자 샘플에 적용하기 위해서는 상당한 시간과 비용이 소요된다. 이러한 이유로, 암과 관련된 많은 유전자 돌연변이들이 밝혀졌음에도, 그에 상응하는 암 유발 대사물질은 극소수만 알려져 있다.
김현욱 교수 공동연구팀은 세포 대사 정보를 예측할 수 있는 게놈 수준의 대사 모델*에 국제 암 연구 컨소시엄에서 공개하고 있는 암 환자들의 전사체 데이터를 통합해, 24개 암종에 해당하는 1,043명의 암 환자에 대한 대사 모델을 성공적으로 구축했다.
*게놈 수준의 대사모델: 세포의 전체 대사 네트워크를 다루는 컴퓨터 모델로서, 세포 내 모든 대사반응에 대한 정보가 담겨 있으며, 다양한 조건에서 세포의 대사 활성을 예측하는 것이 가능
공동연구팀은 1,043명의 암 환자 특이 대사 모델과 동일 환자들의 암 체세포 돌연변이 데이터를 활용해, 다음의 4단계로 구성된 컴퓨터 방법론을 개발했다 (그림 1). 첫 단계에서는 암 환자 특이 대사 모델을 시뮬레이션해, 환자 별로 모든 대사물질들의 활성을 예측한다. 두 번째 단계로는 특정 유전자 돌연변이가 앞서 예측된 대사물질의 활성에 유의한 차이를 일으키는 짝을 선별한다. 세 번째 단계로, 특정 유전자 돌연변이와 연결된 대사물질들을 대상으로, 이들과 유의하게 연관된 대사경로를 추가로 선별한다. 마지막 단계로서, ‘유전자-대사물질-대사경로’ 조합을 완성해, 컴퓨터 방법론 결과로써 도출하게 된다.
이번 논문의 공동 제1 저자인 이가령 박사(現 다나파버 암센터 및 하버드 의과대학 박사후연구원)와 이상미 박사(現 하버드 의과대학 박사후연구원)는 “이번 연구에서 개발된 방법론은 암 환자 코호트의 돌연변이 및 전사체 데이터를 토대로 다른 암종에 대해서도 쉽게 적용될 수 있으며, 유전자 돌연변이가 대사경로를 통해 어떻게 세포대사에 변화를 일으키는지 체계적으로 예측할 수 있는 최초의 컴퓨터 방법론이라는 데 큰 의의가 있다” 한다고 말했다.
또한 김현욱 교수는 “이번 공동연구의 결과는 향후 암 대사 및 암 유발 대사물질 연구에서 중요한 참고 자료로 활용될 수 있을 것”이라고 강조했다.
한편 이번 논문은 바이오메드 센트럴(BioMed Central) 社가 발행하며, 생명공학 및 유전학 분야의 대표적 국제학술지인 게놈 바이올로지(Genome Biology, JCR 분야 상위 5% 이내)에 게재됐다.
※ 논문명 : Prediction of metabolites associated with somatic mutations in cancers by using genome-scale metabolic models and mutation data
※ 저자 정보 : 이가령(한국과학기술원, 공동 제1 저자), 이상미(한국과학기술원, 공동 제1 저자), 이성영(서울대학교병원, 공동저자), 정창욱(서울대학교병원, 공동저자), 송효진(서울대학교병원, 공동저자), 이상엽(한국과학기술원, 공동저자), 윤홍석(서울대학교병원, 교신저자), 고영일(서울대학교병원, 교신저자), 김현욱(한국과학기술원, 교신저자) 포함 총 9명
이번 연구는 과학기술정보통신부 한국연구재단의 지원을 받아 수행됐다.
2024.03.18
조회수 3584
-
미생물로 자스민 향도 만든다
우리 대학 생물공정연구센터 최경록 연구교수와 생명화학공학과 이상엽 특훈교수가 ‘벤질아세테이트 생산을 위한 미생물 공정’논문을 발표했다고 26일 밝혔다. 이번 논문은 네이처(Nature) 誌가 발행하는 ‘네이처 화학공학(Nature Chemical Engineering)’의 표지논문으로 선정됐다.
※ 논문명 : A microbial process for the production of benzyl acetate
※ 저자 정보 : 최경록(한국과학기술원, 제1 저자), Luo Zi Wei(한국과학기술원, 제2 저자), 김기배(한국과학기술원, 제3 저자), Xu Hanwen(한국과학기술원, 제4 저자) 및 이상엽(한국과학기술원, 교신저자) 포함 총 5명
향은 화장품 및 식품 산업에서 중요한 요소다. 그중에서도 자스민 향과 일랑일랑 향은 각종 향수와 화장품, 개인 위생용품뿐만 아니라 식품 및 음료 제조에까지 널리 애용되고 있다. 하지만 자스민과 일랑일랑 꽃으로부터의 추출을 통해 생산되는 향료의 양이 수요를 충족시키기 못하기 때문에 산업에서는 두 향료의 향을 내는 주요한 방향성 성분인 벤질아세테이트를 석유로부터 유래한 원료를 이용해 화학적으로 합성해 첨가해 제품을 생산하고 있다. 이상엽 특훈교수 연구팀은 각종 산업에서 널리 이용되는 방향성 화합물인 벤질아세테이트를 친환경적이고 지속가능한 방식으로 생산하고자 시스템 대사공학을 통해 포도당으로부터 벤질아세테이트를 생산하는 대장균 발효 공정을 개발했다. 시스템 대사공학은 석유에 대한 의존도가 높은 기존의 화학산업을 대체할 바이오산업의 핵심인 미생물 세포공장을 보다 효과적으로 개발하기 위해 이상엽 특훈교수가 창시한 연구 분야다.
이상엽 특훈교수팀은 2019년 대장균을 대사공학적으로 개량해 포도당으로부터 벤조산을 생산하는 미생물 균주를 개발한 바 있다. 이번 연구에서는 해당 전략을 바탕으로 포도당으로부터 벤조산을 거쳐 벤질아세테이트를 생합성하는 대사 경로를 개발했다. 연구팀은 포도당으로부터 벤조산을 생합성하는 대사경로를 도입한 상단 균주와 벤조산을 벤질아세테이트로 전환하는 대사 경로가 도입된 하단 균주의 공생배양을 통해 포도당으로부터 벤질아세테이트를 생산하는 데 성공했다. 하지만 해당 공생배양 전략을 활용할 경우 벤조산을 벤질아세테이트로 전환하는 데에 이용되는 효소가 벤조산 생합성 중 생성되는 중간체에 비특이적으로 작용해 신나밀아세테이트라는 부산물을 생성하는 것이 확인됐다. 특히 이 과정에서 벤조산 생합성에 필요한 중간체가 소모되어 목표 화합물인 벤질아세테이트의 생산 효율이 감소된다. 이상엽 특훈교수 연구팀은 효소의 기질 비특이성으로 인한 부산물 생성 문제를 극복하기 위해 발효 초반에는 포도당으로부터 벤조산을 생산하는 상단 균주만을 배양해 벤조산을 우선적으로 생산하고, 하단 균주를 뒤늦게 접종해 배양액 내에 축적된 벤조산을 벤질아세테이트로 전환하는 지연 공생배양 전략을 고안했다. 하단 균주가 도입되는 시점에는 배양액 내 벤조산의 농도가 중간체의 농도보다 월등히 높아 벤조산이 벤질아세테이트로 전환되는 반응이 중간체가 부산물로 전환되는 반응보다 우세하게 진행된다. 연구진은 지연 공생배양 전략을 적용함으로써 추가적인 효소 및 균주 개량을 거치지 않고도 부산물의 생성은 억제하는 동시에 목표 화합물인 벤질아세테이트의 생산 농도는 기존 플라스크 수준의 발효 대비 10배 이상인 2.2 g/L까지 향상시킬 수 있었다. 또한 기술 경제성 분석을 통해 해당 미생물 공정을 통한 벤질아세테이트의 상업적 생산 가능성을 확인했다.
이번 논문의 제1 저자인 최경록 연구교수는 “이번 연구는 벤질아세테이트라는 산업적으로 유용한 화합물을 효과적으로 생산하는 미생물 공정을 개발함과 동시에, 대사공학을 연구 중 효소의 기질 비특이성으로 인해 빈번하게 발생하는 부산물 생성 및 이로 인한 목표 화합물 생산 효율의 저하 문제를 극복하는 새로운 접근을 제시했다는 데 큰 의의가 있다”고 말했다. 또한 이상엽 특훈교수는 “산업적으로 유용한 화합 물질을 지속가능한 방식으로 생산할 수 있는 미생물 공정의 종류와 수를 늘려 나감과 동시에 미생물 균주 개발 중 고질적으로 필연적으로 발생하는 여러 문제를 해결하는 효과적인 전략의 개발에도 힘쓴다면 석유화학산업의 친환경적이고 지속가능한 바이오산업으로의 전환을 더욱 앞당길 수 있을 것”이라고 밝혔다.
한편, 이번 연구는 과기정통부가 지원하는 바이오의료기술개발사업의 ‘지능형 세포공장기술 구현’ 과제 (과제책임자 KAIST 이상엽 특훈교수) 및 농촌진흥청이 지원하는 농업미생물사업단(단장 장판식)의 ‘미생물 대사 시스템 제어를 통한 무기물로부터의 단백질 생산 기술 개발’ 과제 (과제책임자 KAIST 최경록 연구교수)의 지원을 받아 수행됐다.
2024.02.26
조회수 4590
-
지방간 치료제 신약 물질 개발
국내 연구진이 말초조직에 작용하는 비알코올성 지방간질환(NAFLD, Nonalcoholic fatty liver disease) 치료를 위한 신약 후보 물질을 개발하는 데 성공했다. 현재까지 최적의 비알코올성 지방간염(NASH) 치료제가 없는 상황에서 지방간 축적과 간 섬유화를 동시에 억제하면서 안전성이 증명된 치료제 개발이 기대된다.
광주과학기술원(GIST)은 화학과 안진희 교수 연구팀과 우리 대학 의과학대학원 김하일 교수 연구팀이 다년간 기초연구를 통해 질환 특이 단백질(HTR2A)을 억제할 수 있는 신규 화합물을 개발했으며, 안진희 교수의 창업기업인 ㈜제이디바이오사이언스에서 전임상 시험(동물 시험)을 통해 효능과 안전성을 입증하는 데 성공했다고 밝혔다.
비알코올성 지방간 질환의 유병율은 20~30%에 이르고, 지방간염 질환은 전 세계 성인 인구의 5% 이상이 보유하고 있을 정도로 높은 유병률을 보임에도 불구하고 현재까지 제품화된 치료제가 전혀 없다.
비알코올성 지방간질환은 지방간에서 시작해 지방간염, 섬유화, 간경화, 간암으로 진행되는 만성질환이며, 심혈관질환 및 간 관련 합병증 등에 의해 사망률이 증가하므로 발병 초기에 적절한 치료가 필요하다.
GIST와 KAIST 공동 연구팀이 개발한 이 신규 화합물은 지방간염에 치료 효과를 보이는 혁신신약 후보 물질로서, 세로토닌 수용체 단백질(5HT2A)을 억제함으로써 간 내 지방 축적과 간 섬유화를 동시에 억제하는 이중 작용 기전을 갖고 있다.
연구팀은 이 물질이 지방간 동물 및 지방간염 동물 모델에서 간 내 지방 축적으로 발생하는 간 지방증과 간 섬유화*를 동시에 50~70% 가량 억제함으로써 치료 효과가 있는 것을 확인하였다.
* 섬유화(fibrosis): 간의 일부가 굳는 현상으로, 지방간염 개선의 주요 지표로 쓰임
이 물질은 혈액-뇌 장벽(Blood-Brain Barrier) 투과도가 최소화되도록 최적의 극성과 지질친화도를 갖춘 화합물로 설계되어 뇌에 영향을 주지 않아 우울증, 자살 충동 등 중추신경계(CNS) 부작용이 적으며, 뇌 이외의 조직에서는 질환 타겟에 대한 억제력이 우수(IC50*=14 nM)하다고 연구팀은 설명했다. 또한 임상 3상 단계의 경쟁 약물과 효능을 비교해 본 결과, 간섬유화 개선 효능이 월등히 우수한 것으로 나타났다.
* IC50(half maximal inhibitory concentration): 특정 생물학적 또는 생화학적 기능을 50% 억제하는 물질의 농도
전임상 시험에 의해 얻은 약리작용 데이터를 토대로 건강한 사람에게서 부작용 및 안전한 약물 용량을 확인하는 단계인 임상 1상 시험에서 건강한 성인 총 88명을 대상으로 평가한 결과, 심각한 부작용은 발생하지 않았으며 안전성 또한 양호한 것으로 확인했다.
또한 지방간염 소견을 보이는 성인 8명을 대상으로 한 예비 효능 평가는 현재 진행 중이다.
안진희 교수는 “이번 연구는 비알콜성 지방간염의 치료를 위한 새로운 타겟 발굴을 통해 부작용이 적고 안전성이 보장된 치료제 개발을 목적으로, 현재 혁신신약 개발 바이오 벤처인 ㈜제이디바이오사이언스를 통해 호주에서 글로벌 임상 1상을 진행 중”이라고 밝혔다.
안 교수는 또한 “연구팀이 개발하고 있는 신약 후보물질은 안전성이 높으면서 간 지방축적을 억제시키는 예방효과뿐만 아니라 간 섬유화에 직접적인 치료 효과를 보인다는 강점이 있어 다른 경쟁 약물과는 차별화된다”고 설명했다.
우리 대학 김하일 교수는 “현재까지 체중을 조절하는 방법 외에는 치료방법이 없는 이 질환에서 비만하지 않은 환자에게 사용할 수 있는 약은 개발이 시도된 적도 없다”면서 “이번 연구를 계기로 체중에 영향을 주지 않으면서 비알코올성 지방간염을 포함한 다양한 대사질환 치료기술의 개발이 가능해질 것으로 기대한다”고 말했다.
GIST 안진희 교수 연구팀과 KAIST 김하일 교수 연구팀, ㈜제이디바이오사이언스(JD BIOSCIENCE) 연구팀이 함께 수행한 이번 연구는 과학기술정보통신부, 국가신약개발사업에서 지원을 받아 수행됐으며, 국제 학술지인 ‘네이처 커뮤니케이션즈(Nature Communications)’에 2024년 1월 20일 게재됐다.
또한 지난 4일부터 3일간 미국 유타에서 개최된 ‘NASH 치료제 전문 콘퍼런스(NASH-TAG Conference 2024)’에서 대사이상 관련 지방간염(MASH)* 치료제 후보물질인 ‘GM-60106(개발코드명)’의 임상 연구 결과를 발표해 우수 초록으로 선정되기도 했다.
* 대사이상 관련 지방간염(MASH): 비알코올성 지방간염(NASH)의 새로운 명칭
2024.01.30
조회수 4650
-
친환경적 나일론 생산 전략 소개하다
기후 변화에 대응하여 전 세계는 '넷제로(Net-Zero)'라는 슬로건을 내세운 탄소 중립 관련 산업에 점점 더 주목하고 있다. 나일론으로 대표되는 폴리아마이드는 자동차, 전기, 섬유, 의료 산업 등 다양한 분야에서 광범위하게 사용되는 선형 고분자다. 1938년 나일론으로 처음 상업화된 이후, 매년 전 세계적으로 약 700만 톤의 폴리아마이드가 생산되고 있다. 이러한 폭넓은 활용성과 중요성을 고려할 때, 폴리아마이드를 생물 기반 방식으로 생산하는 것은 환경적, 산업적 측면에서 모두 중대한 의미를 지니고 있다.
우리 대학 생명화학공학과 이상엽 특훈교수팀의 이종언 박사와 김지연 박사과정생이 `바이오 기반 폴리아마이드 생산 기술의 발전 동향' 논문을 발표했다고 18일 밝혔다.
기후변화대응 기술 중 바이오리파이너리는 화석 원료에 의존하지 않고 바이오매스 원료로부터 생물공학적·화학적 기술을 이용해 화학제품·바이오 연료 등 산업 화학물질을 친환경적으로 생산하는 분야에 해당한다. 특히, 이상엽 특훈교수가 창시한 시스템 대사공학은 미생물의 복잡한 대사회로를 효과적으로 조작해, 바이오매스 원료로부터 유용 화합물을 생산하는 핵심 바이오리파이너리 기술이다. 이상엽 특훈교수 연구팀은 실제로 시스템 대사공학 전략을 이용해 숙신산, 생분해성 플라스틱, 바이오 연료, 천연물 등을 생산하는 고성능 균주들을 다수 개발한 바 있다.
연구팀은 우리의 실생활에서 의류 및 섬유에 다양하게 활용되는 바이오 기반 폴리아미드 생산기술이 보편화된다면, 친환경적 생산기술을 바탕으로 기후 위기에 대응할 수 있는 미래기술로써 주목받게 될 것임을 전망했다. 이번 논문에서는 바이오 기반 폴리아마이드 생산 전략을 종합적으로 정리함으로써 대사공학적으로 개량된 미생물 세포 공장을 사용한 폴리아마이드 생산과 합성된 바이오 기반 폴리아마이드 발전 동향을 제공했다. 또한, 화학적 전환을 통하여 합성된 바이오 기반 폴리아마이드 생산 전략, 생산된 폴리아마이드의 생분해 및 재활용 가능성에 대해 논의했다. 나아가 친환경 화학 산업과 지속 가능한 사회를 위해 바이오 기반 폴리아마이드 생산에 활용되는 대사공학이 나아갈 방향을 함께 제시했다.
이번 논문의 공동 제1 저자인 김지연 박사과정생은 “탄소 중립 목표 달성을 위해 시스템 대사공학을 활용한 바이오 기반 폴리아마이드 생산의 중요성이 더욱 대두되고 있다”라고 말했으며, 이상엽 특훈교수는 “증가하는 기후 변화에 대한 우려 속에 어느 때보다 친환경적이며 지속 가능한 산업 발전의 중요성이 커지고 있는 지금, 시스템 대사공학이 화학 산업뿐만 아니라 다양한 분야에 큰 영향을 미칠 것”이라고 밝혔다.
우리 대학 생명화학공학과의 이종언 박사, 김지연 박사과정생, 안정호 박사, 안예지 석사가 함께 참여한 이번 논문은 셀(Cell) 誌가 발행하는 화학 분야 권위 리뷰 저널인 `화학의 동향(Trends in Chemistry)' 12월호 표지논문 및 주 논문(Featured Review)으로 12월 7일 字 게재됐다.
※ 논문명 : Current advancements in the bio-based production of polyamides
※ 저자 정보 : 이종언(한국과학기술원, 공동 1 저자), 김지연(한국과학기술원, 공동 1 저자), 안정호(한국과학기술원, 제 3저자), 안예지(한국과학기술원, 제 4저자), 이상엽(한국과학기술원, 교신저자) 포함 총 5명
한편, 이번 연구는 과기정통부가 지원하는 석유대체 친환경 화학기술개발사업의 ‘바이오화학산업 선도를 위한 차세대 바이오리파이너리 원천기술 개발’ 과제 및 ‘C1 가스 리파이너리 사업’의 지원을 받아 수행됐다.
2023.12.18
조회수 3868
-
화학공장 대체 방안 ‘아이브릿지’에서 찾다
기후 변화와 환경 문제가 심각하게 대두됨에 따라 현재의 화학 공장을 대체할 수 있는 지속가능한 미생물 세포공장이 크게 주목받고 있다. 미생물 세포공장으로 활용할 미생물을 개량하기 위해선 미생물이 가진 유전자들의 발현을 증폭 또는 억제해 유용한 화합물을 생산하도록 미생물 대사 메커니즘을 개량해야 하지만, 어떠한 유전자를 증폭하고 억제할 것인지 결정하는 것은 지금까지 어려운 문제로 남아있다.
우리 대학 이상엽 특훈교수 연구팀이 아이브릿지(iBridge)라는 시뮬레이션 프로그램을 개발하여 생산하고자 하는 화합물에 맞춤형 미생물 공장을 구축할 수 있도록 과발현 및 억제 유전자들을 예측함으로써 미생물 공장을 적은 비용으로 빠르고 효율적으로 구축하는 방법을 제시했다고 9일 밝혔다.
이상엽 특훈교수가 창시한 시스템 대사공학은 유전공학, 합성생물학, 시스템생물학, 발효공학 등을 접목해 개량한 미생물을 이용해 유용한 화합물들을 생산하는 분야다. 미생물을 목표로 하는 유용한 화합물을 생산하도록 개량하기 위해선 미생물의 유전자들을 삭제, 발현억제, 과발현 등이 필수적이지만, 이를 일일이 실험적으로 확인하지 않고서는 여전히 전문가들조차 판별하기 어려워 많은 시간과 자원이 소모된다.
연구팀은 신규 개발된 아이브릿지(iBridge) 시뮬레이션을 활용해 세 가지의 유용한 화합물을 세계 최고 수준으로 생산하는 대장균 미생물 세포공장을 구축하는 데 성공했다. 연구팀은 많은 화장품에서 보습제 역할을 하는 판테놀, 나일론의 원료인 퓨트레신, 항균성 식품첨가제인 4-하이드록시페닐젖산 등을 생산하는 대장균 균주를 개발하고, 신규 개발된 시뮬레이션 아이브릿지(iBridge)를 활용해 세계 최고 농도로 이들 화합물을 생산하는 공정을 개발했다. 그뿐만 아니라 연구팀은 이들 세 가지 외에도 산업적으로 유용한 화합물 298 여종의 미생물 공장을 구축하기 위한 과발현 및 억제 유전자들을 예측해 제시했다.
이번 논문의 공동 제1 저자인 우리 대학 이영준 박사는 “이번에 개발된 시뮬레이션을 이용하니 여러 가지 미생물 공장들이 기존방법보다 월등히 빠른 속도로 구축됐다”며 “더 다양한 유용한 화합물들을 생산하는 미생물 세포공장들이 이 기술을 활용해 빠르게 구축될 수 있을 것”이라고 말했다.
또한 이상엽 특훈교수는 “시스템 대사공학은 현재 우리가 해결해야 할 기후변화문제에 접근하는 매우 중요한 기술”이라며 “이 시뮬레이션은 기존의 화학 공장을 친환경 미생물 공장으로 대체하는 시기를 앞당기는 데 크게 기여할 수 있을 것”이라고 밝혔다.
생물공정연구센터 김원준 박사, 이영준 박사, 생명화학공학과 김현욱 교수와 이상엽 특훈교수가 참여한 이번 논문은 셀 (Cell) 誌가 발행하는 `셀 시스템즈 (Cell Systems)'에 동료심사를 거쳐 11월 6일 온라인판에 게재됐다.
※ 논문명 : 세포 내 화학반응 속도의 공분산의 합을 활용한 게놈 수준 과발현 및 억제 유전자 예측 (Genome-Wide Identification of Overexpression and Downregulation Gene Targets Based on the Sum of Covariances of the Outgoing Reaction Fluxes)
※ 저자 정보 : 김원준 (한국과학기술원, 공동 제1 저자), 이영준 (한국과학기술원, 공동 제1 저자), 김현욱 (한국과학기술원, 공동 제1 저자) 및 이상엽(한국과학기술원, 교신저자) 포함 총 6 명
한편, 이번 연구는 과기정통부가 지원하는 ‘석유대체 친환경 화학기술개발사업의 ‘바이오화학산업 선도를 위한 차세대 바이오리파이너리 원천기술 개발’ 과제(과제책임자 KAIST 이상엽 특훈교수) 및 바이오매스기반 탄소중립형 바이오플라스틱 제품기술개발사업’ 과제(과제책임자 KAIST 최소영 연구교수)의 지원을 받아 수행됐다.
아이브릿지 사이트: https://github.com/kaistsystemsbiology/iBridge.git
2023.11.09
조회수 4055
-
미생물로 나일론을 친환경적으로 만든다
기후 변화와 환경 문제가 심각해짐에 따라 나일론을 포함한 다양한 고분자들의 친환경 생산에 관한 관심이 빠르게 증가하는 추세다.
우리 대학 생명화학공학과 이상엽 특훈교수 연구팀 한태희 박사가 `나일론-5의 단량체인 발레로락탐을 생산하는 미생물 균주 개발'에 성공했다고 10일 밝혔다.
발레로락탐(valerolactam)은 나일론-5 및 나일론 6,5의 중요한 단량체다. 나일론-5와 나일론 6,5는 역사가 가장 오래된 합성섬유인 나일론의 일종으로, 나일론-5는 탄소 5개짜리 단량체로 이루어진 고분자, 나일론 6,5는 탄소 6개와 5개짜리의 두 가지 단량체로 이루어진 고분자를 말한다. 이는 우수한 가공성과 가볍고 질긴 특징으로 인해 의류뿐 아니라 배드민턴 라켓 줄, 어망, 텐트, 그리고 기어 부품 등 산업 전반에 활용되고 있다. 또한 단량체란 이러한 고분자를 만드는 재료이며, 단량체들을 서로 연결해 고분자를 합성하는 원리다.
석유 화학 기반의 화학적 발레로락탐 생산은 극한 반응조건과 유해 폐기물 생성이라는 문제점을 지니고 있다. 이러한 문제를 해결하기 위해 발레로락탐을 친환경적이며 고효율로 생산하는 미생물 세포 공장을 개발하려는 노력이 이뤄지고 있다. 시스템 대사공학은 효과적인 미생물 균주 개발을 위해 필요한 핵심 전략으로, 이상엽 특훈교수가 창시한 연구 분야다.
이상엽 특훈교수 연구팀은 미생물의 대사회로를 조작하는 기술인 대사공학을 이용해 아미노산 생산에 주로 사용되는 세균의 일종인 코리네박테리움에 발레로락탐 생산 합성 대사회로를 구축했다. 이로써 바이오매스인 포도당을 탄소원으로 사용해 고부가가치의 발레로락탐을 생산하는 미생물 균주를 개발했다고 연구팀 관계자는 설명했다.
이 교수팀은 2017년 대장균을 대사공학적으로 개량해 발레로락탐을 세계 최초로 생산하는 전략을 제시한 바 있다. 하지만 그 당시 낮은 발레로락탐 생산능과 부산물 생성과 같은 한계가 있었다.
이번 연구를 통해 미생물의 발레로락탐 생산능을 향상시키고 개발한 균주에 추가로 부산물 제거를 위한 시스템 대사공학 전략을 도입했다. 주요 부산물 생산에 관여하는 유전자를 제거하고, 유전자 스크리닝을 통해 부산물이자 전구체인 5-아미노발레르산(5-aminovaleric acid)을 발라로락탐으로 전환시켜서 부산물 생성을 줄이는데 성공했다.
연구팀은 또한 5-아미노발레르산을 발레로락탐으로 전환하는 유전자를 게놈 상에 여러 번 삽입하는 전략을 통해 발레로락탐 생산을 위한 대사 흐름을 강화하고, 세계 최고 농도(76.1g/L)의 발레로락탐을 고효율로 생산하는 데 성공했다. 이는 기존 대비 6.17배 높은 수치다.
해당 연구 결과는 국제 학술지인 `대사공학지(Metabolic Engineering)'에 지난 7월 12일 게재됐다.
※ 논문명 : Metabolic engineering of Corynebacterium glutamicum for the high-level production of valerolactam, a nylon-5 monomer
※ 저자 정보 : 이상엽(한국과학기술원, 교신저자), 한태희(한국과학기술원, 제1저자) 포함 총 2명
연구에 참여한 한태희 박사는 “미생물을 기반으로 나일론의 단량체인 락탐을 고효율로 생산하는 친환경 기술을 개발했다는 점에 의의가 있다”며 “이번 기술을 활용해 미생물 기반의 바이오 고분자 산업이 석유화학 기반의 화학산업을 대체하는 데에 한 단계 앞으로 나아갈 수 있을 것”이라고 밝혔다.
이번 연구는 이상엽 특훈교수 연구팀에 의해 과학기술정보통신부가 지원하는 기후환경연구개발사업의 ‘바이오화학산업 선도를 위한 차세대 바이오리파이너리 원천기술 개발 과제’의 지원을 받아 수행됐다.
2023.08.10
조회수 5207