-
저렴한 촉매로 간단하게 항생제 만드는 전략 개발
자연에 풍부한 탄화수소를 원료로 페니실린 등 항생제를 합성할 수 있는 새로운 촉매가 나왔다. 우리 대학 화학과 장석복 특훈교수(기초과학연구원 (IBS) 분자활성 촉매반응 연구단장) 연구팀은 서상원 전(前) 기초과학연구원 차세대 연구 리더(現 DGIST 화학물리학과 교수)와의 협업으로 경제적인 니켈 기반 촉매를 이용해 탄화수소로부터 항생제 원료물질인 ‘카이랄 베타-락탐’을 합성하는 화학반응을 개발했다.
1928년 영국의 생물학자인 알렉산더 플레밍은 푸른곰팡이에서 인류 최초의 항생제인 페니실린을 발견했다. 이후 1945년 영국 화학자 도로시 호지킨이 베타-락탐으로 불리는 고리 화합물이 페니실린을 구성하는 주요 구조임을 밝혀냈다. 베타-락탐은 탄소 원자 3개와 질소 원자 1개로 이루어진 고리 구조(4원환 구조)로 페니실린 외에도 카바페넴, 세팔렉신과 같은 주요 항생제의 골격이기도 하다.
페니실린 구조 규명 덕분에 인류는 베타-락탐 계열의 항생제를 화학적으로 합성할 수 있게 됐다. 하지만 80여 년이 지난 지금도 베타-락탐 합성에는 해결해야 할 과제가 있다. 베타-락탐은 카이랄성(거울상 이성질성)을 지닐 수 있는데, 구성하는 원소의 종류나 개수가 같아도 완전히 다른 성질을 내는 두 유형의 거울상 이성질체가 존재한다는 것이다.
대부분의 시판 베타-락탐 의약품은 유용성을 가진 유형만 선택적으로 제조하기 위해 합성과정에서 카이랄 보조제를 추가로 장착시킨다. 합성 단계가 복잡해지고, 제조 단가가 높아질 뿐만 아니라 보조제 제거를 위해 추가로 화학물질을 투입해야 해서 폐기물이 발생한다는 단점이 있다.
장석복 교수 연구팀은 2019년 탄화수소로부터 합성 가능한 다이옥사졸론과 새로 개발한 촉매를 이용해 카이랄 감마-락탐을 합성하는 데 최초로 성공했다(Nature Catalysis). 당시 5원환 구조인 감마-락탐은 카이랄 선택적으로 합성했지만, 4원환 구조의 베타-락탐을 합성하지는 못했다. 또, 이 반응을 위해서는 값비싼 이리듐 촉매를 써야 한다는 한계도 있었다.
베타-락탐은 감마-락탐보다 더 쓰임이 많지만, 합성에 많은 에너지가 필요해 더 제조가 까다롭다. 이번 연구에서는 상대적으로 저렴하고, 풍부하게 존재하는 니켈 촉매를 이용하여 제조가 까다로운 베타-락탐을 카이랄 선택적으로 합성하는 데 성공했다. 시판 공정에서는 항생제 합성에 필요한 베타-락탐 원료를 8단계에 거쳐 합성했지만, 연구진이 제시한 촉매반응은 보조제 장착 및 제거 과정이 필요 없어 약 3단계 정도로 절차를 대폭 단축할 수 있다. 게다가, 원료물질에 비해 합성된 물질은 시장 가치가 700배가량 높아 고부가가치를 창출할 수 있다.
서상원 교수는 “니켈과 다이옥사졸론의 반응 과정에서 생기는 니켈-아미도 중간체가 베타 위치의 탄소와 선택적으로 반응하여 원하는 베타-락탐 골격을 얻을 수 있다”이라며 “두 유형의 카이랄 베타-락탐 중 한쪽만을 95% 이상의 정확도로 골라 선택적으로 합성할 수 있음을 보여줬다”고 말했다.
한편, 연구진은 천연물 등 복잡한 화학 구조의 물질에 베타-락탐 골격을 높은 정확도로 도입하는 데도 성공했다. 기존 의약품 합성 전략보다 간단하게 후보 약물이 될 새로운 물질을 합성할 수 있다는 의미다.
연구를 이끈 장석복 교수는 “페니실린, 카바페넴과 같은 주요 항생제의 골격인 카이랄 베타-락탐을 손쉽게 합성해냈다”며 “유용 물질의 합성과정을 간소화해 산업에 이바지하는 동시에 신약 개발을 위한 다양한 후보물질 발굴도 견인할 것”이라고 말했다.
연구결과는 8월 25일(한국시간) 화학 분야 권위지인 ‘네이처 카탈리시스(Nature Catalysis, IF 37.8)’ 온라인판에 실렸다.
2023.08.25
조회수 4955
-
미생물로 나일론을 친환경적으로 만든다
기후 변화와 환경 문제가 심각해짐에 따라 나일론을 포함한 다양한 고분자들의 친환경 생산에 관한 관심이 빠르게 증가하는 추세다.
우리 대학 생명화학공학과 이상엽 특훈교수 연구팀 한태희 박사가 `나일론-5의 단량체인 발레로락탐을 생산하는 미생물 균주 개발'에 성공했다고 10일 밝혔다.
발레로락탐(valerolactam)은 나일론-5 및 나일론 6,5의 중요한 단량체다. 나일론-5와 나일론 6,5는 역사가 가장 오래된 합성섬유인 나일론의 일종으로, 나일론-5는 탄소 5개짜리 단량체로 이루어진 고분자, 나일론 6,5는 탄소 6개와 5개짜리의 두 가지 단량체로 이루어진 고분자를 말한다. 이는 우수한 가공성과 가볍고 질긴 특징으로 인해 의류뿐 아니라 배드민턴 라켓 줄, 어망, 텐트, 그리고 기어 부품 등 산업 전반에 활용되고 있다. 또한 단량체란 이러한 고분자를 만드는 재료이며, 단량체들을 서로 연결해 고분자를 합성하는 원리다.
석유 화학 기반의 화학적 발레로락탐 생산은 극한 반응조건과 유해 폐기물 생성이라는 문제점을 지니고 있다. 이러한 문제를 해결하기 위해 발레로락탐을 친환경적이며 고효율로 생산하는 미생물 세포 공장을 개발하려는 노력이 이뤄지고 있다. 시스템 대사공학은 효과적인 미생물 균주 개발을 위해 필요한 핵심 전략으로, 이상엽 특훈교수가 창시한 연구 분야다.
이상엽 특훈교수 연구팀은 미생물의 대사회로를 조작하는 기술인 대사공학을 이용해 아미노산 생산에 주로 사용되는 세균의 일종인 코리네박테리움에 발레로락탐 생산 합성 대사회로를 구축했다. 이로써 바이오매스인 포도당을 탄소원으로 사용해 고부가가치의 발레로락탐을 생산하는 미생물 균주를 개발했다고 연구팀 관계자는 설명했다.
이 교수팀은 2017년 대장균을 대사공학적으로 개량해 발레로락탐을 세계 최초로 생산하는 전략을 제시한 바 있다. 하지만 그 당시 낮은 발레로락탐 생산능과 부산물 생성과 같은 한계가 있었다.
이번 연구를 통해 미생물의 발레로락탐 생산능을 향상시키고 개발한 균주에 추가로 부산물 제거를 위한 시스템 대사공학 전략을 도입했다. 주요 부산물 생산에 관여하는 유전자를 제거하고, 유전자 스크리닝을 통해 부산물이자 전구체인 5-아미노발레르산(5-aminovaleric acid)을 발라로락탐으로 전환시켜서 부산물 생성을 줄이는데 성공했다.
연구팀은 또한 5-아미노발레르산을 발레로락탐으로 전환하는 유전자를 게놈 상에 여러 번 삽입하는 전략을 통해 발레로락탐 생산을 위한 대사 흐름을 강화하고, 세계 최고 농도(76.1g/L)의 발레로락탐을 고효율로 생산하는 데 성공했다. 이는 기존 대비 6.17배 높은 수치다.
해당 연구 결과는 국제 학술지인 `대사공학지(Metabolic Engineering)'에 지난 7월 12일 게재됐다.
※ 논문명 : Metabolic engineering of Corynebacterium glutamicum for the high-level production of valerolactam, a nylon-5 monomer
※ 저자 정보 : 이상엽(한국과학기술원, 교신저자), 한태희(한국과학기술원, 제1저자) 포함 총 2명
연구에 참여한 한태희 박사는 “미생물을 기반으로 나일론의 단량체인 락탐을 고효율로 생산하는 친환경 기술을 개발했다는 점에 의의가 있다”며 “이번 기술을 활용해 미생물 기반의 바이오 고분자 산업이 석유화학 기반의 화학산업을 대체하는 데에 한 단계 앞으로 나아갈 수 있을 것”이라고 밝혔다.
이번 연구는 이상엽 특훈교수 연구팀에 의해 과학기술정보통신부가 지원하는 기후환경연구개발사업의 ‘바이오화학산업 선도를 위한 차세대 바이오리파이너리 원천기술 개발 과제’의 지원을 받아 수행됐다.
2023.08.10
조회수 5182
-
빛을 이용해 간단하게 유용한 화합물 만든다
환경 오염을 유발하는 부산물이나, 높은 에너지가 필요한 고온 공정 없이 빛을 이용해 친환경적으로 의약품의 주요 원료를 만들 수 있는 새로운 합성 공정이 개발됐다.
우리 대학 화학과 홍승우 교수(IBS 분자활성 촉매반응 연구단 부연구단장) 연구팀은 광(光)촉매를 이용해 질소 고리화합물을 합성하는 새로운 화학반응을 제시하고, 의약품의 주요 골격인 ‘락탐’과 ‘피리딘’을 하나의 분자에 도입하는 데 성공했다.
‘질소 고리화합물’은 약용 화합물의 주요 구성요소다. 고리(원) 형태로 결합한 탄소 원자 사이에 질소 원자가 끼어 있는 구조로, 여기에 작용기를 결합해 약품을 합성한다. 미국 식품의약국(FDA)이 승인한 약물의 60% 이상이 질소 고리화합물 구조를 포함하고 있다. 신약 후보 물질 발굴만큼이나 질소 고리화합물을 쉽게 합성할 수 있는 전략 개발이 중요한 이유다.
연구팀은 안정적인 유기 분자를 불안정한 삼중항 상태(triplet state)로 만들어 유용 물질을 합성하는 전략을 새롭게 제시했다. 우선 연구팀은 피리딘에 아미드 그룹을 부착한 피리디늄 염이 삼중항 에너지를 가질 수 있음을 계산화학적으로 예측했다. 삼중항은 분자에서 스핀이 한 방향으로 존재하는 상태로, 매우 불안정하여 자연에서는 잘 발견되지 않는다. 삼중항 상태를 상온에서 구현한다면, 기존에 없었던 새로운 화학반응에 적용할 수 있다.
이후 실제 실험을 통해 피리디늄 염을 삼중항 상태로 만들었다. 피리디늄 염이 빛 에너지를 받아 삼중항 상태가 될 수 있도록 광촉매를 활용했다.
제1저자인 이우석 연구원은 “계산화학적 예측과 실험적 확인을 통해 ‘삼중항 에너지 전달’이라는 새로운 화학반응을 보고했다”며 “환경 오염을 유발하는 시약을 첨가해야 던 기존 합성법과 달리 가시광선을 활용하기 때문에 친환경적이다”라고 설명했다.
더 나아가 연구진은 하나의 분자에 피리딘과 락탐을 동시에 선택적으로 생성할 수 있음을 처음으로 보여줬다. 기존에는 피리딘과 락탐을 동시에 도입하기 위해서는 별도의 재료와 여러 단계의 화학반응을 거쳐야 했지만, 이제는 한 번의 반응으로 두 작용기가 선택적으로 결합된 화합물을 합성할 수 있다. 주요한 생리활성을 지닌 골격을 한 분자에 결합시킬 수 있어 더 경제적인 합성이 가능할 뿐만 아니라 약효도 증가시킬 수 있다. 또한, 연구진은 삼중항 에너지 전달 메커니즘을 피리딘뿐만 아니라 여러 고리 구조 합성 반응에 적용할 수 있다는 것도 확인했다.
연구를 이끈 홍승우 부연구단장은 “삼중항 에너지 전달을 이용하면 의약품 합성에 필요한 단계를 줄일 수 있다”며 “과정이 간단할 뿐만 아니라 친환경적인 방법으로 향후 신약 및 각종 화학제품 개발 등 산업계 전반에 큰 도움을 줄 것으로 기대된다”고 말했다.
2023.07.11
조회수 4448
-
장석복, 백무현 교수, 상온 감마-락탐 합성 성공해 사이언스 紙 게재
석유, 천연가스 등 자연에 풍부한 탄화수소로부터 의약품이나 화학소재의 원료가 되는 락탐을 합성할 수 있는 방법이 나왔다.
우리 대학 화학과 장석복 교수, 백무현 교수 공동 연구팀이 반응 효율이 높은 이리듐 촉매를 개발해 상온에서 감마-락탐을 합성하는데 성공했다.
이번 연구성과는 세계적 권위의 학술지 사이언스(Science) 3월 2일자 온라인 판에 게재됐다.
감마-락탐은 뇌전증 치료제(레비티라세탐)나 혈관형성 억제제(아자스파이렌)와 같이 복잡한 유기분자의 핵심 구성성분으로 의약품, 합성화학, 소재 등에 폭넓게 활용된다.
자연에 풍부한 탄화수소로부터 감마-락탐을 만들기 위해 많은 연구가 있었지만 탄화수소는 상온에서 반응성이 낮아 합성하는데 큰 어려움이 있었다.
탄화수소에서 감마-락탐을 합성하기 위해서는 탄소-수소 결합을 탄소-질소 결합으로 변환하는 질소화반응이 필요한데 이 과정에서 중간체인 카보닐나이트렌(carbonylnitrene)이 상온에서 너무 쉽게 부산물로 분해돼 합성이 불가능했기 때문이다.
연구팀은 최적화된 촉매를 계산화학으로 분석해 예측하고 실험에 돌입하는 방식으로 중간체 분해 문제를 해결할 수 있었다.
이론 연구팀은 밀도범 함수를 활용한 계산화학으로 어떤 촉매가 탄화수소에 효율적인 반응을 일으킬지 분석하고 시뮬레이션을 통해 완성도 높은 촉매를 개발했다.
이를 바탕으로 실험 연구팀이 중간체 분해 및 부산물 형성을 억제하는 이리듐 촉매를 개발하고 탄화수소에 적용해 감마-락탐 합성에 성공했다.
장석복 교수는 “이번 연구는 질소화 반응의 중간체 분해 문제를 해결함으로써 탄화수소로 감마-락탐을 합성하는 계기를 만들 수 있었다”며 “새로운 금속 촉매를 설계하고 합성해 성공적으로 적용시키는 모든 과정에 열정적으로 임해준 참여 학생들에게 깊이 감사한다”고 말했다.
또한 “이번에 개발한 촉매반응의 확장연구를 통해 학문적인 진보는 물론 합성된 물질의 생리활성 및 임상 연구를 통한 의약품과 신소재 개발 등 산업적인 면에서도 큰 기여할 수 있게 되기를 바란다”고 말했다.
□ 그림 설명
그림1. 연구진이 개발한 새로운 이리듐 촉매로 만든 질소화 반응 메커니즘
그림2. 밀도범함수를 활용한 계산화학으로 예측한 반응 경로와 에너지 장벽
그림3. 본 연구에서 개발한 질소화 촉매반응의 메커니즘과 합성한 다양한 질소고리 화합물
2018.03.02
조회수 11688