본문 바로가기
대메뉴 바로가기
KAIST
연구뉴스
유틸열기
홈페이지 통합검색
-
검색
메뉴 열기
%EB%A6%AC%EB%93%9C%EB%B2%84%EA%B7%B8
최신순
조회순
양자 컴퓨터로 새로운 물성 연구 성공
양자 물질을 연구하거나 설계할 때 기존의 폰노이만식 전자컴퓨터를 이용한 계산은 근본적인 한계를 가진다. 양자계의 경우 양자 얽힘 등의 효과로 인해 계산량이 기하급수적으로 증가하기 때문이다. 따라서 양자물질 설계를 위해 물질의 특성을 알아내고자 할 때, 양자컴퓨터를 이용하는 양자 시뮬레이션이 필요하다. 우리 대학 물리학과 안재욱 교수 연구팀이 코펜하겐 대학 클라우스 뭴머(Klaus MØlmer) 교수 연구팀과 함께 양자 시뮬레이션을 수행하는 양자 컴퓨터 플랫폼으로 최근 가장 주목을 받는 리드버그 원자 양자 컴퓨터를 이용해 양자 자성체의 극단적 특성을 구현하는데 성공했다고 11일 밝혔다. 자성체 물질은 하드 디스크와 같은 전자제품을 비롯해 전력 발전 등에도 사용되는 등 현대 기술의 핵심 요소다. 최근에는 상온 자성체를 넘어서 양자적 특성이 두드러지는 초저온에서 양자 자성체 특성에 관한 연구가 활발히 이뤄지고 있다. 초저온에서 수행되는 물성 분석 및 계측 연구는 MRI 등의 의학 기기 등에 응용될 뿐만 아니라, 차세대 초정밀 제어계측공학을 촉발할 것으로 기대된다. 유명 물리학자 리처드 파인만은 1983년 양자계의 특성을 인공적인 양자계로 모방해 연구하는 양자 시뮬레이션을 제안하였다. 인공적으로 모방한 양자계의 특성을 연구하면 기존 양자계의 특성을 알아낼 수 있다. 양자 시뮬레이션을 이용한 양자 자성체의 연구는 지난 10년간 세계 유수의 대학과 연구소에서 이뤄지고 있으며 이전까지 알려지지 않은 양자 물질의 특성들을 실험적으로 확인하는 성과를 보였다. 현재 양자 물질을 시뮬레이션하는 데 있어 중요한 이슈 중 하나는 극단적인 상황 속 양자 물질의 현상을 관찰하는 것이다. 한편 이와 같은 양자 시뮬레이션을 수행하는 양자 컴퓨터 플랫폼으로 최근 가장 주목을 받는 것은 리드버그 원자다. 리드버그 원자는 최외각 전자가 이온화되어 떨어지기 직전의 매우 높은 에너지를 머금고 있는 원자로, 일반 원자의 만 배 정도의 지름을 가지며 (10의 24제곱)배 정도 더 큰 상호작용을 한다. 우리 대학 물리학과 안재욱 교수 연구팀은 최근 리드버그 원자를 이용해 최대 156큐비트급의 양자 컴퓨터 계산을 선보인 바 있다. 이번 연구에서 글로벌 공동연구팀은 리드버그 원자를 이용한 양자 컴퓨터를 이용해 양자 자성체를 설명하는 모형 중 하나인 하이젠베르크 모형*을 양자 컴퓨터로 모방해 구현했다. 특히 이전의 하이젠베르크 모형의 구현과 다르게, 이번 연구에서는 리드버그 원자의 강한 상호작용을 이용한 극단적 이방성 (3차원 중 특정 방향이 다른 방향 대비 1000배 이상 강하게 상호작용하는 특성으로 새로운 연구영역이 확보됨)을 구현하는 데 성공했다. *하이젠베르크 모형: 하이젠베르크 자성체 모형은 자성체 스핀 간의 모든 방향 (x, y, z 방향) 상호작용을 가정한 모형으로 양자 자성체의 대표적 모델 중 하나임. 연구를 주도한 안 교수는 “이번 연구는 리드버그 양자컴퓨터를 이용해 새로운 양자 물성을 연구할 수 있음을 보였다”라고 밝히고 “양자컴퓨터를 이용하는 물성 연구가 활발해질 것”이라고 기대했다. 우리 대학 물리학과 김강흔 대학원생 연구원과 덴마크 오르후스 대학의 팬 양(Fan Yang) 박사후 연구원이 참여한 이번 연구는 국제 학술지 `피지컬 리뷰 X (Physical Review X)' 2월 14권에 출판됐다. (논문명 : Realization of an Extremely Anisotropic Heisenberg Magnet in Rydberg Atom Arrays). 한편 이번 연구는 삼성미래기술재단과 한국연구재단의 지원으로 수행됐다.
2024.03.11
조회수 3753
양자컴퓨팅 원자를 던지고 받는 기술 개발
양자컴퓨터의 기본 구성요소인 원자를 이동하여 배치하는 기술은 리드버그 양자컴퓨팅 연구에 매우 중요하다. 하지만 원자를 원하는 위치에 배치하려면, 일반적으로 광 집게라고 불리는 매우 집속된 레이저 빔을 사용해, 원자를 하나씩 잡아서 운반해야 하는데 이렇게 운반하는 동안 원자의 양자 정보가 변화할 가능성이 크다. 우리 대학 물리학과 안재욱 교수 연구팀이 레이저 빔을 이용하여 루비듐 원자를 하나씩 던지고 받는 기술을 개발했다고 27일 밝혔다. 연구팀은 광 집게가 원자와 접촉하는 시간을 최소화하여 양자 정보가 변하지 않도록 원자를 던지고 받는 방법을 개발했다. 연구팀은 원자의 온도가 매우 낮아 절대 영도 이하 4천만분의 일의 온도의 차가운 루비듐 원자가 광 집게의 초점을 따라서 빛이 가하는 전자기력에 매우 민감하게 움직인다는 특성을 이용했다. 연구팀은 광 집게의 레이저를 가속해서 원자에 광학적 킥을 줘서 원자를 목표지점으로 보낸 다음, 다른 광 집게로 날아오는 원자를 잡아서 멈추게 했다. 원자의 비행 속도는 65cm/s이고, 이동 거리는 최대 4.2 마이크로미터다. 기존의 광 집게로 원자를 잡아서 이동하는 기술과 대비해 원자를 던지고 받는 기술은 원자 이동을 위한 광 집게 이동 경로 계산이 필요 없어지고, 원자 배열에 생기는 결함을 쉽게 고칠 수 있다. 결과적으로 많은 개수의 원자 배열을 생성하고 유지하는 데 효과적이며, 양자 정보를 지닌 원자(flying atom qubit)를 추가로 던지고 받는 때에 양자 배열의 구조변화를 전제하는 새롭고 더욱 강력한 양자컴퓨팅 방법을 연구할 수 있다. 안재욱 교수는 “이 기술이 더 크고 강력한 리드버그 양자 컴퓨터를 개발하는 데 사용될 것”이라 말한다. “리드버그 양자 컴퓨터에서 원자는 양자 정보를 저장하고, 전자기력을 통해 인접한 원자들과 상호작용해 양자컴퓨팅을 수행할 수 있도록 배치된다. 만약 오류가 발생해 원자를 교체하거나 이동해야 할 경우, 원자를 던져서 빠르게 재구성하는 방법이 효과적일 수 있다”고 말한다. 우리 대학 물리학과 황한섭, 변우정 박사과정 연구원과 일본 국가자연과학연구소의 실바앙 드 레젤러크 연구원이 참여한 이번 연구는 국제 학술지 `옵티카(Optica)' 3월 10권 3호에 출판됐다. (논문명 : Optical tweezers throw and catch single atoms). 이번 연구는 삼성미래기술재단의 지원으로 수행됐다.
2023.03.27
조회수 6305
20큐비트급 소형 리드버그 양자컴퓨터 개발
우리 대학 물리학과 안재욱, 문은국 교수 연구팀이 20큐비트급 리드버그 양자컴퓨터를 개발해 계산과학의 난제인 최대독립집합 문제를 계산했다고 22일 밝혔다. 양자컴퓨터는 양자역학의 원리를 사용하여, 디지털컴퓨터로는 불가능한 계산을 수행할 것으로 예상되는 대표적 미래기술이다. 20큐비트급 양자컴퓨터는 기존 컴퓨터가 백만회 순차 처리해야 하는 계산량을 한 번에 처리하는 계산성능을 갖는다. 세계 주요국들은 양자컴퓨팅을 전략기술로 분류해, 국가적 연구역량을 집중하고 있으며 글로벌 대기업, 기술벤처, 국가연구소와 주요 대학의 막대한 시설과 인력, 연구비가 동원되고 있다. 우리나라 정부도 양자기술을 10대 전략기술의 하나로 선정해 투자를 확대하고 있다. 소형(20~50큐비트급)의 양자컴퓨터가 속속 개발되고 있는 현시점에서, 가장 중요한 이슈 중 하나는 `디지털컴퓨팅 알고리즘으로는 비효율적인 계산 문제(NP-문제로 분류됨)를 양자컴퓨터가 계산할 수 있는지'이다. 따라서, KAIST가 20큐비트급의 양자컴퓨터를 개발해 NP-완전문제를 계산했다는 것은 한국의 양자컴퓨팅 연구가 세계적 양자컴퓨터 개발경쟁에 진입하였음을 의미한다. 우리 대학 물리학과 안재욱, 문은국 교수 연구팀은 리드버그 원자들을 이용해, 조합 최적화 문제를 계산하는 양자 단열 컴퓨팅 방식의 양자컴퓨터를 개발했다. 연구팀은 초고진공 공간에 배치한 극저온 리드버그 원자를 사용해, 20큐비트급 그래프의 조합 최적화 문제를 실험적으로 계산하는 데 성공했다. 물리학과 김민혁, 김강흔 대학원생 연구원과 황재용 학부생 연구원이 참여한 이번 연구는 국제 학술지 `네이처 피직스(Nature Physics)' 6월 18권 7호에 출판됐다. (논문명 : Rydberg quantum wires for Maximum Independent Set problems). 한편 리드버그 원자란 높은 에너지 상태의 원자로서, 일반 원자보다 만 배 정도 큰 마이크로미터 크기의 지름을 갖고, 리드버그 원자들간의 상호작용은 일반 원자들보다 10^22배 정도로 강하다. 양자 단열형 양자컴퓨팅은 양자 회로형(또는 양자디지털형), 측정기반형과 함께 범용양자컴퓨팅 방식으로 알려져 있다. 대표적인 양자 단열형 양자컴퓨터인 D-wave 社의 양자컴퓨터는 고정 큐비트를 사용한다는 결정적 단점이 있다. 하지만 KAIST의 리드버그 양자 단열형 양자컴퓨터는 재배치 또는 이동이 가능한 큐비트를 사용하기 때문에 주목을 받는다. KAIST 리드버그 양자컴퓨터는 초고진공 상태에 최대 126개의 리드버그 원자들을 임의로 배치해 양자 단열형 양자컴퓨팅을 수행한다. 이번에 발표한 최근 연구에서는 꼭지점이 최대 20개인 그래프의 최대독립집합을 계산하는데 성공했다. 또한 원거리 꼭지점들을 잇는 리드버그 양자선 개념을 최초로 개발해 모든 꼭지점들을 임의로 연결하는 초기하학적 그래프를 계산할 수 있음을 보였다. 참고로, 디지털 컴퓨팅에서 모든 계산 문제들을 계산복잡도에 따라 P-문제(결정 다항)와 NP-문제(비결정적 다항)로 분류한다. 여행자 문제(Traveling Salesman Problem), 최대독립집합 문제 등으로 대표되는 NP-문제들은 디지털 컴퓨팅의 알고리즘으로는 효율적으로 계산할 수 없음이 잘 알려져 있다. 따라서, 양자컴퓨터가 NP-문제들을 계산할 수 있을지가 큰 관심사다. 최대독립집합 문제는 대표적인 NP-완전문제의 하나이며, 주어진 그래프(꼭지점과 간선의 집합)에서 서로 연결되지 않는 꼭지점들의 최대집합을 알아내는 계산 문제다. 그래프의 크기가 커지면, 디지털컴퓨팅 알고리즘으로는 계산량이 지수적으로 증가해 효과적인 계산을 할 수 없다. 이러한 문제를 효과적으로 계산하게 되면 산업적으로 물류, 생산관리, 작업관리, 네트워크 디자인 등에서 혁명적 경제가치를 창출하게 된다. <그림 1> 은 리드버그 양자선(각각 빨강, 주황, 노랑 꼭지점들)을 이용하여 간선으로 연결되지 않는 데이터 큐비트(하얀 꼭지점들)를 연결하는 3차원 큐비트 구조체의 모식도이다. 이 구조는 쿠라토프스키 그래프로 잘 알려진 K(3:3) 그래프이다. 참고로 쿠라토프스키 K(3:3)와 K(5) 그래프쌍은 상대적으로 만들기 쉬운 평면그래프와 조합하여 모든 그래프를 만들 수 있다. 우리 대학 연구진은 본 연구에서 K(3:3)와 K(5)를 실험적으로 최초 구현하였다. 연구를 주도한 물리학과 안재욱 교수는 “이번 연구는 리드버그 양자컴퓨터의 활용 가능성을 보였다는 데 의의가 있다”라고 자평하며 “아직은 큐비트 개수가 충분하지 않지만, 차 단계 연구를 통해 실 활용이 가능한 꿈의 양자컴퓨터를 개발할 수 있을 것”이라는 포부를 밝혔다. 한편 이번 연구는 삼성미래기술재단과 한국연구재단의 지원으로 수행됐다.
2022.06.22
조회수 9708
<<
첫번째페이지
<
이전 페이지
1
>
다음 페이지
>>
마지막 페이지 1