본문 바로가기
대메뉴 바로가기
KAIST
연구뉴스
유틸열기
홈페이지 통합검색
-
검색
메뉴 열기
%EB%B0%B0%ED%84%B0%EB%A6%AC
최신순
조회순
AI가 그린수소와 배터리 미래 신소재 찾아낸다
그린수소 또는 배터리 분야 등 청정 에너지의 성능을 높이는데 가장 큰 영향을 미치는 소재 중 하나는 전극이다. 한국 연구진이 차세대 전극 및 촉매로 활용될 수 있는 신소재를 효율적으로 설계하는 인공지능 기술을 개발했다. 이 기술을 통해 친환경 에너지 사회를 촉진하는데 중요한 역할을 할 것으로 기대된다. 우리 대학 기계공학과 이강택 교수 연구팀의 주도로 한국에너지기술연구원 (원장 이창근), 한국지질자원연구원 (원장 이평구), KAIST 신소재공학과 공동 연구팀들과 함께, 인공지능(AI)과 계산화학을 결합해 그린수소 및 배터리에 활용될 수 있는 스피넬 산화물 신소재를 설계하고, 성능과 안정성을 예측할 수 있는 새로운 지표를 개발하는 데 성공했다고 21일 밝혔다. 스피넬 산화물(AB2O4)은 그린수소 또는 배터리 분야의 차세대 촉매 및 전극 물질로 활용되어 산소 환원 반응(ORR)과 산소 발생 반응(OER)의 속도를 향상시킬 수 있는 잠재력이 높은 물질이다. 하지만, 수천 개 이상의 후보군을 일일이 실험으로 성능을 확인하기 위해서는 많은 시간과 노력이 소요된다. 연구팀은 이를 해결하기 위해 AI와 계산화학을 동시에 사용해 1,240개의 스피넬 산화물 후보 물질을 체계적으로 선별하고, 그중 기존 촉매보다 뛰어난 성능을 보일 촉매 물질들을 찾는 데 성공했다. 그뿐만 아니라, 연구팀은 이번 연구를 통해서 전공 서적에서 손쉽게 찾아볼 수 있는 원자들의 전기음성도를 바탕으로 스피넬 촉매의 안정성과 성능을 예측할 수 있는 지표를 개발했다. 이로써 기존의 실험 방식에 비해 촉매 설계 과정을 훨씬 더 빠르고 효율적으로 진행할 수 있게 되었다. 또한, 연구팀은 스피넬 산화물에서 산소 이온이 움직일 수 있는 3차원 확산 경로를 발견해, 촉매의 성능을 더욱 향상할 수 있는 메커니즘을 처음으로 규명했다. 이강택 교수는 “이번 연구는 인공지능을 통해 신소재의 성능을 빠르고 정확하게 예측할 수 있는 새로운 방법을 제시했다”며, “특히, 이를 통해 그린수소와 배터리 분야에 활용될 수 있는 촉매 및 전극의 개발을 가속화해, 고성능의 친환경 에너지 기술의 발전에 기여할 것”이라고 전했다. 연구팀이 제시한 예측 방법은 기존 실험 방식에 비해 신소재 개발의 효율성을 70배 이상 크게 높였으며, 이러한 성과가 차세대 에너지 변환 및 저장 장치를 위한 소재 개발 연구에 핵심 기술로 자리 잡을 가능성을 높게 보고 있다. 한국에너지기술연구원 이찬우 박사가 공동 교신 저자로 참여하였으며, 한국지질자원연구원 정인철 박사, KAIST 신소재공학과 심윤수 박사가 공동 제1 저자로 참여하고, KAIST 신소재공학과 육종민 교수, 한국지질자원연구원 노기민 박사가 공동 저자로 참여한 이번 연구 결과는 세계적인 학술지‘어드밴스드 에너지 머터리얼즈, Advanced Energy Materials (IF:24.4)’에 중요한 연구 결과임을 인정받아 표지(Inside Front cover) 에 선정됐으며, 24년 10월 21일에 게재됐다. (논문명: A Machine Learning-Enhanced Framework for the Accelerated Development of Spinel Oxide Electrocatalysts) 한편, 이번 연구는 과학기술정보통신부의 개인기초 연구사업, 집단기초연구사업, 그리고 국가과학기술연구회 창의형 융합연구사업의 지원을 받아 수행됐다.
2024.11.21
조회수 311
에너지 저장, 하중지지 동시 가능한 구조배터리 개발
친환경 에너지 기반 자동차, 모빌리티, 항공우주 산업군 등에 활용되는 구조배터리는 높은 에너지 밀도를 통한 에너지 저장과 높은 하중 지지의 두 기능을 동시에 충족되어야 한다. 기존 구조배터리 기술은 두 가지 기능이 상충하여 동시에 향상하기 어려웠지만 우리 연구진이 이를 해결하기 위한 기반 기술 개발에 성공했다. 우리 대학 기계공학과 김성수 교수 연구팀이 하중 지지가 가능하고 화재 위험이 없고 얇고 균일한 고밀도 다기능 탄소섬유 복합재료 구조 배터리*를 개발했다고 19일 밝혔다. *다기능 복합재료 구조 배터리(Multifunctional structural batteries): 복합재료를 구성하는 각 소재가 하중 지지 구조체 역할과 에너지 저장 역할을 동시에 수행할 수 있다는 점을 의미 초기의 구조 배터리는 상용 리튬이온전지를 적층형 복합재료에 삽입한 형태로, 기계적-전기화학적 성능 통합 정도가 낮으므로, 이는 소재 가공, 조립 및 설계 최적화에 어려움이 있어 상용화되기 어려운 실정이었다. 이러한 문제를 해결하기 위해 김성수 교수 연구팀은 ‘에너지 저장이 가능한 복합재료’의 관점에서 기존 복합재료 설계에서 중요한 계면 및 경화 특성을 중심으로 구조전지의 다기능성을 최대화할 수 있는 고밀도 다기능 탄소섬유 복합재료 구조 배터리를 개발하기 위한 체계적인 방식을 연구했다. 연구팀은 이번 연구를 통해 기계적 물성이 높은 에폭시 (Epoxy) 수지와 이온성 액체(ionic liquid)/탄산염 전해질(carbonate electrolyte) 기반 고체 폴리머 전해질이 단단해지는 경화 메커니즘을 분석하고 이를 통해 적절한 온도와 압력 조건을 제어하여 경화 공정을 최적화하였다. 또한 개발된 구조 배터리는 진공 분위기에서 복합재료를 압축 성형하여 구조배터리 내에서 전극과 집전체 역할을 담당하는 탄소섬유의 부피 비율을 기존 탄소섬유를 활용한 배터리 대비 약 160% 이상 향상시켰다. 이를 통해 전극과 전해질과의 접촉면이 획기적으로 증가함으로써 전기화학적 성능을 개선된 고밀도 구조 배터리를 제작할 수 있었다. 뿐만 아니라 경화 공정 중 구조배터리 내부에 발생할 수 있는 기포를 효과적으로 제어하여 구조 배터리의 기계적 물성을 동시에 향상시킬 수 있었다. 연구 책임자인 김성수 교수는 “고강성 초박형 구조 배터리의 핵심 소재인 고체 폴리머 전해질을 소재 및 구조적 관점에서 설계하는 프레임워크를 제시하였고, 이러한 소재 기반의 구조배터리를 자동차, 드론, 항공기, 로봇 등의 구조체 내부에 삽입하여 한번 충전으로 작동시간을 획기적으로 늘릴 수 있는 차세대 다기능 에너지 저장 어플리케이션 개발에 일조하는 기반 기술이 될 것”이라고 연구의 의미를 설명했다. 기계공학과 모하마드 라자(Mohamad Raja) 석사가 제1 저자로 참여하고 국제 저명 학술지인 ‘ACS Applied Materials & Interfaces’에 9월 10일 자로 게재됐다. 이번 연구는 해당 논문의 우수성을 인정받아 국제 학술지의 표지 논문(Supplementary cover)으로 선정됐다. (논문명 : Thin, Uniform, and Highly Packed Multifunctional Structural Carbon Fiber Composite Battery Lamina Informed by Solid Polymer Electrolyte Cure Kinetics. https://doi.org/10.1021/acsami.4c08698). 한편, 이번 연구는 한국연구재단 중견연구사업 및 국가반도체연구실개발사업의 지원으로 수행되었다.
2024.11.19
조회수 615
전기차 차세대 무음극 배터리 퇴화 막을수 있다
전기자동차에 사용되는 무음극 배터리는 1회 충전에 800㎞ 주행, 1,000회 이상 배터리 재충전이 가능할 것을 전망하는 꿈의 기술로 알려져 있다. 일반적으로 배터리는 양극과 음극으로 구성되는데, 무음극 배터리는 음극이 없어 부피가 감소하여 높은 에너지 밀도를 가지지만 리튬금속 배터리에 비해 성능이 현저하게 낮다는 문제점이 있다. 우리 연구진이 무음극 배터리를 고성능화시킬 방안을 제시했다. 우리 대학 생명화학공학과 최남순 교수 연구팀이 전극 계면에서 일어나는 반응의 비가역성과 계면피막 구조의 변화를 체계적으로 분석해 무음극 배터리의 퇴화 원인을 규명했다고 5일 밝혔다. 최남순 교수 연구팀은 무음극 배터리의 첫 충전 과정에서 구리 집전체 표면과 전착된 리튬 표면에서 바람직하지 않은 전해질 분해반응이 일어나 계면피막 성분이 불안정하게 변한다는 것을 밝혀냈다. 배터리 제조 직후에는 용매가 구리 집전체 표면에 흡착해 초기 계면 피막을 형성하고, 충전시 양극으로부터 구리 집전체로 이동된 리튬 이온이 구리 집전체 표면에서 전자를 받아 리튬금속으로 전착되면 전착된 리튬금속 표면에서 전해질 음이온(bis(fluorosulfonyl)imide (FSI-))이 분해하여 리튬금속표면에 계면 피막을 형성함을 규명했다. 연구에 따르면, 배터리 제조 직후에 집전체 표면에서 용매가 분해하여 계면 피막을 만들고 그 후 전해질의 갈바닉* 및 화학적 부식**에 의해 계면 피막성분이 불안정한 성분으로 변하게 되고 이로 인해 리튬금속 전착 및 탈리 반응의 가역성이 크게 감소했다. * 갈바닉 부식: 서로 다른 두 금속을 전기적으로 직접 접촉시켜 전해질에 담그면 고유의 전위차이로 인하여 어느 한쪽이 부식되는 과정. ** 화학적 부식: 전착 리튬금속 표면층까지 전달된 전자가 접촉하고 있는 전해질 성분들에 전달되어 전해질의 환원 분해가 발생함. 특히, 리튬금속에 대한 높은 반응성을 가진 FSI- 음이온은 충·방전 동안 계속해서 분해되어 리튬금속 계면피막을 두껍게 하고 리튬염 농도를 감소시킨다. 이로 인해 리튬이온과 상호작용하지 않는 자유 용매(free solvent)가 많아지게 된다. 이 자유 용매는 분해가 잘되기 때문에 분해산물이 양극 표면에 쌓여 저항이 증가하고 양극 구조 열화*를 연쇄적으로 발생시켜 무음극 배터리 성능을 퇴화시키게 된다. *자유 용매: 이온성 화합물의 이온 결합을 끊고 이온화시키는 용해(dissolution) 과정에 참여하지 않는 용매. **구조 열화: 니켈리치 삼원계 양극의 충전과정에서 생성되는 니켈 4가 양이온은 자유용매로부터 전자를 빼앗아 니켈 2가 양이온으로 환원되는데 리튬이 들어가야하는 자리에 대신 들어가 양극의 층상구조(layered)를 암염구조(rock-salt)로 상전이를 발생시킴. 본 연구에서는 무음극 배터리 선행 연구에도 불구하고 리튬금속 배터리에 비해 성능이 열세인 이유를 다각도로 접근한 결과, 무음극 배터리의 열화를 막기 위해서는 안정한 초기 전극 계면 피막을 만들어서 전해질의 갈바닉 및 화학적 부식을 감소시키는 것이 필수적임을 밝혔다. 최남순 교수는 “이번 연구는 무음극 배터리의 성능 감소는 집전체에 전착되는 리튬금속표면에서 전해질이 바람직하지 않은 분해반응을 하고 형성된 계면피막의 성분이 안정적으로 유지되지 못하기 때문에 일어나는 것임을 확인했다”며 “이번 성과는 향후 무음극 기술에 기반한 고에너지 차세대 배터리 시스템 개발에 중요한 실마리를 제공할 것이다”라고 연구의 의미를 강조했다. 생명화학공학과 최남순 교수, 이정아, 강하늘, 김세훈 연구원이 공동 1 저자로 진행한 이번 연구는 국제 학술지 ‘에너지 스토리지 머티리얼즈(Energy Storage Materials)’에 10월 6일 字로 온라인 공개되었으며, 연구의 우수성을 인정받아 표지 논문으로 선정되었다. (논문명 : Unveiling degradation mechanisms of anode-free Li-metal batteries) 한편 이번 연구는 현대자동차의 지원을 받아 수행됐다.
2024.11.05
조회수 857
소량의 전류로 전기차 배터리 정밀 진단 가능하다
전기차 배터리를 효율적으로 관리하고 안전하게 사용하기 위해서는 정확한 배터리 상태 진단이 필수적이다. 우리 연구진이 소량의 전류만을 사용해 높은 정밀도로 배터리의 상태를 진단하고 모니터링할 수 있는 기술을 개발하여 배터리의 장기적 안정성과 효율성을 극대화할 것으로 기대된다. 우리 대학 전기및전자공학부 권경하 교수와 이상국 교수 연구팀이 전기차 대용량 배터리의 안정성과 성능 향상에 활용할 수 있는 전기화학 임피던스 분광법(이하 EIS) 기술을 개발했다고 17일 밝혔다. EIS 기술은 배터리의 임피던스* 크기와 변화를 측정해 배터리 효율과 손실을 평가할 수 있는 강력한 도구로, 배터리의 충전 상태(state-of-charge; SOC) 및 건강 상태(state-of-health; SOH)를 평가하는 중요한 도구로 여겨진다. 또한 배터리의 열적 특성과 화학적/물리적 변화, 수명 예측, 고장의 원인을 식별하는 데 활용 가능하다. * 배터리 임피던스: 배터리 내부에서 전류 흐름에 저항하는 요소로, 이를 통해 배터리 의 성능과 상태를 평가할 수 있는 지표 그러나 기존 EIS 장비는 비용 및 복잡성이 높아 설치, 운영 및 유지 보수가 쉽지 않다. 또한, 감도 및 정밀도 제약으로 수 암페어(A)의 전류 교란을 배터리에 인가하는 과정에서 배터리에 큰 전기적 스트레스가 가해지기 때문에 배터리의 고장이나 화재 위험을 증가시킬 수 있어 활용이 어려웠다. 이에 연구팀은 고용량 전기차 배터리의 상태 진단 및 건강 모니터링을 위한 소전류 EIS 시스템을 개발하고 입증했다. 이 EIS 시스템은 낮은 (10mA) 전류 교란으로, 배터리의 임피던스를 정밀하게 측정할 수 있으며 측정 시 발생하는 열적 영향 및 안전 문제를 최소화한다. 추가로 부피가 크고 비용이 많이 드는 구성요소를 최소화해 차량 내 탑재가 용이한 설계다. 해당 시스템은 전기차 배터리의 여러 운영 조건(다양한 온도 및 배터리 잔존용량을 나타내는 SOC 레벨에서 배터리의 전기화학적 특성을 효과적으로 파악할 수 있음이 입증됐다. 권경하 교수(교신저자)는 "이 시스템은 전기차용 배터리 관리 시스템 (BMS)에 쉽게 통합 가능하며, 기존의 고전류 EIS 방식 대비 비용과 복잡성을 현저히 낮추면서도 높은 측정 정밀도를 입증했다ˮ면서 "전기차 뿐만 아니라 에너지저장시스템(ESS)의 배터리 진단 및 성능 향상에도 기여할 수 있을 것ˮ이라고 말했다. 이번 연구 결과는 국제 저명 학술지 `IEEE Transactions on Industrial Electronics (동 분야 상위 2%; IF 7.5)'에 지난 9월 5일 발표됐다. (논문명 : Small-Perturbation Electrochemical Impedance Spectroscopy System With High Accuracy for High-Capacity Batteries in Electric Vehicles, 링크: https://ieeexplore.ieee.org/document/10666864) 한편, 이번 연구는 과학기술정보통신부 한국연구재단의 기초연구사업, 산업통상자원부 한국산업기술기획평가원의 차세대지능형반도체기술개발사업 및 정보통신기획평가원의 인공지능반도체대학원사업의 지원을 받아 수행됐다.
2024.10.17
조회수 1567
인공지능으로 배터리 원소, 충방전 상태 인식
국제공동연구진이 인공지능 학습을 통해 배터리의 표면 형상만 보고 각 원소의 함량 그리고 충·방전 횟수에 대한 정보를 높은 정확도로 알아내는 영상인식 기술을 개발하여 화제다. 우리 대학 신소재공학과 홍승범 교수가 한국전자통신연구원(ETRI), 미국 드렉셀대학과 공동연구를 통해 다양한 조성과 각기 다른 충·방전 사이클의 NCM 양극재 주사전자현미경 사진을 합성곱 신경망* 기반 인공지능에 학습시켜 주요 원소 함량과 충·방전 상태를 99.6%의 높은 정확도로 맞추는 방법론을 세계 최초로 개발했다고 2일 밝혔다. *합성곱 신경망(콘볼루션 신경망, Convolutional Neural Network, CNN): 시각적 영상을 분석하는 데 사용되는 다층의 피드-포워드적인 인공신경망의 한 종류이다. 연구팀은 반도체 공정에서는 웨이퍼의 불량 검수를 위해 주사전자현미경(SEM)을 사용하는 반면 배터리 공정에서는 그런 경우가 드물고 연구 현장에서만 입자의 크기 분석을 위해 SEM을 활용하고, 열화된 배터리 소재의 경우 입자가 깨지고 부서지는 형상으로부터 신뢰성을 예측하는 것에 착안했다. 연구팀은 반도체 공정에서와 같이 배터리 공정도 자동화된 SEM으로 양극재 표면을 검수해서 원하는 조성대로 합성이 되었는지 수명은 신뢰성 있게 나올 것인지를 확인해 불량률을 줄일 수 있다면 획기적일 것으로 판단했다. 연구진은 자율주행차에 적용가능한 합성곱 신경망 기반 인공지능에 배터리 소재의 표면 영상을 학습시켜서 양극재의 주 원소 함량과 충·방전 사이클 상태를 예측할 수 있게 했다. 이런 방법론이 첨가제가 들어간 양극재에도 적용가능한 지 확인한 결과 함량은 상당히 정확하게 예측하는 반면 충·방전 상태는 정확도가 낮다는 단점을 알게 됐다. 이에 연구팀은 향후 다양한 공정을 통해서 만든 배터리 소재의 형상을 학습시켜 차세대 배터리의 조성 균일성 검수 및 수명 예측에 활용할 계획이다. 연구를 이끈 홍승범 교수는 “이번 연구는 세계 최초로 마이크론 스케일의 주사전자현미경 사진의 소재 구조 데이터를 통해 주 원소 함량과 충·방전 상태를 빠르고 정확하게 예측할 수 있는 인공지능 기반 방법론을 개발한 데 의의가 있고 이번 연구에서 개발된 현미경 영상 기반 배터리 소재의 함량 및 상태 감별 방법론은 향후 배터리 소재의 성능과 품질을 향상하는 데 중요한 역할을 하게 될 것으로 기대된다”고 전망했다. 한편, 이번 연구는 공동 제1 저자인 신소재공학과 졸업생 오지민 박사와 염지원 박사와 공동저자인 ETRI 김광만 박사와 미국 드렉셀 대학교 아가르(Agar) 교수가 참여하였고, 한국연구재단(2020M3H4A3081880, RS-2023-00247245), KAIST 글로벌특이점 사업의 지원 및 미국 연구진과의 국제공동연구를 통해 수행됐으며, 국제 학술지 ‘엔피제이 컴퓨테이셔날 머티리얼즈(npj computational materials)’에 지난 5월 4일 자 출판됐다. (논문 제목: Composition and state prediction of lithium-ion cathode via convolutional neural network trained on scanning electron microscopy images)
2024.07.02
조회수 2343
전해질 첨가제로 최초 장수명 배터리 기술 개발
1회 충전에 500km 이상 운행할 수 있는 전기자동차를 실현하기 위해서는 고에너지밀도 전지가 필수적이다. 팩 단위*에서 고에너지 밀도가 확보 가능하다는 장점이 있는 리튬인산철 양극은 낮은 전자전도도를 가져 계면층을 형성하기 어렵다는 단점이 있다. KAIST 연구진이 리튬인산철 양극의 낮은 전자전도도를 개선한 전해질 첨가제를 개발하여 화제다. *팩단위: 현재 전기차용 배터리는 단일 전지(Cell)를 적층하여 배터리 관리시스템(BMS)과 냉각장치가 포함된 모듈(Module)을 구성하고, 이를 다시 모아 관리시스템으로 구성한 팩(Pack)으로 구성되어 있음 우리 대학 생명화학공학과 최남순 연구팀이 저비용 리튬인산철 양극과 흑연 음극으로 구성된 리튬이온 이차전지의 상온 및 고온 수명 횟수를 늘린 전해질 첨가제 기술을 개발했다고 16일 밝혔다. 기존 전해질 첨가제 연구는 주로 흑연 음극을 보호하기 위해 설계돼 높은 이온전도도를 가짐과 동시에 전해질 부반응이 억제되고 수지상 리튬(Li dendrite)이 성장하지 않게 하도록 낮은 전자전도도를 갖는 계면층을 형성시켰다. 이와 다르게 연구팀이 개발한 전해질 첨가제는 흑연 음극을 보호함과 동시에 삼성분계 양극*과는 달리 발열 특성이 낮아 셀 투 팩(Cell To Pack) 기술**도입 가능한 리튬인산철 양극을 보호하며 양극 표면에서 전자전도도와 이온전도도의 균형을 맞추는 데 성공했다. 이는 배터리 충·방전 횟수 증가에 따른 급격한 용량 감소 문제를 해결할 수 있는 새로운 기술이다. *삼성분계 양극: LiNixCoyMn1-x-yO2(NCM) 화학식으로 표현되는 층상형 양극재의 한 종류로서, 니켈함량이 높을수록 양극 가역 용량이 높아져 배터리 용량을 증가시키나 발열량이 증가하고, 비가역적인 전극 열화에 취약한 한계를 가짐. **셀 투 팩 기술: 높은 안정성을 가진 리튬인산철 양극 사용하여 단일 셀로 팩을 구성하는 기술로 모듈을 생략하여 팩 단위에서 높은 에너지밀도를 가짐. 개발 기술은 일반적인 실험실 수준이 아닌 기업에서 요구하는 수준의 높은 합재 밀도를 가진 흑연 음극과 리튬인산철 양극을 사용해 배터리의 상온 및 고온 장수명을 실현했다는 점과 저비용으로 극대화된 효율을 낼 수 있는 리튬인산철용 전해질 첨가제 디자인의 방향성을 제시했다는 점에서 그 의미가 크다고 하겠다. 이번 논문의 공동 제1 저자인 생명화학공학과 문현규 연구원은 "개발된 전해질 첨가제는 내열성과 전도성이 우수한 전극 계면 층을 형성해 리튬인산철 양극과 흑연 음극으로 구성된 전지의 구동 온도인 45도 500회, 25도 1,000회 충·방전 후에도 각각 초기용량의 80.8%, 73.3%를 발현했으며, 이는 첨가제가 없는 전해질과 비교하여 각각 20.4%, 8.6% 향상된 수치이다. 현재 전기차용 전지가 약 10년 수명을 보장하므로 개발한 본 첨가제를 적용한다면 10~20% 향상된 11년에서 12년 수명을 보장할 수 있을 것으로 기대할 수 있다. 또한, 리튬인산철 양극의 낮은 전자전도 특성을 개선해 고속 충전 조건에서도 효과가 있었다ˮ 라고 말했다. 최남순 교수는 “이번 성과는 리튬인산철 양극을 보호하는 전해질 첨가제 기술로 이온전도와 함께 전자전달이 가능한 양극 계면층을 형성하는 것이 전해질의 상한한계전압보다 낮은 충전전압조건을 가진 배터리 성능을 확보하는 핵심기술이다”라고 연구의 의미를 강조했다. 그뿐만 아니라 양산 수준의 전극 로딩 조건에서 상온에서부터 고온에 이르기까지 온도 내구성이 뛰어난 전극 계면층을 형성하는 전해질 첨가제 기술로 전기차 배터리 등에 활용이 기대된다고 밝혔다. 이번 연구에서 KAIST 최남순 교수와 문현규, 김동욱(現 LG에너지솔루션) 연구원은 전해질 시스템 개발과 실험적 원리 규명을 담당했다. KAIST 홍승범 교수와 박건(現 LG에너지솔루션) 연구원은 전도성 원자현미경(C-AFM) 분석을 통해 전해질 첨가제가 적용된 리튬인산철 양극 표면에서의 전자전도도를 나노스케일로 영상화했다. 한편 이번 연구는 저명한 국제 학술지 `어드밴스트 펑셔널 머터리얼즈 (Advanced Functional Materials)'에 5월 9일 字로 온라인 공개됐다. (논문명 : Balancing Ionic and Electronic Conduction at the LiFePO4 Cathode–Electrolyte Interface and Regulating Solid Electrolyte Interphase in Lithium-Ion Batteries). 한편 이번 연구 수행은 현대자동차의 지원을 받아 수행됐다.
2024.05.16
조회수 4029
수 초 만에도 급속충전 가능 소듐전지 개발
소듐(Na)은 리튬(Li) 대비 지구상에 500배 이상으로 존재하기 때문에 이를 활용한 소듐 이온 배터리는 최근 큰 주목을 받고 있다. 그러나 리튬 이온 배터리에 비해 낮은 출력, 제한된 저장 특성, 긴 충전 시간 등의 근본적인 한계점이 있어 이를 극복하는 차세대 에너지 저장 소재 개발이 필요하다. 우리 대학 신소재공학과 강정구 교수 연구팀이 우수한 성능의 급속 충전이 가능한 고에너지·고출력 하이브리드 소듐 이온 전지를 개발했다고 11일 밝혔다. 최근 활발하게 연구가 진행되고 있는 하이브리드 에너지 저장 시스템은 배터리용 음극과 축전기용 양극을 결합해 높은 저장 용량과 빠른 충·방전 속도를 모두 지닐 수 있는 장점을 가지고 있다. 이는 기존 소듐 이온 배터리의 한계를 극복해 리튬이온 배터리를 대체할 수 있는 차세대 에너지 저장 장치로 주목받고 있다. 하지만 고에너지 및 고출력 밀도의 하이브리드 전지를 구현하기 위해서 배터리용 음극의 상대적으로 느린 에너지 저장 속도를 향상해야 하는 동시에 음극에 비해 상대적으로 낮은 용량을 갖는 축전기용 양극재의 에너지 저장 용량을 끌어 올려야 한다. 이에 강 교수 연구팀은 두 가지 서로 다른 금속-유기 골격체를 활용해 하이브리드 전지에 최적화된 전극 소재의 합성법을 제시했다. 우선 금속-유기 골격체에서 기인한 다공성 탄소 소재에 미세한 활물질을 함유해 속도 특성이 향상된 음극 소재를 개발했다. 고용량 양극 소재를 합성했고, 이를 조합해 양극 간의 에너지 저장 속도 특성의 차이를 최소화하면서도 용량 균형을 최적화한 소듐 이온 에너지 저장 시스템을 개발했다. 연구팀은 개발된 음극과 양극을 완전셀로 구성해 고성능 하이브리드 소듐이온 에너지 저장 소자를 구현했다. 하이브리드 소듐 이온 에너지 저장 소자는 기존 상용화된 리튬이온 배터리를 뛰어넘는 에너지 밀도와 축전기의 출력 밀도 특성을 모두 가짐을 확인했으며, 차세대 에너지 저장 장치로 수 초에서 수 분 만에 급속 충전이 가능해 전기 자동차, 스마트 전자기기, 항공 장치 등에 적용할 수 있을 것으로 예상된다. 강 교수는 "전극 기준으로 높은 에너지 밀도(247 Wh/kg)를 가지며, 고출력 밀도(34,748 W/kg)에 의한 급속 충전이 가능한 하이브리드 소듐 이온 에너지 저장 소자는 현 에너지 저장시스템의 한계를 극복할 수 있는 새로운 돌파구가 될 것이다ˮ라며 "전기 자동차를 포함한 모든 전자기기의 활용 범위를 확대해 적용될 수 있을 것이다ˮ고 말했다. 신소재공학과 최종휘 박사과정과 김동원 박사과정이 공동 제1 저자로 참여한 이번 연구 결과는 에너지 저장 소재 분야의 국제 학술지 `에너지 스토리지 머터리얼스(Energy Storage Materials)'에 3월 29일 字 게재됐다. (논문명: Low-crystallinity conductive multivalence iron sulfide-embedded S-doped anode and high-surface area O-doped cathode of 3D porous N-rich graphitic carbon frameworks for high-performance sodium-ion hybrid energy storages) 한편 이번 연구는 과학기술정보통신부와 한국연구재단의 나노 및 소재기술개발사업 미래기술연구실의 지원을 받아 수행됐다.
2024.04.11
조회수 4822
세계 최고 수준 리튬 금속배터리 용매 개발
휴대용 전자기기 및 전기차 등에 적용해 1회 충전에 많은 에너지를 저장하고 오래 사용할 수 있는 고 에너지밀도 이차전지 개발의 중요도가 커지고 있다. 한국 연구진이 리튬 이차전지의 에너지 밀도를 높이고 고전압 구동시 안정성을 높여줄 용매를 개발하여 화제다. 우리 대학 생명화학공학과 최남순 교수팀이 UNIST 화학과 홍성유 교수팀, 서울대 화학생물공학부 이규태 교수팀, 고려대 화공생명공학과 곽상규 교수팀, 경상국립대 나노·신소재공학부 고분자공학전공 이태경 교수와 공동연구를 통해 4.4V의 높은 충전 전압에서 리튬 금속전지의 효율과 에너지를 유지하는 세계 최고 수준의 전해액 조성 기술을 개발했다고 19일 밝혔다. 공동연구팀은 기존에 보고되지 않은 용매를 새롭게 디자인하고 합성해 전해액 주 용매로 사용했으며 전극-전해액 계면을 안정화하는 첨가제 기술과의 조합을 통해 리튬 금속전지의 고전압 수명 성능 및 고속 충전 특성을 획기적으로 높이는 데 성공했다. 리튬 금속전지를 오랜 시간 사용하기 위해서는 전해액의 이온 전달 성능뿐만 아니라 전극 표면을 보호하는 것이 필수적이다. 전자를 주는 성질이 강한 리튬금속 음극과 전자를 빼앗으려는 고전압 양극에 접촉하고 있는 전해액이 분해되지 않도록 전극과 전해액 사이에 보호층을 형성시켜야 한다. 최남순 교수 연구팀은 구동할 수 있는 상한 전압의 한계가 있는 용매들과는 달리 높은 충전 전압에서 안정적으로 사용할 수 있는 새로운 용매를 합성하는 데 성공했으며 이를 첨가제 기술과 접목해 현저하게 향상된 *가역 효율(상온 200회 99.9%)을 달성했다. 또한, 완전 충전-완전 방전 조건에서 첫 사이클 방전용량 대비 200사이클의 방전용량으로 용량 유지율을 측정하는데 개발된 전해액 기술은 리튬 대비 4.4V 높은 충전 전압 조건에서 다른 전해액보다 약 5% 정도 높은 75.0%의 높은 방전용량 유지율을 보였다. ☞ 가역 효율: 매 사이클마다 전지의 방전용량을 충전용량으로 나누어 백분율로 나타낸 값으로 배터리의 가역성을 의미함. 가역 효율이 높을수록 매 사이클마다 배터리 용량 손실이 적음을 의미함. 아무리 높은 용량을 구현하는 배터리라도 가역성이 높지 않다면 실용화가 어려움. 연구팀이 이번 연구에서 세계 최초로 합성 및 보고한 *환형 설폰아마이드 계열 용매인 TFSPP(1-(trifluoromethyl)sulfonyl)piperidine)는 기존에 사용되는 용매보다 우수한 고전압 안정성을 가져 전지 내부 가스 발생을 억제할 수 있음을 확인했다. ☞ 환형 설폰아마이드 용매: 질소원자 1개원 탄소원자 5개로 구성된 6원자 고리구조와 리튬염 구조를 모방한 작용기를 연결하여 제조되었으며 기존 에테르계 유기용매와 비교하여 3배 이상 높은 열안정성을 가짐. 또한, 상온에서 액체상태이며 리튬염을 녹일수 있는 용매임. 불에 잘 타는 일반적인 유기용매와는 달리 불에 타는 성질이 낮은 리튬염의 음이온 구조가 포함되어 있어 전해액의 발화 가능성을 낮출 것으로 기대됨. 또한, 연구팀은 두 가지 이온성 첨가제를 도입하여 리튬 금속 음극에 형성된 보호층이 부피 변화를 견디도록 설계했다. 이에 더해, 연구팀은 전자 방출 경향성이 높은 첨가제를 적용해 양극 표면에 보호층을 형성해 양극의 구조 안정성을 향상시켰다. 개발된 새로운 구조의 고전압 용매는 전극을 보호하는 첨가제와 함께 시너지 효과를 이끌어 고전압 리튬 금속전지 성능을 극대화했다는 점에서 그 의미가 크다. 이번 논문의 공동 제1 저자인 우리 대학 생명화학공학과 김세훈 박사과정은 “용매와 첨가제의 조합 기술을 통해 실용화가 가능한 리튬 금속전지용 용매 조성 프레임을 개발했으며 전지의 사용기간을 연장하는, 보다 안정적인 전극-전해액 계면층을 형성하는 새로운 전해액 조성 기술을 개발했다”라고 말했다. 최남순 교수는 “새로운 구조로 디자인된 TFSPP 용매는 기존 용매에 비해 열적 및 고전압 안정성이 매우 우수하고 전지 구동 중 전해액 분해를 최소화해 전지 내압 상승요인인 가스 발생을 억제하는 전해액 용매”임을 강조하며 “TFSPP를 주 용매로 사용해 전지의 고온 안정성을 개선했으며 본 연구팀 고유기술인 다중층 전극-전해액 보호층 형성을 통해 안정화함으로써 고전압 리튬 금속전지 실용화를 위한 전해액 설계에 있어서 새로운 이정표를 제시했다”라고 연구의 의미를 덧붙였다. 우리 대학 생명화학공학과 최남순 교수, 김세훈, 송채은, 이동현 연구원과 UNIST 화학과 홍성유 교수, 전지환 연구원, 서울대 화학생물공학부 이규태 교수, 박교빈, 송가원 연구원, 고려대 화공생명공학과 곽상규 교수, 권성현 연구원, 유승호 교수, 현재환 연구원, 그리고 경상국립대 나노·신소재공학부 고분자공학전공 이태경 교수가 진행한 이번 연구는 국제 학술지 ‘어드밴스드 머티리얼즈 (Advanced Materials)’에 3월 6일 字로 온라인 공개됐다. (논문명 : Electrolyte Design for High-Voltage Lithium-Metal Batteries with Synthetic Sulfonamide-Based Solvent and Electrochemically Active Additives) 한편 이번 연구는 한국연구재단의 단계도약형 탄소중립 기술개발사업과 한국산업기술평가관리원의 산업기술 혁신사업의 지원을 받아 수행됐다.
2024.03.19
조회수 5173
고용량 배터리 수명 증대 영상화하다
전기자동차에서 볼 수 있는 고용량 배터리에 사용되고 있는 실리콘 활물질은 기존 음극 활물질인 흑연 대비 높은 용량 값(4200 mAh/g)을 갖고 있으나, 충전 및 방전 간 400%에 달하는 높은 부피 팽창/수축률이 배터리 수명에 악영향을 미치고 있다. 이를 해결하기 위해서 단일벽 탄소나노튜브를 소량 첨가해 수명 특성이 향상되는 결과를 얻었는데, 이런 향상이 어떻게 가능한지 나노스케일에서 영상화한 연구 결과가 공개됐다. 우리 대학 신소재공학과 홍승범 교수 연구팀이 LG에너지솔루션과 협업해 배터리의 수명 특성 향상 메커니즘 영상화 결과를 국제학술지‘에이씨에스 에너지 레터스(ACS Energy Letters, Impact Factor: 22)’에 게재했다고 19일 밝혔다. (논문명: Spatially Uniform Lithiation Enabled by Single-Walled Carbon Nanotubes) 연구팀은 이전에는 실리콘 활물질이 충·방전을 거치면서 전자 전도 네트워크가 열화되는 과정을 영상화하였는데, 이번 연구에서는 단일벽 탄소나노튜브의 존재로 인해서 그 형태를 유지하고 있는 전자전도 네트워크가 활물질 내에 균일한 충·방전이 가능하도록 기능하고 있음을 보여 수명 증대 메커니즘을 검증했다. 구체적으로 연구팀은 원자간력 현미경(Atomic Force Microscopy) 기반의 켈빈 프루브 현미경(Kelvin Probe Force Microscopy)를 이용해 1회 및 90회 충·방전 싸이클 후의 전극 내 천연흑연과 실리콘 산화물 입자에서의 표면 전위를 측정 및 영상화했다. 이를 통해 단일벽 탄소나노튜브(Single-Walled Carbon Nanotube, SW-CNT)가 첨가된 전극에서는 활물질 내 표면 전위가 균일하게 분포하고 있는 반면, 첨가되지 않은 기존 전극의 경우에는 90회 충·방전 후에 불균일한 표면전위를 보여, 전자 전도 네트워크가 제대로 기능을 발휘하지 않아 불균일한 충·방전이 됨을 연구팀은 확인했다. 이처럼 활물질 내부의 표면 전하를 영상화할 수 있는 기술은 실리콘 활물질 뿐만 아니라, 다양한 전극 시스템에 적용될 수 있으며, 향후 배터리 충전 및 방전 상태 균일성을 확인하고 수명 향상 연구로 발전할 수 있다. 이번 연구의 제1 저자인 신소재공학과 박건 연구원은 “충·방전 시 수반되는 실리콘 계열 활물질의 급격한 부피 변화에도 불구하고 가느다란 탄소나노튜브가 전자 전도 채널을 유지하고 이로 인해 전극 내에 균일한 충·방전을 가능케하는 것이 매우 신기한 일이었는데, 이를 나노스케일에서 직접 영상화해 그 역할을 미시세계에서 이해할 수 있었던 것이 큰 의미가 있다”라고 말했다. 교신 저자인 홍승범 교수는 “원자간력 현미경을 활용해서 나노스케일에서 일어나는 전기화학적인 현상을 영상화하고 이를 통해서 배터리 성능 및 수명을 향상할 수 있는 혁신적인 아이디어를 창출할 수 있게 되어 매우 기쁘다”라고 말했다. 이번 연구는 LG에너지솔루션, LG에너지솔루션-KAIST Frontier Research Lab.과 KAIST 글로벌 특이점 사업의 지원을 받아 수행됐다.
2023.09.19
조회수 4077
인공지능 활용 고용량 배터리 소재 역설계 기술 개발
우리 대학 신소재공학과 홍승범 교수 연구팀이 우리 대학 조은애 교수, 변혜령 교수, 이혁모 교수, 신종화 교수, 육종민 교수, 그리고 미국의 르하이 대학교(Lehigh University), 죠수아 C 에이가(Joshua C. Agar) 교수와 협업해 기존 문헌에 발표된 실험값들을 추출하는 데이터 마이닝 과정과 이런 실험값들을 입력변수로 하는 다변수 선형회귀 모형을 기반으로 배터리 소재 역설계 머신러닝(기계학습) 모델을 수립했다고 23일 밝혔다. 인공지능은 고차원의 변수 공간에서 각 매개변수 간의 정량적인 상관관계를 신속하고 정확하게 추출할 수 있다. 이를 공정-구조-물성 간의 상관관계를 기반으로 발전하는 신소재공학에 적용하면 신소재 개발 시간을 단축할 수 있으며, 이런 이유로 많은 연구자가 인공지능을 신소재 개발에 활용하려고 노력하고 있다. 특히, 배터리 소재 개발에 인공지능을 활용하는 예가 가장 많은데, 주로 제1 원리 계산(양자화학에 기반한 계산법으로 계산 시 다른 경험적 수량을 전혀 사용하지 않음)과 머신러닝을 융합해 수많은 전극 소재 조합을 대량으로 스크리닝하는 기술 개발이 주를 이루고 있다. 그런데, 인공지능을 활용해서 새로운 배터리 소재를 탐색하고, 탐색한 소재를 합성 및 특성 평가에 있어 가장 큰 문제점은 데이터의 신뢰성과 양이다. 제1 원리 계산으로 예측한 값들은 실험으로 검증이 돼야 하며, 실험데이터의 경우 실험실마다 편차가 있고, 중요한 공정변수들을 공개하지 않은 경우가 많아 인공지능이 학습할 수 있는 데이터의 크기가 한정적이라는 문제가 대두되고 있다. 연구팀은 배터리 양극재 원료조성, 1차 및 2차 소결 온도와 시간 등의 공정 변수와 컷오프 전위 및 충․방전률과 같은 측정 변수, 그리고 1차 및 2차 입자의 크기와 같은 구조 변수, 마지막으로 충․방전 용량과 같은 성능 변수 간의 상관관계를 정량적으로 수립했고, 이를 활용해 요구되는 에너지 용량에 맞는 합성 조건을 찾는 알고리즘을 개발했다. 홍 교수 연구팀은 고니켈 함량 양극재 관련 논문 415편 안에 발표된 주요 변수들을 추출하고, 그중 16% 정도의 정보가 기입되지 않음을 발견했으며, 머신러닝 기법 중에서 k-최근접 이웃 알고리즘(k-nearest neighbors (KNN)), 랜덤 포레스트(random forest (RF)), 연쇄등식을 이용한 다중대치(multiple imputations by chained equations (MICE))를 활용해 빠진 정보를 예측하여 기입했다. 그리고, 가장 신뢰도가 높은 MICE를 선택해 얻은 입력 데이터 셋을 기반으로 주어진 공정 및 측정 변수에 대해서 성능 변수를 예측하는 순방향 모델을 얻었다. 이어서 입자 군집 최적화(particle swarm optimization, PSO) 알고리즘을 활용하여 주어진 성능 변수에 대응하는 공정 및 측정 변수를 추출하는 역방향 모델을 수립했고, 이 모델을 검증하기 위해 소재를 실제로 합성하여 타깃 용량인 200, 175, 150 mAh/g과 11% 정도의 오차를 보여 상당히 정확하게 역설계할 수 있음을 입증했다. 교신 저자인 홍승범 교수는 "인공지능을 활용해 대량의 논문 및 특허 내에 있는 공정-구조-물성 변수들을 자동으로 분류하고 실험값들을 추출해 각 변수 간의 다차원 상관관계를 기반으로 모델을 수립하는 것이 차세대 배터리 소재의 역설계의 핵심ˮ이라며 "향후 데이터 마이닝 기술, 머신러닝 기술 그리고 공정 자동화 기술을 융합하는 것이 미래의 신소재공학ˮ이라고 말했다. 신소재공학과 치 하오 리오우(Chi Hao Liow) 박사가 제1 저자로 참여한 이번 연구는 국제 학술지 `나노에너지(Nano Energy)'에 게재됐다. (논문명: Machine learning assisted synthesis of lithium-ion batteries cathode materials) 한편 이번 연구는 KAIST 글로벌 특이점 사업의 지원을 받아 수행됐다.
2022.08.23
조회수 6962
급속 충전이 가능한 고에너지 하이브리드 리튬전지 개발
우리 대학 신소재공학과 강정구 교수 연구팀이 우수한 성능의 급속 충전이 가능한 고에너지·고출력 하이브리드 리튬 이온 전지를 개발했다고 21일 밝혔다. 연구팀은 고분자 수지 배향의 변화를 통해 넓은 표면적의 다공성 탄소 중공 구조체를 합성했고, 이를 기반으로 하는 음극 및 양극 소재를 개발해 고성능 하이브리드 리튬 이온 전지를 구현했다. 현재 리튬이온 배터리는 대표적인 상용화 에너지 저장 장치로 스마트 전자기기부터 전기 자동차까지 전반적인 전자 산업에 필수적인 요소로 자리 잡고 있어 `제2의 반도체'로 불린다. 그러나 느린 전기화학적 반응 속도, 전극 재료의 한정 등의 특성에 의한 낮은 출력 밀도, 긴 충전 시간, 음극 및 양극 비대칭성에 따른 큰 부피 등의 근본적인 한계로 인해 고성능 전극 재료 및 차세대 에너지 저장 소자의 개발이 필요하다. 이러한 문제를 해결하기 위해 최근 활발하게 연구 중인 하이브리드 전지는 배터리용 음극과 축전기용 양극을 결합해 높은 저장 용량과 빠른 충·방전 속도의 장점을 모두 가지고 있기에 기존 리튬이온 배터리를 대체할 수 있는 차세대 에너지 저장 장치로 주목받고 있다. 하지만 고에너지 및 고출력 밀도의 하이브리드 전지를 구현하기 위해서 배터리용 음극의 전기 전도성 및 이온 확산 속도 개선, 축전기용 양극의 에너지 저장 용량 증가, 서로 다른 이온 저장 메커니즘에 따른 두 전극의 최적화 과정이 필요하다. 이에 강 교수 연구팀은 고분자 수지의 배향 변화를 통해 넓은 표면적을 가진 다공성 탄소 구조체를 합성할 수 있는 새로운 합성법을 제시했고, 이를 기반으로 음극 및 양극 소재를 개발해 고에너지·고출력의 하이브리드 리튬이온 에너지 저장 장치를 성공적으로 구현했다. 연구팀은 레졸시놀-폼알데하이드(Resorcinol-Formaldehyde) 수지 합성 과정에 멜라민(Melamine)을 첨가해 수지의 배향을 선형에서 꼬인 형태로 변화시켰다. 꼬인 형태의 수지가 탄화(carbonization)될 경우 더 많은 마이크로 기공이 형성됐으며, 기존 선형 구조의 수지로 생성된 탄소 구조체보다 12배 넓은 표면적을 가진 탄소 구조체가 생성됐다. 이 과정을 통해 생성된 탄소 구조체는 축전기용 양극 재료로 사용됐으며, 넓은 표면적으로 많은 이온이 표면에 흡착될 뿐만 아니라 중공 구조 및 메조 기공을 통해 이온이 빠르게 확산할 수 있어 높은 용량과 속도 특성을 보이는 것을 연구팀은 확인했다. 그뿐만 아니라 연구팀은 꼬인 형태의 수지 구조체 내에 높은 에너지 저장 용량을 가진 저마늄(Ge) 전구체를 삽입하는 합성방식을 통해 분자 수준 크기의 저마늄 입자가 삽입된 탄소 중공 구조체를 합성해 이를 배터리용 음극 재료로 사용했다. 다공성 탄소 구조체 내 삽입된 분자 수준 크기의 저마늄 입자의 경우 충·방전시 큰 부피 팽창으로 인한 성능 저하 현상을 억제할 뿐만 아니라 내부까지 빠르게 리튬 이온이 확산할 수 있어 높은 수명 특성 및 속도 특성을 가지는 것을 확인했다. 연구팀은 개발된 음극과 양극을 완전셀로 구성해 고성능 하이브리드 리튬 이온 전지를 구현했다. 이 하이브리드 리튬 이온 전지는 기존 상용화된 리튬이온 배터리에 필적하는 에너지 밀도와 축전기의 출력 밀도 특성을 모두 가지는 것을 확인했으며, 차세대 에너지 저장 장치로 수 초에서 수 분의 급속 충전으로도 활용 가능해 전기 자동차, 드론, 스마트 전자기기 등에 적용 가능할 것으로 예상된다. 우리 대학 신소재공학과 김기환 박사과정이 제1 저자로 참여한 이번 연구 결과는 나노 분야의 국제 저명학술지 `ACS 나노'에 4월 4일 字 게재됐다. (논문명 : Coiled Conformation Hollow Carbon Nanosphere Cathode and Anode for High-Energy Density and Ultrafast Chargeable Hybrid Energy Storage) 강 교수는 "전극기준으로 높은 에너지 밀도 (285 Wh/kg)를 가지며, 고출력 밀도(22,600W/kg)에 의한 급속 충전이 가능한 하이브리드 리튬 이온 전지는 현 에너지 저장 시스템의 한계를 극복할 수 있는 새로운 돌파구가 될 것이다ˮ라며 "전기 자동차를 포함한 모든 전자기기의 활용 범위를 확대해 적용될 수 있을 것이다ˮ고 말했다. 이번 연구는 과학기술정보통신부 글로벌프론티어사업의 하이브리드 인터페이스 기반 미래소재연구단의 지원을 받아 수행됐다.
2022.04.22
조회수 9064
장수명 리튬 금속 배터리를 위한 새로운 액체 첨가제 개발
우리 대학 신소재공학과 강지형 교수와 박찬범 교수, 충남대학교 송우진 교수 공동연구팀이 새로운 대칭성 이온성 액체 첨가제를 개발하고, 이를 이용해 장수명 리튬 금속 배터리를 구현했다고 21일 밝혔다. 리튬 금속 배터리는 기존의 흑연 음극재를 리튬 금속 음극으로 대체한 배터리로, 흑연 전극이 사용된 배터리에 비해 높은 에너지 밀도를 가지는 차세대 전지다. 하지만 리튬 금속은 증착 시 발생하는 침상(dendrite)의 리튬이 내부 단락을 일으켜 배터리의 수명과 안전성을 저해시킨다는 문제점이 있었다. 이러한 침상의 성장은 리튬 팁(Tip)이 평평한 부분에 비해 강한 전기장을 띄는 것으로 인해 리튬 이온 흐름이 돌출부에 집중되는 현상으로부터 발생한다. 이온성 액체는 이러한 침상의 리튬을 억제할 수 있는 유망한 첨가제다. 이온성 액체의 양이온은 리튬 팁에 흡착돼 알킬 사슬 기반의 반(反)리튬성 보호층을 형성하고 이를 통해 리튬 이온을 팁 주변으로 반발시켜 균일한 리튬 증착을 유도할 수 있다. 그러나 기존의 이온성 액체는 비대칭적인 분자 구조를 가져 높은 양친매성(amphiphilic, 극성인 물과 비극성인 기름 모두에 친화적인 성질)을 보이기 때문에 자가 응집되는 현상이 일어난다. 그 결과 상대적으로 이온성 액체가 부족한 부분이 발생해 불완전한 보호층이 생기는 문제가 있었다. 강지형 교수 연구팀은 최적의 반리튬성 보호층을 형성하는 분자 구조가 대칭성을 띠는 이온성 액체 첨가제를 새롭게 개발해 침상의 리튬 성장을 억제하고 리튬 금속 배터리의 안정성을 크게 개선했다. 공동연구팀은 이온성 액체에 대칭성의 알킬 사슬을 도입해 양친매성을 완화했으며, 이에 따라 이온성 액체가 응집 현상 없이 균일한 반리튬성 보호층을 형성한다는 것과 대칭 사슬 중에 `n-헥실 사슬'이 최적의 보호층을 만든다는 것을 확인했다. 대칭성의 이온성 액체 첨가제를 삼원계(니켈·고발트·망간) 배터리에 사용한 경우, 600 사이클 동안 쿨롱 효율 99.8%와 초기 용량의 80%를 유지하며 우수한 성능을 보였고, 희박 전해액(E/C, electrolyte/cathode ratio=3.5 g/Ah), 초박막 리튬(두께 40μm)과 같은 실용적인 조건에서도 250 사이클 동안 전극의 용량이 80% 이상 유지되는 높은 안정성을 보였다. 이는 기존 기술 대비 3배 향상된 결과다. 우리 대학 신소재공학과 장진하 박사과정이 제1 저자로 참여한 이번 연구 결과는 에너지 재료 분야 저명 국제 학술지 `어드밴스드 에너지 머티리얼즈 (Advanced Energy Materials)' 2월 10일 字 온라인판에 게재됐다. (논문명 : Self-assembled Protective Layer by Symmetric Ionic Liquid for Long-cycling Lithium-Metal Batteries). 강지형 교수는 "이번 연구는 장수명 리튬 금속 배터리 구현을 위한 전해질 설계 방향을 새롭게 제시했다는 점에서 의미가 있다ˮ고 하면서, "이번에 개발된 신개념 전해질은 급속도로 성장하고 있는 배터리 소재 시장에 게임 체인저가 될 것으로 기대된다.ˮ고 말했다. 한편 이번 연구는 한국연구재단의 미래소재디스커버리사업, 과학기술정보통신부의 리더연구자 지원사업, 나노소재기술개발사업, 2020 과학기술연구원 공동연구사업의 지원을 받아 수행됐다.
2022.02.22
조회수 9262
<<
첫번째페이지
<
이전 페이지
1
2
3
>
다음 페이지
>>
마지막 페이지 3