본문 바로가기
대메뉴 바로가기
KAIST
연구뉴스
유틸열기
홈페이지 통합검색
-
검색
메뉴 열기
%EC%83%9D%EB%B6%84%ED%95%B4%EC%84%B1
최신순
조회순
당뇨병 만성상처 추적 스마트 헬스케어 기기 개발
우리 대학 연구팀이 당뇨병 등 상처 부위의 시공간 온도 변화 및 열전달 특성 추적을 통해 상처 치유 과정을 효과적으로 모니터링할 수 있는 무선 시스템을 개발했다. 전기및전자공학부 권경하 교수팀이 중앙대학교 류한준 교수와 상처 치유 과정을 실시간으로 추적해 적절한 치료를 제공할 수 있게 해주는 디지털 헬스케어 기술을 개발했다고 5일 밝혔다. 피부는 유해 물질로부터 인체를 보호하는 장벽 기능을 한다. 피부 손상은 집중 치료가 필요한 환자들에게 감염과 관련된 심각한 건강 위험을 초래할 수 있다. 특히 당뇨병 환자의 경우, 정상적인 혈액 순환과 상처 치유 과정에 문제가 생겨 만성 상처가 쉽게 발생한다. 이러한 만성 상처의 재생을 위해 미국에서만 매년 수백억 달러의 의료 비용이 지출되고 있다. 상처 치유를 촉진하는 다양한 방법이 있지만, 환자별 상처 상태에 따라 맞춤 관리가 필요하다. 이에 연구팀은 상처 부위와 주변 건강한 피부 사이의 온도 차이를 활용해 상처 내 발열 반응을 추적했으며, 열 전송 특성을 측정해 피부 표면 근처의 수분 변화를 관찰함으로써 흉터 조직의 형성 과정을 파악할 수 있는 기반으로 활용했다. 연구팀은 당뇨병이 있는 쥐를 통해 병적 상태에서 상처 치유가 지연되는 과정에서 실험을 진행했고, 수집된 데이터가 상처 치유 과정과 흉터 조직 형성을 정확히 추적할 수 있음을 입증했다. 해당 시스템은 상처가 치유된 후에 기기를 제거하는 과정에서 발생할 수 있는 조직 손상을 최소화하기 위해, 체내에서 자연 분해가 가능한 생분해성 센서 모듈과 통합됐다. 이 생분해성 모듈은 사용 후 별도로 제거할 필요 없이 몸속에서 저절로 분해되어 사라지므로, 추가적인 불편함이나 조직 손상의 위험을 최소화한다. 생분해성 재료를 사용한 이 장치는 사용 후 제거할 필요가 없으므로 상처 부위 내부에서도 모니터링할 수 있는 가능성을 제시한다. 연구를 주도한 권경하 교수는 "상처 부위의 온도와 열전달 특성을 지속적으로 모니터링함으로써, 의료 전문가들이 당뇨병 환자의 상처 상태를 더 정확하게 파악하고 적절한 치료를 제공할 수 있게 될 것으로 기대된다ˮ면서 "생분해성 센서를 사용해 상처 치유가 완료된 후 장치를 제거할 필요 없이 안전하게 분해될 수 있어, 병원뿐만 아니라 가정에서도 실시간 모니터링이 가능해질 것ˮ이라고 말했다. 연구팀은 향후 이 기기를 항균 특성을 가진 재료와 통합해, 염증 반응, 박테리아 감염 및 기타 병변을 관측 및 예방하는 기술로 확장할 계획이다. 온도 및 열전달 특성 변화를 통해 감염 수준을 감지 함으로써 병원이나 가정에서 실시간으로 사용할 수 있는 항균, 범용 상처 모니터링 플랫폼을 제공하는 것을 목표로 한다. 이번 연구 결과는 국제 학술지 `어드밴스드 헬스케어 머티리얼스(Advanced Healthcare Materials)'에 지난 2월 19일 발표됐으며, 표지 논문(Inside Back Cover Journal)으로 선정됐다. (논문명 : Materials and Device Designs for Wireless Monitoring of Temperature and Thermal Transport Properties of Wound Beds during Healing) 한편, 이번 연구는 한국연구재단의 기초연구사업, 지역혁신선도연구센터사업 및 BK21의 지원을 받아 수행됐다.
2024.03.05
조회수 4159
살아있는 미생물 내 바이오 플라스틱 생성 관찰 최초 성공
우리 대학 생명화학공학과 이상엽 특훈교수(연구부총장)와 물리학과 박용근 석좌교수 공동연구팀이 ‘3차원 홀로그래픽 현미경 기술을 통한 미생물의 바이오 플라스틱 과립 생산 특징 규명’에 성공했다고 27일 밝혔다. 이번 연구 결과는 국제 학술지인 ‘미국국립과학원회보(PNAS)'에 7월 27일 字 온라인 게재됐다. ※ 논문명 : Three-dimensional label-free visualization and quantification of polyhydroxyalkanoates in individual bacterial cell in its native state ※ 저자 정보 : 이상엽(KAIST, 교신저자), 박용근(KAIST, 교신저자), 최소영(KAIST, 공동 제1 저자), 오정훈(KAIST, 공동 제1저자), 정재황(KAIST, 공동 제1저자) - 총 5명 전 세계적으로 폐플라스틱으로 인한 환경오염 및 생태계 파괴, 미세 플라스틱의 인류 보건 위협 등의 문제가 심각해짐에 따라 다양한 규제 및 대안 기술들이 연구되고 있다. 그중 미생물로부터 만들어지는 폴리에스테르인 폴리하이드록시알카노에이트 (polyhydroxyalkanoate, 이하 PHA)가 기존 합성 플라스틱을 대체할 친환경 바이오 플라스틱으로 많은 관심을 받고 있다. PHA는 폴리에틸렌이나 폴리프로필렌과 같은 범용 플라스틱과 유사한 물성을 가지고 있어 용기 포장재, 비닐, 일회용품 등의 다양한 활용이 가능하며, 토양이나 해양 환경에서 생분해가 가능한 고분자라는 가장 중요한 장점을 갖고 있다. PHA는 몇몇 미생물 내에 불용성의 과립(granule) 형태로 발견되는 고분자 물질로, 미생물이 환경 변화 및 세포 상태에 따라 탄소원, 에너지원으로 세포 내에 축적하게 된다. PHA가 세포 내에 축적되는 원리를 관찰하기 위해 여러 연구가 진행돼왔다. 형광 현미경, 투과전자현미경, 전자 저온 촬영 등의 기술이 이용됐는데, 이는 2차원상의 이미지만을 제시하거나 형광 물질과 같은 별도의 표식이나 세포의 고정/절편 제작 과정이 있어야 하여, 세포 원래 그대로의 상태에서의 관측이 어려웠다. 따라서 기술적 한계로 인해 세포 내에서 PHA 과립 형성에 대한 완전한 이해가 어려웠고, 관측 결과에 기반을 둔 여러 형성 메커니즘 모델만이 제안돼왔다. 이에 이상엽 특훈교수와 박용근 석좌교수 공동연구팀은 최근 떠오르고 있는 *3차원 홀로그래픽 현미경 기술을 통해 PHA 생산 박테리아의 심층 관찰 및 정량/정성 분석 연구를 수행했다. *3차원 홀로그래픽 현미경 기술은 물질의 굴절률(refractive index)을 활용하는 이미징 방법으로, 염색 등 준비 과정을 필요로 하지 않기 때문에 살아 있는 세포의 3차원 정보를 정량적으로 측정 가능하다. 연구팀은 PHA의 한 종류인 *PHB 생산 미생물로 잘 알려진 쿠프리아비두스 네카토르(Cupriavidus necator)와 이 미생물의 PHB 합성 대사회로 유전자를 가진 재조합 대장균을 이용해 비교·분석을 수행했다. *PHA는 현재까지 약 150여 가지의 하이드록시산 화합물들이 단량체로 보고되었으며, PHA 중 가장 대표적이며 많은 연구가 이루어진 것이 poly(3-hydroxybutyrate) [PHB]임 연구팀은 재구성된 세포의 3차원 굴절률 분포로 단일세포 수준에서 세포와 세포 내 과립의 3차원 시각화 및 이를 통한 부피, 질량, 밀도, 분포 등의 정량 분석에 성공했다. 수백 개의 단일 세포들과 세포 내의 PHA 과립에 대한 정량 및 이의 통계 분석을 통해 두 미생물에서의 PHA 과립 형성의 차이점을 도출해냈다. 특히, 단일세포 내의 PHA 과립의 밀도의 개념을 새롭게 제시했으며, 두 미생물에서의 PHA 과립의 밀도의 차이 및 세포 내 분포 형태 및 위치에 대한 특이적인 차이를 발견했다. 더 나아가서, 두 미생물의 PHA 과립 형성의 차이를 나타내게 하는 핵심 단백질을 규명해, 재조합 대장균의 PHA 과립 형성의 양상을 쿠프리아비두스 네카토르와 유사하게 변화시킬 수 있었다. 또한, 실시간 모니터링을 통해 최대 약 8시간 동안의 세포와 세포 내 PHA 과립의 성장 과정을 보여주는 3차원 영상을 제작할 수 있었다. 이는 미생물이 살아있는 상태에서 별도의 처리 과정이 없는 자연 상태 조건 하에, 세포 내 PHA 과립의 형성과 세포 분열과 연계된 이동을 3차원에서 실시간으로 관측한 세계 최초의 결과라는 데 큰 의의가 있다. 이상엽 특훈교수는 “이번 연구를 통해 미생물의 PHA 생산 원리에 대해 더욱 깊은 이해가 가능해졌고, 이는 생물학과 물리학의 융합 연구로서 이뤄진 성과라는 데에 큰 의의가 있으며, 향후 다양한 바이오 플라스틱 생산 공정 개발에 큰 도움이 될 것”이라고 말했다. 한편 이번 연구는 과기정통부가 지원하는 기후변화대응기술개발사업과 바이오·의료기술개발사업의 지원을 받아 수행됐다.
2021.07.28
조회수 13158
이현주 교수, 국건 박사과정, 실크 피브로인 박막의 대면적 소자공정 개발
우리 대학 전기및전자공학부 이현주 교수 연구팀과 KIST 최낙원 박사팀이 생분해성 실크피브로인 박막의 대면적 소자 공정을 개발하고 이를 통해 실크피브로인이 미세 공정된 마이크로소자의 제작기술을 개발했다. 이번에 개발된 실크피브로인 박막의 대면적 소자 공정은 포토리소그래피로 제작하는 폴리머나 금속 등의 구조와 동시에 미세공정이 가능해 실크피브로인을 기판으로 하는 생분해성 전자소자나 실크피브로인 패턴을 통한 국소부위 약물전달을 구현하는 데에 중요한 기술이 될 것으로 기대된다. 국건 박사과정과 KIST 정소현 박사과정이 주도한 이번 연구는 국제학술지 ‘에이씨에스 에이엠아이(ACS AMI : ACS Applied Materials & Interfaces)’ 1월 16일자 표지논문에 게재됐다. (논문명 : Wafer-Scale Multilayer Fabrication for Silk Fibroin-Based Microelectronics) 실크피브로인 박막은 투명하고 유연하며 생체에서 분해되기 때문에 생분해성 소자와 약물전달의 기판으로 쓰여왔다. 연구팀은 지난 2년간의 연구로 현재까지 실크피브로인에 적용되지 못했던 미세공정을 적용할 수 있도록 새로운 공정기술을 개발했다. 기존의 미세공정은 실크피브로인과 같은 생고분자의 구조를 변형시키는 강한 식각액과 용매가 동반됐다. 연구팀은 실크피브로인에 영향을 주지 않는 물질을 추려내고 이를 이용해 실크피브로인이 공정 중에 훼손되지 않도록 개선된 미세공정기술을 확보했다. 개발한 공정은 알루미늄 금속 박막을 사용해 실크피브로인을 보호하기 때문에 기존 미세공정의 핵심 기술인 포토리소그래피(Photolithography)로 실크피브로인 박막을 다른 소자 위에 패터닝하거나 실크피브로인 박막 위에 다른 물질을 패터닝하는 것이 모두 가능하다. 연구진은 뇌세포(Primary Neuron)를 공정을 거친 실크피브로인의 미세패턴 위에 성공적으로 배양해 실크피브로인이 공정 전후로 높은 생체적합성을 지녀 생체 임플란트 소자에 적용될 수 있음을 확인했다. 연구진은 개발한 기술을 통해 실크피브로인 기판 위에 여러 층의 금속 박막과 실크피브로인 박막의 미세패턴을 구현해 저항 및 실크피브로인을 유전체로 하는 축전기로 이루어진 생분해성 미세전자회로를 실리콘웨이퍼에서 대면적으로 제작했다. 또한 연구진이 독립적으로 개발한 유연 폴리머 기반 뇌전극 위에 해당 기술을 이용해 실크피브로인 박막의 미세패턴을 전극의 가까이에 위치시켰고 색소분자를 실크피브로인 박막에 탑재해 미세패턴으로부터의 분자전달을 확인했다. 실크피브로인 박막이 미세패턴된 뇌전극을 이용하면 뇌세포의 행동을 촉진하거나 제한하는 분자 약물을 탑재해 뇌회로의 연구에 활용되는 등 다양한 활용이 가능할 것으로 기대된다. 이 교수는 “대면적 공정이 불가능하다고 여겨졌던 민감한 바이오물질도 실리콘처럼 대면적의 미세공정이 가능해졌다”며 “향후 바이오메디컬 소자 분야에 광범위하게 적용될 것으로 기대한다”고 말했다. 이번 연구는 과학기술정보통신부 한국연구재단의 선도연구센터 사업 지원을 받아 수행됐다. □ 그림 설명 그림1. ACS AMI 표지 그림2. 연구진이 개발한 실크피브로인 박막의 대면적 미세소자공정 그림3. 공정 이후의 실크피브로인 패턴에 배양된 Primary Neuron의 모습
2019.02.21
조회수 15878
강승균 교수, 신경치료 후 몸에서 자연 분해되는 전자약 개발
〈 강 승 균 교수 〉 우리 대학 바이오및뇌공학과 강승균 교수 연구팀이 美 노스웨스턴 대학 구자현 박사와의 공동 연구를 통해 절단된 말초신경을 전기치료하고 역할이 끝나면 몸에서 스스로 분해돼 사라지는 전자약을 개발했다. 몸에 녹는 수술용 실이 대중화된 것처럼 생분해성 무선 전자약을 통해 앞으로는 병원을 찾지 않고도 집에서 물리치료를 받듯 전기치료를 받는 시대를 맞이할 수 있을 것으로 기대된다. 이번 연구결과는 국제 학술지 ‘네이처 메디슨(Nature Medicine)’ 10월 8일자 온라인 판에 게재됐다. (논문명 : 비약리학적 신경재생 치료를 위한 생분해성 무선전자 시스템, Wireless bioresorbable electronic system enables sustained nonpharmacological neuroregenerative therapy) 말초신경 손상은 국내에서 연간 1만 건 이상 발생할 정도로 빈도가 높은 외상 중 하나이다. 신경의 재생 속도가 얼마나 신속하게 이뤄지느냐가 근육 회복율 및 후유증을 결정하는 중요 요소이며 재생속도가 현저히 저하되면 슈반세포의 소멸로 신경재생이 불가능해지거나 탈 신경 지연에 의한 영구 근육장애를 유발한다. 따라서 신경재생을 가속하기 위한 노력이 지속돼 왔고 전기적 자극을 통해 신경재생을 촉진시키는 전자약의 효능이 주목을 받고 있다. 전자약이란 전기 신호를 통해 체내의 장기, 조직, 신경 등을 자극해 세포의 활성도를 높여 재생속도 향상과 생체반응이 활발히 이뤄지도록 치료하는 기술이다. 전자약을 통해 손상된 신경을 전기자극하면 신경 세포가 활성화되며 축색돌기의 분화가 가속돼 신경재생이 빨라져 치료효과를 극대화할 수 있다. 이러한 전자약의 효과적인 성능에도 불구하고 치료 수술의 복잡성과 이로 인한 2차 손상의 위험성이 커 신경 치료에 직접적으로 활용하지 못했다. 전기 신호를 전달하기 위해서는 전선으로 머리카락 두께의 신경을 감싸야 하는데 치료 후에 신경을 감쌌던 전선을 다시 제거하는 과정이 매우 어렵고 자칫하면 제거 과정에서 2차 신경손상으로 이어질 수 있다. 또한 장기적인 전기 치료가 필요한 경우에는 매번 수술을 반복해야하는 한계가 있었다. 연구팀은 문제 해결을 위해 초박막형 실리콘과 유연성을 갖춘 생분해성 고분자를 이용해 300마이크로 수준 두께의 매우 얇고 유연성을 갖추고 있을 뿐 아니라 체내에서 수개월 내에 분해되는 전자약을 개발했다. 개발한 전자약은 체내에서 무선으로 작동되고 사용이 종료된 후 몸속에서 녹아 흡수되기 때문에 별도의 제거수술이 필요하지 않다. 따라서 추가 수술 없이도 반복적인 전기치료를 할 수 있으며 제거를 위한 수술도 필요하지 않아 2차 위험성과 번거로움을 근본적으로 해결할 수 있는 기술이다. 연구팀은 생분해성 무선 전자약 기술이 말초신경의 치료와 더불어 외상성 뇌손상 및 척추손상 등 중추신경의 재활과 부정맥 치료 등을 위한 단기 심장 박동기에도 응용 가능할 것으로 예상했다. 강 교수는 “최초로 생분해성 뇌압측정기를 개발해 2016년 네이처 紙에 논문을 게재한 뒤 약 2년 만에 치료기술로서의 의료소자를 성공적으로 제시했다”며 “생분해성 전자소자의 시장에서 우리나라가 중추적인 역할을 수행할 수 있을 것이다”고 말했다. 이번 연구는 한국연구재단 신진연구자지원사업의 지원을 받아 수행됐다. □ 그림 설명 그림1. 생분해성 무선 전자소자의 생분해성 데모 예시 그림2. 다리신경 모델에 적용된 생분해성 무선 전자약의 삽입 모형도 그림3. 생분해성 전자약의 신경치료 시나리오 모식도
2018.10.22
조회수 10366
<<
첫번째페이지
<
이전 페이지
1
>
다음 페이지
>>
마지막 페이지 1