-
현존 최고 성능 세라믹 전기화학전지 개발
온실가스 배출량을 '0'으로 만드는 글로벌 약속 '탄소중립(Net-zero)' 달성을 위해 탄소 배출을 줄이는 수소 에너지의 활용 및 생산은 선택이 아닌 필수적인 요소로 부상하고 있다. 이를 위한 에너지 변환 기술 중 고효율 전력 변환 및 그린수소 생산이 가능한 프로토닉 세라믹 전기화학전지(PCEC)가 미래 수소 에너지 사회를 촉진할 차세대 기술로 주목받고 있다.
우리 대학 기계공학과 이강택 교수, 신소재공학과 정우철 교수, 한국에너지기술연구원 이찬우 박사, 전남대학교 송선주 교수 공동 연구팀이 프로토닉 세라믹 전기화학전지의 산화물 전극 결정구조 제어를 통해 양성자 확산경로를 2차원에서 3차원으로 확장하는 데 성공해 전극의 촉매활성을 크게 향상시켰다고 14일 밝혔다.
비대칭 구조를 갖는 페로브스카이트 산화물계 전극은 구조적인 한계로 인해 양성자의 격자 내 이동이 제한으로 촉매 활성이 낮아 연료전지의 성능이 낮아진다는 문제점이 있었다. 연구팀은 이를 해결하기 위해, 이종 금속원소 후보군을 선정 및 도핑해 격자내에서 양성자가 이동하기 어려운 비대칭 구조를 성공적으로 대칭 구조화하여 양성자 수송 특성을 극대화 하였고, 이를 통해 고성능 전극 설계에 대한 단초를 마련했다. 또한 연구팀은 계산화학*을 통해 전극의 결정구조가 양성자 수송 특성에 미치는 영향에 대한 상관관계를 규명했다.
*계산화학: 컴퓨터를 이용해 화학 시스템의 구조와 반응성을 이론적으로 모델링하고 예측하는 학문
연구팀이 개발한 전극 소재는 프로토닉 세라믹 전기화학전지에 적용돼 현재까지 보고된 소자 중 가장 뛰어난 전력 변환 성능(650도에서 3.15 W/cm2)을 보이며 생산 과정 중 이산화탄소가 배출되지 않는 그린수소 또한 높은 생산 성능(650도에서 시간당 약 770 ml/cm2)을 보였다. 500시간의 장시간 구동 후에 가역 구동(전력 및 그린수소를 교대로 생산)에서도 안정적인 성능을 보여, 제시한 전극 설계 방법의 우수성이 입증됐다.
이강택 교수는 “이번 연구에서 제안한 전극 설계 기법이 프로토닉 세라믹 전기화학전지의 고성능 전력/그린수소 생산에 대한 새로운 방향성을 제시할 것으로 기대되며, 이 기술이 글로벌 넷제로 달성을 위한 수소 생산 및 친환경 에너지 기술 상용화에 촉매제가 될 수 있을 것”이라고 말했다.
우리 대학 기계공학과 김동연 박사과정, 정인철 박사, 신소재공학과 안세종 박사과정이 공동 제1 저자로 참여한 이번 연구 결과는 에너지·재료 분야의 세계적 권위지인 ‘어드밴스드 에너지 머터리얼즈, Advanced Energy Materials (IF:27.8)’에 지난 4월 12일 字 후면표지(Back cover) 논문으로 게재됐다. (논문명: On the Role of Bimetal-Doped BaCoO3-���� Perovskites as Highly Active Oxygen Electrodes of Protonic Ceramic Electrochemical Cells)
한편 이번 연구는 과학기술정보통신부 수소에너지혁신기술개발사업, 이공분야기초연구사업 그리고 나노 및 소재 기술개발사업의 지원으로 수행됐다.
2024.05.14
조회수 3786
-
유체 제어 기술로 차세대 재료의 대면적 다기능 나노박막 제작기술 개발
우리 대학 신소재공학과 스티브 박, 김일두 교수 공동연구팀이 세계 최초로 차세대 *전도성 금속유기골격체(이하 c-MOF) 재료 중 하나인인 니켈-헥사이미노트리페닐렌 (Ni3(HITP)2) 고품질 다공성 나노 박막을 유체 제어 기술로 제작하였다고 밝혔다. 연구팀은 공정 과정에서 *탈양성자화를 필요로 하는 재료들의 새로운 박막 합성 방법을 제시하였으며, 그동안 한계로 남아있던 대면적 박막 제작을 넘어서 높은 투명도와 유연성, 그리고 최고 수준의 민감도를 가지는 이산화황 가스 센서 제작을 성공하는 성과를 이뤘다.
☞ 전도성 금속유기골격체(Conductive Metal-Organic Framework, c-MOF): 금속유기골격체는 금속 이온과 유기 연결물질(리간드)가 연결되어 구조체를 이루는 다공성 고분자 재료이다. 이 중, 2D 구조를 가지며 전도성을 가지는 전도성 금속유기골격체는 최근 다양한 분야에 응용되고 있는 차세대 재료이다.
☞ 탈양성자화(Deprotonation): 산-염기 반응을 통해 양성자(H+)를 제거하는 반응을 말한다.
신소재공학과 이태훈 석사, 김진오 박사, 박충성 박사과정이 공동 제1 저자로 참여한 이번 연구 결과는 재료 분야 권위 학술지인 `어드밴스드 머티리얼스(Advanced Materials)'에 내지 삽화와 함께 3월 24일 字 게재됐다. (논문명: Large-area synthesis of ultrathin, flexible, and transparent conductive metal-organic framework thin films via a microfluidic-based solution shearing process)
c-MOF는 다공성, 전기적 특성 제어, 전기전도성 등의 재료적 특성을 기반으로 트랜지스터, 전극, 가스 센서 등의 분야에서 차세대 신소재로 각광받고 있다. 특히, Ni3(HITP)2는 c-MOF 중에서도 최고 수준의 전기전도도를 가지고 있어 지속적으로 연구가 진행되었으나, 합성의 어려움으로 고품질 박막 제조는 난제로 남아있었다.
공동연구팀은 미세 유체(Microfluidic) 시스템을 도입하여 Ni3(HITP)2 나노 박막 제작 신기술을 개발했다. 공정을 두 단계 과정으로 분리해 비정질(Amorphous) 박막을 우선적으로 제작한 후 추가 공정을 통해 결정화(Crystallization)를 진행하여 이전 연구들의 한계점을 극복했다. 이번 연구에서는 여기서 더 나아가 유연 소재로의 활용 가능성 및 높은 투명도(최대 약 88%)를 확인해 다기능 차세대 재료로의 가능성을 확인했다.
미세 유체 시스템을 활용한 이 공정은 연속적이고 일정한 용액의 공급을 기반으로 박막 제작 속도와 기판의 온도 등 다양한 변수(Parameter) 제어를 통하여 진행됐다. 특히, 미세 유체 반응기와 기판 사이에 수백 마이크로미터(㎛) 수준의 단차(Gap)를 주어 균일한 계면(Meniscus)을 형성해 일정한 용매 증발을 야기해 균일한 박막 제조가 가능하다. 이를 통해, 수십 나노미터 영역의 두께 제어가 가능함을 검증함과 동시에 박막 결정의 고배향성을 확인했다고 연구팀은 밝혔다. 결정의 배향성은 센서 성능과 투명 소재에 중요한 역할을 하여 박막의 성능을 향상시켜준다.
공동연구팀은 배향성을 가지는 해당 c-MOF 나노 박막을 사용해 날숨 내의 바이오마커(Biomarker)로 쓰이는 가스 중 하나인 이산화황 (H2S) 기체만을 선택적으로 검출할 수 있는 가스 센서를 개발하는 데 성공했으며, 기존에 보고된 본 재료 기반 최고 성능의 가스 센서 대비 약 30.2배의 성능을 확인했다. 뿐만 아니라, 가스 센서는 유연한 특성을 가지며 습한 환경에서도 높은 민감도를 보여 마스크에 적용이 가능한 점 등 그 파급효과가 클 것으로 예상된다.
공동 제1 저자인 이태훈 석사, 김진오 박사, 박충성 박사과정은 "이번 연구에서 후처리 공정의 도입으로 비정질 박막에서 전도성을 가지는 높은 결정성의 박막으로 빠르고 정교하게 결정화될 수 있다는 것을 보였다ˮ며, "이는 고품질 나노 박막 제작에 한계점을 가지고 있던 다양한 재료에 응용 가능함을 의미하며, 이를 토대로 개발된 가스 센서는 앞서 언급한 다양한 기능을 통해 관련 산업에도 기여할 것으로 기대한다ˮ라고 말했다.
2022.04.27
조회수 9377
-
신의철 교수, 암세포의 면역세포 억제 핵심원리 규명
〈 신의철 교수, 김창곤 연구원 〉
우리 대학 의과학대학원 신의철 교수, 연세대학교 의과대학 민병소, 김호근 교수 공동 연구팀이 암 환자의 암세포가 면역세포를 억제해 면역반응을 회피하게 만드는 핵심원리를 발견했다.
이번 연구를 통해 최근 유행하는 면역항암제의 치료 효율을 높일 수 있는 효과적인 암 치료 전략을 제시할 수 있을 것으로 기대된다.
김창곤 연구원, 장미 연구교수가 공동 1 저자로 참여한 이번 연구 결과는 면역학 분야 국제 학술지 ‘사이언스 면역학(Science Immunology)’ 11월 8일 자 온라인판에 게재됐다 (논문명 : VEGF-A drives TOX-dependent T cell exhaustion in anti–PD-1–resistant microsatellite stable colorectal cancers).
암 환자는 암세포에 대항하는 면역세포, 특히 T세포의 기능이 현저히 약해져 있다. 이렇게 T세포의 기능이 약해지는 주된 이유는 T세포가 PD-1이라는 억제 수용체를 과다하게 발현하기 때문이다.
최근 유행하고 있는 면역항암제도 바로 이 PD-1 억제 수용체의 기능을 차단해 T세포의 기능을 회복시키는 원리로 작동하는 것이다. 하지만 면역항암제는 아직 부족한 부분이 많아 투여받은 암 환자 중 일부에게만 치료 반응이 나타나는 현실이다. 이러한 이유로 많은 연구자가 암 환자의 T세포 기능이 약해지는 다른 이유를 활발히 찾고 있다.
이번 연구에서 공동 연구팀은, 그간 혈관형성인자로만 알려졌던 혈관내피성장인자(vascular endothelial growth factor; VEGF)라는 혈관형성인자 단백질이 암세포에 대항하는 T세포의 기능을 약하게 만드는 주요 원인임을 새롭게 밝혔다.
종양의 지속적인 성장을 위해 암세포는 혈관내피성장인자를 과다 생성하고, 이로 인해 암 조직에는 혈관이 과다 생성된다는 사실은 이미 잘 알려져 있었다. 연구팀은 이번 연구를 통해 혈관내피성장인자가 혈관 형성 이외에도 T세포 억제라는 중요한 작용을 통해 암의 성장을 돕는다는 사실을 새롭게 규명했다.
암세포에서 생성된 혈관내피성장인자는 암세포에 대항하는 T세포 표면에 발현하는 수용체에 결합해 T세포에 톡스(TOX)라 불리는 단백질의 발현을 유도하고, 톡스는 T세포의 기능을 억제하고 약화하는 유전자 발현 프로그램을 작동시킨다는 것이 이번 연구의 핵심이다.
연구팀은 기초적인 발견에 그치지 않고 암 환자의 면역항암제 치료 효율을 높이는 전략을 제시했다. 암 성장을 막을 목적으로 혈관내피성장인자 저해제가 이미 개발됐기 때문에, 연구팀이 새로 발견한 혈관내피성장인자의 T세포 기능 억제작용을 근거로 혈관내피성장인자 저해제를 면역항암제와 함께 사용한다면 치료 효율을 극대화할 수 있을 것으로 기대하고 있다.
실제 이번 연구에서도 면역항암제와 혈관내피성장인자 저해제를 병합 치료하면 우수한 항암 효과가 있음을 동물 모델에서 증명했다.
이번 연구는 연세대학교 의과대학 외과 및 병리학과 연구팀과 KAIST 의과학대학원이 암 환자의 면역학적 원리를 밝히고 새로운 치료 전략을 제시하기 위해 협동 연구를 한 것으로 중개 연구(translational research)의 주요 성과로 평가받는다.
신 교수는 “암세포와 면역세포 사이에서 어떤 일이 벌어지는지를 상세히 연구함으로써 임상 치료 전략을 제시하게 된 중요한 연구이다”라며 “향후 암 환자의 생존율을 높일 수 있는 새로운 면역기전 연구 및 면역항암제 개발 연구를 계속하겠다”라고 말했다.
이번 연구는 한국연구재단의 지원을 받아 수행됐다.
□ 그림 설명
그림1. 신의철 교수 연구팀 연구성과 개념도
2019.11.13
조회수 10732
-
김재경 교수, 수학 모델 통해 세포 상호작용 원리 규명
〈김재경 교수〉
우리 대학 수리과학과 김재경 교수와 라이스 대학 매튜 베넷(Matthew Bennett), 휴스턴 대학 크레시미르 조식(Kresimir Josic) 교수 공동 연구팀이 합성생물학과 수학적 모델을 이용해 세포들이 넓은 공간에서 효과적으로 의사소통하는 방법을 발견했다.
이번 연구 결과는 국제 학술지 ‘네이처 케미컬 바이올로지(Nature Chemical Biology)’ 10월 14일 자 온라인판에 게재됐다. (논문명 :Long-range temporal coordination of gene expression in synthetic microbial consortia)
〈박테리아들의 복잡한 상호작용을 수학을 이용해 원위의 점들의 상호작용으로 단순화한 모식도〉
세포들은 신호 전달 분자(Signalling molecule)를 이용해 의사소통하는데 이 신호는 보통 아주 짧은 거리만 도달할 수 있다. 그런데도 세포들은 넓은 공간에서도 상호작용하며 동기화를 이뤄낸다.
이는 마치 넓은 축구장에 수만 명의 사람이 주변 3~4명의 박수 소리만 들을 수 있는데도 불구하고 모두가 같은 박자로 손뼉을 치는 것과 비슷한 상황이다. 이러한 현상이 가능한 이유는 무엇일까?
연구팀은 합성생물학을 이용해 만든 전사 회로(Transcriptional circuit)를 박테리아(E. coli)에 구축해 주기적으로 신호 전달 분자를 방출할 수 있도록 했다. 처음엔 제각기 다른 시간에 신호 전달 분자를 방출하던 박테리아들은 의사소통을 통해 같은 시간에 주기적으로 분자를 방출하는 동기화를 이뤄냈다.
하지만 박테리아를 넓은 공간으로 옮겼을 땐 이러한 동기화가 각 박테리아의 신호 전달 분자 전사 회로에 전사적 양성 피드백 룹 (Transcriptional positive feedback loop)이 있을 때만 가능하다는 것을 발견했다.
양성 피드백 룹은 단백질이 스스로 유전자 발현을 유도하는 시스템으로, 전달받은 신호를 증폭하는 역할을 한다. 연구팀은 이러한 역할을 자세히 이해하기 위해 편미분방정식(Partial differential equation)을 이용해 세포 내 신호 전달 분자의 생성과 세포 간 의사소통을 정확하게 묘사하는 수학적 모델을 개발했다.
그러나 전사 회로를 구성하는 다양한 종류의 분자들 사이의 상호작용을 묘사하기 위해서는 고차원의 편미분방정식이 필요했고 이를 분석하기는 쉽지 않았다.
이를 극복하기 위해 연구팀은 시스템이 주기적인 패턴을 반복한다는 점에 착안해 고차원 시스템을 1차원 원 위의 움직임으로 단순화했다. 달은 고차원인 우주 공간에서 움직이지만, 궤도를 따라 주기적으로 움직이기에 달의 움직임을 1차원 원 위에서 나타낼 수 있는 것과 같은 원리이다.
이를 통해 연구팀은 박테리아 사이의 복잡한 상호작용을 원 위를 주기적으로 움직이는 두 점의 상호작용으로 단순화할 수 있었다.
연구팀은 양성 피드백 룹이 있으면 두 점의 위치 차이가 커도 시간이 지날수록 점점 차이가 줄어들어 결국 동시에 움직이는 것을 확인했다. 연구팀은 이러한 수학적 분석 결과를 실험을 통해서 검증함으로써 넓은 공간에서 세포가 효과적으로 상호작용하는 방식을 규명했다.
김재경 교수는 “세포들이 자신의 목소리는 낮추고 상대방의 목소리에는 더 귀 기울일 때만 한목소리를 낼 수 있다는 점이 인상적이다”라며 “이러한 원리는 수학을 이용한 복잡한 시스템의 단순화 없이는 찾지 못했을 것이다. 복잡한 것을 단순하게 볼 수 있도록 해주는 것이 수학의 힘이다”라고 말했다.
2019.10.15
조회수 12946
-
이병주 교수, 영화 속 남녀 캐릭터 묘사 편향성 분석
<이병주 교수>
KAIST(총장 신성철) 문화기술대학원 이병주 교수 연구팀이 컴퓨터 비전 기술을 통해 상업 영화에서 남성과 여성 성별 간 캐릭터 묘사의 편향성을 정량적으로 분석하는 데 성공했다.
장지윤, 이상윤 석사과정이 주도한 이번 연구 결과는 소셜 컴퓨팅 분야 최고 권위 학회인 ‘컴퓨터 기반 협업 및 소셜 컴퓨팅 학회(CSCW, Computer-Supported Cooperative Work and Social Computing)’ 11월 11일 자로 발표될 예정이다. (논문명: Quantification of Gender Representation Bias in Commercial Films based on Image Analysis)
최근 영화가 다루는 소재와 연출 방식이 사람들의 성 의식에 어떤 영향을 미치는지에 대한 논의가 활발하게 진행되고 있다. 할리우드 역시 영화의 묘사가 관객에게 미치는 영향에 관한 연구를 진행해 적극적으로 제작에 반영하고 있다. 근래 개봉한 할리우드 영화에서도 다양한 젠더와 인종의 등장을 쉽게 발견할 수 있지만 우리나라는 관련 연구가 부족한 상황이다.
일반적으로 영화에서는 여성 캐릭터의 성별 묘사 편향성을 벡델 테스트(Bechdel Test)를 통해 평가하고 있다. 벡델 테스트는 미국의 여성 만화가 앨리슨 벡델(Alison Bechdel)이 고안한 개념으로 균형적인 성별 묘사를 위한 최소한의 요소가 영화에 반영돼 있는지를 판단하는 지표이다. 벡델 테스트에 통과하기 위해서는 ▲영화에 이름을 가진 여성 캐릭터가 두 명 이상 등장하며 ▲그 여성들이 서로 대화를 나누고 ▲여성 캐릭터들의 대화 주제가 남성 캐릭터와 관련이 없어야 한다는 조건을 갖춰야 한다.
그러나 벡델 테스트는 여성 캐릭터의 대사만으로 판별하기 때문에 캐릭터의 시각적인 묘사를 고려할 수 없으며 여성 캐릭터 혼자 극을 이끄는 영화들에 적용이 어렵다.
또한, 여성 캐릭터만을 평가하기 때문에 상대적으로 남성 캐릭터와 어느 정도 차이가 있는지를 알 수 없으며, 테스트에 통과하거나 하지 못하는 이분법적 잣대만을 제공하기 때문에 성별 묘사가 가질 수 있는 다양한 스펙트럼을 충분히 대변하기 어렵다. 그리고 평가자가 영화를 보고 주관적으로 판단하기 때문에 오류 발생 가능성이 있다.
이병주 교수 연구팀은 영화의 시간적, 시각적 특성을 반영해 성별 묘사 편향성을 측정하기 위해 이미지 분석 시스템을 도입했다. 효과적 분석을 위해 24프레임(fps) 영화를 3프레임으로 다운 샘플링한 뒤, 마이크로소프트(Microsoft)의 얼굴 감지 기술(Face API)로 영화 캐릭터의 젠더, 감정, 나이, 크기, 위치 등을 확인했다. 그리고 사물 감지 기술(YOLO 9000)로 영화 캐릭터와 함께 등장한 사물의 종류와 위치를 확인했다.
연구팀은 2017년과 2018년 개봉한 할리우드 영화와 우리나라 영화 40편을 대상으로 이미지 분석 시스템을 통해 여덟 가지 새로운 지표들을 제시하고 분석해 상업 영화 내에서의 성별 묘사의 편향성을 밝혀냈다.
여기서 여덟 가지 지표란 과거 다양한 매체들을 대상으로 이뤄진 성별 묘사 편향성에 관한 연구 결과에 기반해 영화 내 편향성을 판별할 수 있는 정량적 지표로 ▲감정적 다양성(Emotional Diversity) ▲공간적 역동성(Spatial Staticity) ▲공간적 점유도(Spatial Occupancy) ▲시간적 점유도(Temporal Occupancy) ▲평균 연령(Mean Age) ▲지적 이미지(Intellectual Image) ▲외양 강조도(Emphasis on Appearance) ▲주변 물체의 빈도와 종류(Type and Frequency of Surrounding Objects)를 연구팀은 제시했다.
연구팀은 벡델 테스트(Bechdel Test) 통과 여부를 막론하고 여덟 가지 지표를 통해 영화 대부분이 여성을 편향적으로 묘사하고 있음을 정량적으로 밝혀냈다.
감정적 다양성(Emotional Diversity) 지표에 따르면 여성 캐릭터는 남성 캐릭터에 비해 더 획일화된 감정표현을 보였다. 특히 여성 캐릭터는 슬픔, 공포, 놀람 등의 수동적인 감정을 더 표현하는 반면, 남성 캐릭터는 분노, 싫음 등의 능동적인 감정을 더 표현했다.
주변 물체의 빈도와 종류(Type and Frequency of Surrounding Objects) 지표에 따르면 여성 캐릭터가 자동차와 함께 나오는 비율은 남성 캐릭터 대비 55.7%밖에 되지 않았던 반면, 가구와 함께 나오는 비율은 123.9%를 보였다.
여성 캐릭터의 시간적 점유도(Temporal Occupancy)는 남성 캐릭터 대비 56% 정도로 낮았으며, 평균 연령(Mean Age)은 79.1% 정도로 어리게 나왔다. 특히 앞서 언급한 두 지표는 우리나라 영화에서 두드러지게 관찰됐다.
이병주 교수는 “우리나라에선 1인당 연간 평균 영화관람 횟수가 4.25회에 이를 정도로 많은 사람이 영화를 즐겨보는데, 이는 영화라는 매체가 우리나라 대중들의 잠재의식에 큰 영향력을 행사할 수 있음을 뜻한다”라며 “따라서 영화 내 묘사가 관객들의 생각에 미치는 영향에 관한 연구가 보다 활발하게 진행돼야 하며, 이를 바탕으로 영화는 더욱 신중하게 제작돼야 한다”라고 말했다.
이 연구는 KAIST 인문사회융합과학대학에서 추진한 석박사모험연구과제의 지원을 받아 수행됐다.
□ 그림 설명
그림 1. 이미지 분석 시스템
그림 2. 연구진이 분석 영화 40편
그림 3. 캐릭터 성별에 따른 안경 착용률 및 연관 물체의 종류
2019.10.14
조회수 13483
-
신경세포 연결해주는 접착단백질 결합구조 규명
국내 연구진이 신경세포 연결을 주관하는 시냅스접착단백질**의 3차원 복합체 구조를 규명함으로써, 시냅스* 형성초기 기전을 제시하였다. 시냅스 이상으로 인한 강박증이나 조울증 등 다양한 뇌질환의 발병기전 규명과 치료제 개발에 활용될 것으로 기대된다.
* 시냅스 : 신경전달물질의 분비와 흡수가 일어나는 1,000억 여 개에 달하는 신경세포의 접합부위로 학습과 기억, 감각, 운동 등을 조절하는 뇌 활동의 기본단위이다. ** 시냅스접착단백질 : 벨크로처럼 두 개의 신경세포를 단단하게 연결해 시냅스 형성을 돕는 신경세포막에 존재하는 단백질
우리 학교 의과학대학원 김호민 교수와 연세대 생화학과 고재원 교수 (이상 교신저자)가 주도하고, 연세대 엄지원 연구교수, KAIST 김기훈 석사과정 연구원 및 을지대 박범석 교수(이상 제1저자)가 참여한 이번 연구는 미래창조과학부와 한국연구재단이 지원하는 신진연구자지원사업, 중견연구자지원사업(핵심연구) 및 교육부 학문후속세대양성사업의 지원으로 수행되었고 자연과학 분야 국제학술지 네이처 커뮤니케이션스(Nature Communications)지 온라인판 11월 14일자에 게재되었다. (논문명 : Structural basis for LAR-RPTP/Slitrk complex-mediated synaptic adhesion)
신경세포막에 존재하는 단백질 슬릿트랙*은 다른 신경세포의 막에 존재하는 단백질 LAR-RPTP**와 복합체를 이뤄 초기 시냅스 형성과 신경세포의 흥분과 억제간의 균형 유지에 관여하는 것으로 알려져 있었다.
* 슬릿트랙(Slitrk) : 뇌의 중추신경계에서 강하게 발현되는 단백질. 이 유전자가 결핍된 형질전환생쥐의 경우 다양한 뇌질환 표현형을 나타냄. 최근 LAR-RPTP와 결합하여 시냅스 형성을 조절하는 시냅스접착단백질임이 밝혀짐
** LAR-RPTP : 신경세포의 초기 발달과정에서 중요한 역할을 하는 단백질 군. 최근 시냅스 형성에 관계된 주요 기능들이 조금씩 밝혀지면서 새롭게 주목 받기 시작한시냅스접착단백질
이들 두 단백질의 이상은 시냅스의 기능이상을 유발해 자폐증, 정신분열증, 간질, 강박증 및 조울증 같은 다양한 신경·정신질환을 유발하는 것으로 알려져 있지만 두 단백질의 결합구조와 구체적인 작용기전이 규명되지 않아 치료제 개발에 한계가 있었다.
연구팀은 단백질 결정학기술과 바이오투과전자현미경을 활용해 두 시냅스접착단백질(슬릿트랙(Slitrk)과 LAR-RPTP)이 결합된 3차원 구조를 밝혀내고 이들 상호간의 결합의 핵심이 되는 부위를 찾아냈다.
나아가 두 시냅스접착 단백질이 결합한 후 클러스터를 형성하면서 시냅스 생성이 유도된다는 것을 규명하였다.
김호민 교수는 “시냅스접착단백질의 기능 이상으로 나타나는 다양한 뇌질환의 발병기전 이해에 큰 밑거름이 될 것. 특히, 단백질 구조생물학과 신경생물학의 유기적인 협력연구를 통하여 우수한 성과를 거둔 대표적 사례가 될 것”이라고 밝혔다. 고재원 교수는 “시냅스접착단백질 분자기전을 이해함으로써 시냅스 형성 관련 연구의 새로운 방향을 제시할 것”이라고 연구의의를 밝혔다.
그림 1. 시냅스접착단백질 결합체 구조 및 슬릿트랫 바이오투과전자현미경 이미지
(위) 시냅스접착단백질 슬릿트랙(Slitrk)과 LAR-RPTP 결합체 분자구조
단백질결정학을 통해 시냅스접착단백질 결합체 분자구조를 분석한 결과 두 시냅스접착단백질의 결합에 중추적인 역할을 하는 핵심적인 아미노산을 도출할 수 있었다.
특히 LAR-RPTP 단백질에 위치한 선택적 접합(Alternative splicing) 부위(붉은색 화살표)가 슬릿트랙 (Slitrk)과 선택적으로 결합하기 위한 분자코드임을 규명하였다.
(아래) 슬릿트랙의 바이오투과전자현미경 이미지 단백질결정학으로는 규명이 어려운 전체 슬릿트랙 단백질 구조(세포막 바깥쪽부위)를 바이오투과전자현미경을 사용하여 분석하였다. 그림에서 보듯 전체 슬릿트랙은 땅콩처럼 생긴 비슷한 두 개의 단백질 모듈(푸른색, 노란색 화살표)로 구성되어 있고, 이들 중 한 부분(파란색 화살표)만 LAR-RPTP와 결합하게 된다는 것을 규명하였다.
그림 2. 시냅스접착단백질 결합에 의해 유도되는 시냅스형성 분자기전
전시냅스의 LAR-RPTP과 후시냅스의 슬릿트랙(Slitrk)의 결합이 단순한 결합에 그치는 것이 아니라 결합 이후 신경세포 막에서의 배열변화를 통해 단백질 클러스터 형성을 유도할 수 있음을 보였다.
그림 3. 시냅스 및 시냅스접착단백질 개요
시냅스는 1000 억여 개에 달하는 신경세포들의 접합 부위인 뇌기능의 기본단위로서 신경세포 간 교환되는 신경전달물질들에 의하여 학습 및 기억, 감각, 운동 등이 원활히 조절된다. 시냅스에는 약 1,000여종 단백질이 존재하며, 이들 중 신경세포 막에 존재하며 벨크로처럼 두 개의 신경세포를 단단하게 연결하여 시냅스 형성을 돕는 단백질을 시냅스접착단백질이라 한다. 현재 불과 10여개의 시냅스접착단백질만이 밝혀져 있고, 이중 최근에 주목받기 시작한 시냅스접착단백질이 슬릿트랫과 LAR-RPTP이다.
2014.11.20
조회수 17667
-
단백질 나노튜브의 자기조립 분자스위치 발견
- 한국, 미국, 이스라엘 국제 공동 연구 성과 -
- 암 치료와 뇌 질환 메커니즘 단서 -
우리 학교 바이오및뇌공학과 최명철 교수와 송채연 연구교수는 미국
산타바바라 캘리포니아대학교, 이스라엘 히브리대학교와 공동으로 세포분열과 세포간 물질수송에 열쇠가 되는 단백질 나노튜브의 자기조립
구조를 제어하는 분자스위치를 발견했다.
연구 결과는 세계적 학술지 ‘네이처 머티리얼즈(Nature Materials, IF=35.7)’ 19일자에 게재됐다.
마이크로튜불(microtubule, 미세소관)은 사람의 몸속에서 세포분열·세포골격·세포간 물질수송 도구로 사용되는 튜브 형태의 단백질로 굵기가 25나노미터(1나노미터는 머리카락 굵기의 10만분의 1)에 불과하다.
대부분의 암 치료 약물은 마이크로튜불의 형성을 교란해 암세포 분열을
억제하는 것으로 작용 메커니즘이 알려져 있다. 알츠하이머병은 세포간 물질수송을 담당하는 마이크로튜불의 구조적 안정성이 떨어지면서
신경세포에서의 신호전달이 제대로 이루어지지 않아 생기는 대표적 뇌질환이다.
연구팀은 싱크로트론 X선 산란장치(synchrotron x-ray
scattering: 전자를 빛의 속도에 가깝게 가속시켜 강력한 X선을 발생시키는 장치)와 투과전자현미경을 이용해 단백질
나노튜브의 자기조립 구조를 서브나노미터(1나노미터 미만)의 정확도로 측정했다.
연구팀은 이번 연구를 분자 레벨에서 레고 블록을 쌓아 올리는 것에 비유해
가로×세로×폭이 각각 4×5×8 나노미터인 단백질 블록을 쌓아 올려 25나노미터 굵기의 튜브를 형성하는 메커니즘을 추적했다. 이
과정에서 연구팀은 레고 블록의 형태를 제어하는 분자스위치를 발견했다. 또 지금까지 보고된 바 없는 전혀 새로운 크기와 형태의
단백질 튜브 구조를 만들어 내는데 성공했다.
최명철 교수는 “인간의 생명 시스템은 고도의 자기조립 구조체를 형성해 복잡한 생물학적 기능을 하고 있지만 한편으로는 극히 단순한 물리학적 원리에 의해 제어가 가능하다는 새로운 패러다임을 제시했다”고 이 연구의 의의를 밝혔다.
또 “이번 연구는 암 치료와 뇌질환 메커니즘을 규명하고자하는 작은 발걸음이며 앞으로 바이오 나노튜브를 이용한 공학적 응용이 무궁무진할 것으로 기대한다”고 말했다.
이번 연구는 한국연구재단의 국제협력사업, 신진연구자지원사업, 학문후속세대양성사업, KAIST 고위험 고수익 프로젝트(High Risk High Return Project)의 지원으로 수행됐다.
2014.01.21
조회수 21518
-
스트레스에 의해 생긴 잔주름의 숨겨진 비밀을 밝혀내다
- Nature Materials 표지논문 선정, ‘자연을 닮은 구조물’ 제작에 새로운 가능성 열어-
신진 여성과학자가 스트레스에 의해 생긴 잔주름이 성장하면서 깊은 주름으로 발전하는 전 과정을 가시화하여 그 원인을 규명함으로써 표면주름 제어기술 개발에 새로운 전기를 마련하였다.
카이스트 김필남 연구교수가 주도한 이번 연구는 교육과학기술부(장관 이주호)와 한국연구재단(이사장 직무대행 김병국)이 추진하는 학문후속세대양성사업(박사후 국외연수)의 지원을 받아 미국 프린스턴 대학에서 수행되었고, 연구결과는 세계 최고 권위의 과학전문지 ‘네이처(Nature)’의 대표적인 자매지인 ‘Nature Materials" 12월호(12월 1일자)에 표지논문으로 선정되는 영예를 얻었다.
김필남 박사 연구팀은 얇은 박막이 극심한 스트레스를 받으면서 생기는 잔주름이 깊은 골짜기 형태의 접힌 구조물로 변형해가는 일련의 과정을 밝히고, 이를 통해 자연계에서 나타날 수 있는 다양한 복합 구조물을 모방해내는 기반기술을 개발하는데 성공하였다.
표면주름은 여러 개로 적층된 구조에서 그 중 어느 한 층이 극도로 빠른 팽창(또는 수축)이 일어날 때 그 불안정성으로 나타나는 구조이다. 이러한 불안정성을 갖는 적층구조는 동․식물의 표피(피부)와 같은 생물의 조직뿐만 아니라, 최근 활발히 연구되고 있는 구겨지는 플렉시블 디스플레이(또는 소자)에서도 흔히 나타난다.
특히 생체조직에서는 주름이 지속적으로 성장하는 과정을 겪는데, 지금까지 이러한 이차원적인 표면에서 잔주름의 성장이 만들어내는 삼차원적인 구조의 변형에 대해서는 밝혀진 바가 없다. 이번 연구를 통해서 김 박사팀은 주름(wrinkle)이 곡률이 극심한 접힘(fold)이라는 구조로 변형되어가는 메커니즘을 규명하였다.
또한 연구팀은 실시간 분석을 통해 잔주름 구조물이 일련의 자기조직화 과정*을 거쳐 궁극적으로 그물망 형태의 접힘 구조물로 변형된다는 사실을 밝혀냈다. *) 자기 조직화 과정 : 계층적 방식(Hierarchical process), 자발적 제어과정 (Self-regulation process), 연속적인 구획화(Subdivision process) 및 분지화(Branching process) 등
흥미롭게도 연구팀은 이 과정을 통해 만들어진 구조는 건조한 땅이 갈라지면서 만들어내는 균열구조와 매우 흡사하고, 나뭇잎에서 볼 수 있는 맥관구조 뿐만 아니라, 인체에서 볼 수 있는 혈관 네트워크와도 매우 흡사한 구조를 가지고 있다는 사실을 발견하였다.
이번 연구는 무생물뿐만 아니라 생물계에서 보여주는 다양하지만 일관된 구조(그물망 구조 등)의 발생 원리를 기계적․물리학적 입장에서 재해석할 수 있음을 보여주는 결과이다. 따라서 이번 연구 결과는 모든 발생과정을 볼 수 없는 생물계에서의 구조화, 패턴화를 이해하는데 크게 기여할 것으로 평가된다.
김필남 박사는 “이번 연구는 오랫동안 연구되어왔던 ‘주름 또는 접힘’이라는 생물학적, 자연발생적 구조물을 이해하고 직접 제어․조절하여 ‘자연을 닮은 구조물’을 보다 쉽게 만들어 낼 수 있는 새로운 가능성을 제시하였다”고 연구의의를 밝혔다.
2011.12.20
조회수 16944
-
미국의학연구자 육성정책 연구
- 미국의과대학협회가 발간하는 세계적 학술지 ‘아카데믹 메디슨’에 논문 게재
- 베트남 전쟁 중 미국 병역특례정책이 의학연구자 양성에 미친 영향 분석- 임상연구와 기초과학연구 사이의 간극을 좁히는 연구전통의 확립 연구
우리학교 과학기술정책대학원 박범순 교수가 미국의과대학협회(Association of American Medical Colleges)에서 발간하는 영향력 있는 학술지인 ‘아카데믹 메디슨(Academic Medicine)’ 2011년 4월호에 미국의학연구자 양성에 대한 논문을 발표했다.
‘베트남 전쟁과 의학연구 : 미국 의사징병제도와 미국국립보건원(NIH) 옐로베레의 알려지지 않은 유산(The Vietnam War and Medical Research : Untold Legacy of the U.S. Doctor Draft and the NIH "Yellow Berets")’이라는 주제로 발표된 이번 논문은 미국에서 의과대학 졸업생들을 대상으로 한 병역특례제도가 임상 관련 기초연구를 발전시키는 데 큰 영향을 미쳤음을 보여줬다.
미국 존스홉킨스 대학에서 과학사로 박사학위를 받은 박범순 교수는 미국국립보건원에서 의료보건정책 및 과학연구정책의 변천에 대한 연구를 수행했으며 2007년 KAIST 부교수로 부임했다.
박 교수는 2008년부터 KAIST의 과학기술정책대학원 책임교수직을 맡고 있으며 국가정책과 과학기술의료 발전의 상관관계를 연구하고 있다. 이번 논문은 시애틀의 워싱턴 대학 의대교수들과 공동으로 진행했다.
<논문 요약>한국전쟁이 발발한 1950년부터 베트남전쟁이 끝난 1973년까지 수많은 미국인 의대 졸업생들이 징집됐다. 그중 매년 100여명 이상이 특별히 선발돼 미국국립보건원(National Institutes of Health)에서 의학연구에 전념할 수 있는 기회를 받았고 이들은 나중에 학계의 중심적인 리더로 등장했다.
예컨대 국립보건원에서 병역특례로 연구원으로 복무한 사람들은 그렇지 않은 사람들에 비해 정교수로 승진하는 비율이 1.5배 높았고, 학과장으로 승진하는 비율은 2배, 학장이 될 비율은 3배나 높았다. 또한, 1985년에서 2007년 사이 기초의학 분야 노벨상 수상자 50명 중에 9명이나 국립보건원 병역특례 연구원 출신이었고, 같은 기간 국가과학자 수상자 (National Medal of Science 수상자) 76명 중 10명이 병역특례를 받아 국립보건원에서 근무했었다. 그리고 미국 의학연구의 정책방향을 결정하는 데 막강한 영향력을 미치는 국립보건원 원장 9명 중 4명이 이들 중에서 임용되었다.
이들은 전쟁에 직접 참여한 그린베레(미육군특전부대)(Green Berets)와 대비되어 옐로베레(Yellow Berets)라고 불렸는데, 결과적으로 기초과학과 임상연구의 간극을 좁히는 연구전통, 즉 실험실에서 임상으로 이어지는(bench to bedside) 실용적 전통을 세우는 데 중요한 역할을 했다고 논문은 평가하고 있다.
최근 기초연구와 임상연구를 이어주는 트랜슬레이셔널 메디슨(중개의학)(Translational Medicine)에 대한 관심이 높아지고 있는데, 박 교수는 이러한 연구전통이 특수한 역사적 상황과 이 기회를 잘 활용한 미국국립보건원 과학자들의 노력에 그 뿌리를 두고 있음을 보여줬다.
한국에서도 의대 졸업생들에게 일종의 병역특례로 의과학 대학원 등에서 연구 활동을 할 수 있도록 하는 제도가 있는데, 이런 제도의 효과에 대한 연구와 함께 트랜슬레이셔널 메디슨의 확대를 위한 정책개발도 이루어져야 할 것이라고 박 교수는 보고 있다.
2011.05.03
조회수 16066
-
인공 광합성 핵심기술 구현
- 메탄, 메탄올 등 친환경적인 석유 연료 및 꿈의 자원인 수소 생산 길 열어
- 에너지 환경 분야 저명 학술지 ‘ Energy & Environmental Science’ 1월호 온라인 판 게재
우리학교 강정구 교수 연구팀은 이중금속으로 구성된 다전자 광촉매 물질을 합성해 인공광합성 기술을 구현하는 데 성공했다.
이 연구결과는 에너지 환경분야의 저명한 학술지인 ‘에너지 앤 인바이런먼털 사이언스(Energy and Environmental Science)’지 온라인 판(Advance Article)에 지난 8일 게재됐다.
인공광합성 구현의 핵심기술은 물로 태양에너지의 대부분을 차지하고 있는 가시광 영역에서 효율적으로 양성자를 발생시키는 기술을 확보하는 것이다.
이 양성자는 지구 온난화의 주범인 이산화탄소와 반응해 메탄, 메탄올 등 친환경적인 석유연료를 만들 수 있다. 또한, 이 양성자 자체를 결합해 인류의 꿈의 자원인 수소 등을 효율적으로 생산할 수 있다.
기존의 다양한 광촉매 소재들은 태양에너지의 일부영역인 자외선 영역과 고가의 백금 조촉매를 사용할 경우에만 물로부터 양성자를 생성시키는 것이 가능했다. 그러나 태양광 중에서 가장 풍부한 가시광 영역에서는 거의 양성자를 생성할 수 없는 한계를 갖고 있었다.
강 교수팀은 타이테니늄 원자를 저가 산화물인 니켈 옥사이드 층상 구조에 니켈을 일부 치환시켜 이중금속으로 구성된 다전자 광촉매 물질을 합성하는 데 성공했다.
또한, 이중금속 다전자 층상 구조는 가시광 영역의 빛을 흡수할 수 있는 이종 금속의 한쪽 금속 전자가 기저상태에서 인접한 산소와 결합하고 있는 다른 쪽의 금속에 터널링을 통해서 전자 이동이 비가역적으로 이뤄져 가시광 태양빛을 효율적으로 흡수할 수 있다는 것을 확인했다.
이중금속 물산화 광촉매 물질은 태양광의 대부분을 차지하는 가시광 영역에서 효율적으로 물을 산화해 산소가 발생하는 것을 확인했다. 이를 통해 물로부터 산소 발생 후 물에는 양성자가 생성되게 된다.
이번 연구결과는 광반응에서 생성된 양성자와 지구온난화 등의 문제가 되는 이산화탄소와의 추가적인 광반응을 통해 메탄, 메탄올 등의 청정연료로 변환하는 기술로도 응용이 가능하다.
강 교수는 “이중금속 조합에 따른 전자구조의 디자인을 통해, 태양광 하에서 수소와 같은 청정에너지를 생산하는 기술로도 활용이 기대 된다”며“녹색성장의 기반 기술로 응용이 가능할 것으로 전망되어 궁극적으로는 지구온난화의 주범인 이산화탄소를 저감 시킬 뿐만 아니라 자원화 해 석유 자원을 대체할 수 있는 길을 열어 놓았다는 데 큰 의의가 있다”고 밝혔다.
2011.01.19
조회수 13555
-
윤태영 교수팀, 생체막 단백질 기능 첫 규명
우리대학 윤태영 물리학과 교수 주도하에 생체막 단백질인 시냅토태그민1(Synaptotagmin1)이 신경세포 통신을 능동적으로 제어한다는 사실을 세계 최초로 규명하였다.
시냅토태그민1은 신경전달물질 분출을 조절하는 양대 핵심 단백질로서, 지금까지 학계는 단순히 칼슘 이온이 유입되면 시냅토태크민1이 신경전달물질을 분출하는 것으로 추정해 왔지만, 명확히 그 기능을 밝혀내지 못했다.
△카이스트 윤태영 물리학과 교수, △이한기 박사 △신연균 교수(포항공대, 아이오와주립대) △권대혁 교수(성균관대) △현창봉 교수 (고등과학원) 등이 참여한 이번 연구는 교육과학기술부(장관 안병만)와 한국연구재단(이사장 박찬모)이 추진하는 ‘기초연구실육성사업(BRL)"과 ‘세계 수준의 연구중심대학(WCU)육성사업’의 지원을 받아 수행되었고, 연구결과는 세계 최고 권위의 과학저널인 ‘사이언스(Science)’誌 5월 7일자에 게재된다. 이번 연구결과는 젊은 국내 토종박사들이 주축이 되어 불굴의 도전정신으로 일궈낸 값진 연구성과이다.
총 9명으로 구성된 연구팀에서 8명이 국내 연구자들로, 이중 7명이 만 40세를 넘지 않은 신진 연구자이다.
특히 연구를 주도한 윤태영 교수는 만 34세로 2004년 서울대에서, 이한기 박사는 만 33세로 명지대에서, 권대혁 교수는 만 38세로 서울대에서 박사학위를 받은 토종박사들이다.
또한 이번 연구성과는 정부의 대표적인 연구지원사업(BRL)과 인력 양성사업(WCU)의 지원을 받아 시너지 효과를 발휘하여, 세계 최고의 과학저널에 발표했다는 점에서 의의가 있다.
[그림1. 신경전달물질 분출에 있어서 시냅토태그민1의 동적제어 스위치 모델]
윤태영 교수 연구팀은 시냅토태그민1이 신경세포 통신의 강약을 자유자재로 제어하는 스위치 역할을 한다는 새로운 사실을 밝혀냈다.
연구팀은 신경세포 내에 적정농도(10μmol/L, 1리터당 10마이크로 몰)의 칼슘 이온이 유입되면 시냅토태그민1은 신경전달물질을 빠르게 분출하지만, 적정농도 이상의 칼슘이 유입되면 오히려 그 기능이 감소된다는 사실을 최초로 확인하였다. 이것은 시냅토태그민1이 신경세포에서 나오는 칼슘 농도에 따라 다양하게 반응한다는 사실을 의미하는 것으로, 시냅토태그민1이 신경세포 통신의 강약을 자유자재로 제어할 수 있다는 사실을 새롭게 규명한 것이다.
윤태영 교수팀의 이번 연구는 지난 10년간 학계의 풀리지 않은 수수께끼인 시냅토태그민1의 기능에 대한 명쾌한 해답을 제시하였다. 이번 연구는 낮은 농도의 칼슘에서 시냅토태그민1이 가장 활발히 활동한다는 사실을 최초로 발견하여, 기존 연구가 밝히지 못한 시냅토태그민1의 기능을 정확히 설명하였다.
특히 연구팀은 시냅토태그민1을 생체막으로부터 분리하면, 제어 스위치 기능이 상실된다는 사실도 확인하여, 시냅토태그민1의 생체막 부착 여부가 그 기능에 핵심인 것을 밝혀냈다.
또한 윤 교수팀은 차세대 신약개발의 주요 타깃인 생체막 단백질의 기능을 분자수준에서 관찰할 수 있는 신기술을 개발하는데 성공하였다.
생체막 단백질은 물질 수송 등 세포내 필수적인 역할을 하는데, 암, 당뇨, 비만 등 각종 질병과 밀접하게 관련되어 있어, 차세대 신약개발 표적 단백질의 최대 70%를 차지하는 것으로 알려져 있다.
연구팀은 ‘단소포체 형광 기법(single-vesicle fluorescence detection)’을 개발하는데 성공하여, 생체막 단백질의 기능을 단분자 혹은 수개 분자 수준에서 관찰할 수 있는 세계 최고 수준의 기술을 보유하게 되었다.
[그림2. 단소포체 형광기법]
윤 교수는 “이번 연구결과는 지난 10년간 학계가 밝혀내지 못한 시냅토태그민1의 기능을 명쾌히 밝혀내고, 복잡한 생체막 단백질의 기능을 분자수준에서 관찰할 수 있는 신기술을 개발한 것이다. 이번 연구로 생체막 단백질을 활용하여, 암, 당뇨, 비만 등 현대인의 질병에 대한 신약을 개발할 수 있는 가능성을 열었다“라고 연구 의의를 밝혔다.
2010.05.07
조회수 25002